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Convex Sets and Functions

Convex Set: A subset C ⊂ Rp is convex if for all x, y ∈ C and 0 ≤ α ≤ 1
we have αx + (1− α) y ∈ C. That is, the line segment from x to y is fully
contained in C.

Convex Function: a function f : A ⊂ Rn → R (where A is a convex set) is
convex if for all x1,x2 ∈ A and all 0 ≤ α ≤ 1, we have

f (αx1 + (1− α)x2) ≤ αf (x1) + (1− α) f (x2) (1)

and it is strictly convex if the inequality is strict for all 0 < α < 1 and x1 6= x2.
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Examples of convex functions in R:

• f (x) = eax, for all a

• f (x) = − log (x) , x > 0

• f (x) = |x|α , for α ≥ 1

• f (x) = x log (x) , x > 0

Examples of convex functions in Rp

• All affi ne functions: f (x) = a′x+b, (but not strictly convex)

• Some quadratic functions: f (x) = xQx+ a′x+b, provided Q is non-
negative definite, Q � 0. Strictly convex if Q is positive definite Q � 0

• All norms f (x) = ‖x‖ . Recall that a norm is a function that satisfies a)
‖x‖ ≥ 0, b) ‖x‖ = 0 iff x = 0, c) ‖αx‖ = |α| ‖x‖, and d) ‖x+ y‖ ≤
‖x‖+ ‖y‖ .
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First Order Condition

Definition. A function f (x) is differentiable at x if the gradient

∇f (x) =


∂f (x) /∂x1
∂f (x) /∂x2

...
∂f (x) /∂xp


exists. A function f (x) is differentiable if ∇f (x) exists at every interior point
of its domain.

First Order Condition. A differentiable function f (x) with convex do-
main is convex iff

f (y) ≥ f (x) +∇f (x) (y − x) . (2)

The resader may wish to prove the equivalence of (1) and (2) for differentiable
convex functions.

Example: let f (x) be the convex function f (x) = x2, with ∇f (x) = 2x. In
this case (2) becomes

y2 ≥ x2 + 2x (y − x)

which is equivalent to (y − x)
2 ≥ 0.

Global minimization of a differentiable convex function

A simple but important result. Suppose

1. f (x) is convex and differentiable

2. x0 belongs to the interior of the domain of f .

A suffi cient and necessary condition for x0 to be a global minimizer of
f (x) is that ∇f (x0) = 0.

Proof: Suffi ciency follows directly from (2) and the fact that ∇f (x0) =
0. The necessity follows because f (x) is differentiable and x0 belongs to
the interior of the domain of f .

Remark: if f (x) is strictly convex then the global minimizer x0 is
unique. To see that suppose that there is another global minimizer x1. Then
for all 0 < α < 1, f (αx0 + (1− α)x1) < αf (x0) + (1− α) f (x1) = f (x0) ,
contradicting the fact that x0 is a global minimizer.
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Coordinate-descent algorithm

In this section we will introduce the back-fitting algorithm, which in the context
of regularization is known as the coordinate-descent algorithm. Let f (x,y) be
a real valued function with x ∈Rp and y∈Rq. Suppose that we have a way for
minimizing f (x,y) in y for each fixed x , and also for minimizing f (x,y) in
x for each fixed y. Starting from some initial value x0 (e.g. x0 = 0) we form a
decreasing sequence

{
f
(
xk,yk

)}
as follows:

f
(
x0,y

)
≥ f

(
x0,y0

)
→ f

(
x0,y0

)
,

f
(
x,y0

)
≥ f

(
x1,y0

)
→ f

(
x1,y

)
≥ f

(
x1,y1

)
→ f

(
x1,y1

)
,

f
(
x,y1

)
≥ f

(
x2,y1

)
→ f

(
x2,y

)
≥ f

(
x2,y2

)
→ f

(
x2,y2

)
,

f
(
x,y2

)
≥ f

(
x3,y2

)
→ f

(
x3,y

)
≥ f

(
x3,y3

)
→ f

(
x3,y3

)
, etc.

Hence, by construction

f
(
x,yk

)
≥ f

(
xk+1,yk+1

)
, for all x (3)

and
f
(
xk,y

)
≥ f

(
xk+1,yk+1

)
, for all y (4)

In particular
f
(
xk,yk

)
≥ f

(
xk+m,yk+m

)
, m = 1, 2, ... (5)

The following theorem shows that if f (x,y) is convex and differentiable, f
(
xk,yk

)
converges to a global minimum, f (x∗,y∗) . Later on, we will show that the
differentiability condition can be relaxed to sub-differentianility.

Theorem 1. Suppose that f : Rp+q → R is

(i) convex and differentiable

(ii) There exists (x∗,y∗) ∈ Rp+q such that ∇f (x∗,y∗) = 0

(iii) lim‖(x,y)‖→∞ f (x,y) =∞

(iv) lim‖y‖→∞ f (x,y) =∞ for all x and lim‖x‖→∞ f (x,y) =∞ for all y

Then,

(a) limk→∞ f
(
xk,yk

)
= f (x∗,y∗) .

If f (x,y) is strictly convex, then

(b) limk→∞
(
xk,yk

)
= (x∗,y∗) .
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Proof. By (iii) the sequence
(
xk,yk

)
is bounded. Therefore, every subse-

quence
(
xkm ,ykm

)
has a sub-subsequence

(
xkmj ,ykmj

)
→ (x̃,ỹ) as j → ∞.

Now, by (3) and (5),

f
(
x,ykmj

)
≥ f

(
xkmj

+1,ykmj
+1
)
≥ f

(
xkmj+1 ,ykmj+1

)
for all x. (6)

Taking limit for j →∞ in (6) we obtain

f (x, ỹ) ≥ f (x̃,ỹ) for all x.

By (i) and (iv) the partial gradient, ∇xf (x, ỹ) , satisfies

∇xf (x̃, ỹ) = 0. (7)

Similarly,
∇yf (x̃, ỹ) = 0. (8)

Therefore,

∇f (x̃, ỹ) =

(
∇xf (x̃, ỹ)
∇yf (x̃, ỹ)

)
=

(
0
0

)
= 0 (9)

By (i) (x̃, ỹ) is a global minimizer of f (x,y) and so

f (x̃, ỹ) = f (x∗,y∗) .

Therefore, Part (a) follows [all subsequence of f
(
xk,yk

)
has a sub-subsequence

that converges to f (x∗,y∗)]. For Part (b) just notice that the global minimizer
(x∗,y∗) is unique and so (x̃, ỹ) = (x∗,y∗) [now we have that all subsequence
of
(
xk,yk

)
has a sub-subsequence that converges to (x∗,y∗)].

Subgradient and Subdifferential

Suppose that f (x) is real valued and defined on Rp. A subgradient of f (x) is
any vector g ∈Rp with the property

f (y) ≥ f (x) + g′ (y − x) .

The function f (x) is subdifferentiable at x if there exists at least one subgra-
dient of f (x) at x. The set of subgradients of f (x) at x is called subdifferential
of f (x) at x and denoted ∂f (x). The function f is called subdifferentiable if
it is subdifferentiable a all x.

Some Notes:

1. If f (x) is convex and continuous then it is subdifferentiable (∂f (x) 6= φ
for all x).
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2. If g is a subgradient of f (x) then the affi ne function (of y) f (x) +
g′ (y − x) is a global lower bound for f (y) . Geometrically, (g,−1) sup-
ports the epigraph at (x,f (x)):

(y − x, f (y)− f (x))

(
g
−1

)
≥ 0 for all y ∈Rp

3. The subdifferential ∂f (x) is convex and closed.

Proof. Suppose g1,g2 ∈ ∂f (x) and let 0 ≤ α ≤ 1. Then

αf (y) ≥ αf (x) + αg′1 (y − x)

(1− α) f (y) ≥ (1− α) f (x) + (1− α)g′2 (y − x)

⇒
f (y) ≥ f (x) + [αg1 + (1− α)g2]

′
(y − x)

⇒
αg1 + (1− α)g2 ∈ ∂f (x) .

This proves the convexity of ∂f (x) . Closeness is shown in a similar fash-
ion.

4. Suppose that f (x) is convex and differentiable at x.Then ∂f (x) = {∇f (x)}.
Proof. We consider the univariate case (w.l.g.)

Suppose g ∈ ∂f (x) . Then,

g ≤ lim
y↓x

f (y)− f (x)

y − x = ∆f+ (x) = ∇f (x)⇒ g ≤ ∆f (x) .

On the other hand, for

g ≥ lim
y↑x

f (y)− f (x)

y − x = ∆f− (x) = ∆f (x)⇒ g ≥ ∆f (x) .

Therefore,
g = f ′ (x) .

5. Suppose that ∂f (x) = {g}. Then f is differentiable at x and g =∇f (x) .

Proof. We consider the univariate case (w.l.g.). By assumption g ∈ ∂f (x)
and so

g ≤ lim
y↓x

f (y)− f (x)

y − x = ∆f+ (x) and g ≥ lim
y↑x

f (y)− f (x)

y − x = ∇f− (x)
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Therefore, for convex functions we always have ∇f− (x) ≤ ∇f+ (x) .
Moreover, it can be shown that in the case

of convex functions the left and right derivatives are left and right subgra-
dients (left as an exercise). That is

f (y) ≥ f (x) + (y − x)∇f− (x) , for all y ≤ x (10)

f (y) ≥ f (x) + (y − x)∇f+ (x) , for all y ≥ x (11)

If ∇f− (x) = ∇f+ (x) = ∇f (x) then f is differentiable at x and by Point
3 above ∂f (x) = {∆f (x)} . If

∇f+ (x) > ∇f− (x) , (12)

then

f (y) ≥ f (x) + (y − x) ∆f− (x) ≥ f (x) + (y − x)∇f+ (x) for all y ≤ x
(13)

and by (10) and (13)
∇f+ (x) ∈ ∂f (x) . (14)

Moreover,

f (y) ≥ f (x) + (y − x)∇f+ (x) ≥ f (x) + (y − x)∇f− (x) for all y ≥ x
(15)

and by (10), and (15) we have

∇f+ (x) ∈ ∂f (x) . (16)

Finally (12), (14) and (16) contradict the uniqueness of g.

6. Suppose that f1 (x) and f2 (x) are subdifferentiable at x. Then

∂ (f1 (x) + f2 (x)) = ∂f1 (x) + ∂f2 (x) .

The meaning of the latest is as follows. If A and B are subsets of Rp,
A+B = {c : c = a+ b, a ∈ A, b ∈ B} .

7. A point x∗ is a (global) minimizer of a convex function f iff 0 ∈ ∂f (x∗) .

Proof.

Suffi ciency: 0 ∈ ∂f (x∗)⇒f (x) ≥ f (x∗) +0′ (x− x∗) = f (x∗) for all x.

Necessity: f (x) ≥ f (x∗) for all x⇒f (x) ≥ f (x∗) + 0′ (x− x∗) for all
x⇒ 0 ∈ ∂f (x∗) .
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Example 1

Let f (x) = |x|. In this case

∂f (x) =

 {−1} x < 0
[−1, 1] x = 0
{1} x > 0

Since 0 ∈ ∂f (0) , we have that x = 0 is the unique global minimizer of f (x)

Example 2:

Let f (t) = |1− t|+ |2− t|. In this case

∂f (t) =


{−1}+ {−1} = {−2} t < 1

[−1, 0] + {−1} = {δ − 1 : −1 ≤ δ ≤ 0} t = 1
{1}+−{1} = {0} 1 < t < 2

{1}+ [0, 1] = {1 + δ : 0 ≤ δ ≤ 1} t = 2
{1}+ {1} = {−2} t > 2

and 0 ∈ ∂f (t) for 1 ≤ t ≤ 2, the entire interval [1, 2] is a global minimizer of
f (t) = |1− t|+ |2− t| .
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The reader can verify that in the case of three terms, f (t) = |1− t|+ |2− t|+
|3− t| say, we have

∂f (t) =



{−3} t < 1
[−3,−1] t = 1
{−1} 1 < t < 2
[−1, 1] t = 2
{1} 2 < t < 3
[1, 3] t = 3
{3} t > 3

and 0 ∈ ∂f (t) if and only if t = 2. More generally, the reader can verify that if

f (t) =

n∑
i=1

|xi − t| .

We can assume w.l.g. that x1 < x2 < · · · < xn and notice that we have two
cases:
Case 1: n is odd
In this case

0 ∈ ∂f (t)⇐⇒ t = x(n+1)/2.

Case 1: n is even
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In this case
∂f (t) = 0⇐⇒ t ∈

[
xn/2, x1+n/2

]
.

In summary:

The median minimizes∑n
i=1 |xi − t|.

(17)

Example 3:

Suppose that f1 (x) , ..., fm (x) are convex subdifferentiable functions at x. De-
fine

f (x) = max
1≤j≤m

{fj (x)} .

Then f (x) is also convex and subdifferentiable at x, and

∂f (x) = CO {∪j∈A∂fj (x)} ,

where A = {j : fj (x) is active at x} and CO (A) stand for “convex hull of A”,
which is defined as the smallest convex set that contains A.
For this example we take

f1 (x) = e−x , f2 (x) = ex

Then

f (x) = max
{
e−x, ex

}
=

 e−x x ≤ 0

ex x ≥ 0

and

∂f (x) =

 −e−x x < 0
[−1, 1] x = 0
ex x > 0

Note that the minimizer, 0, belongs to ∂f (0) .
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