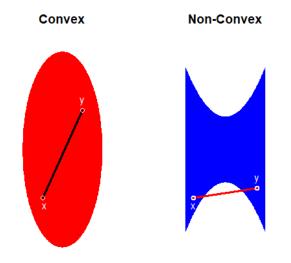
Convex sets, functions, subgradient and subdifferential

October 8, 2018

Convex Sets and Functions

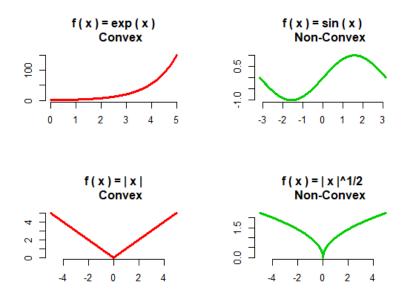
Convex Set: A subset $C \subset R^p$ is convex if for all $x, y \in C$ and $0 \le \alpha \le 1$ we have $\alpha x + (1 - \alpha) y \in C$. That is, the line segment from x to y is fully contained in C.



Convex Function: a function $f : A \subset \mathbb{R}^n \to \mathbb{R}$ (where A is a convex set) is convex if for all $\mathbf{x}_1, \mathbf{x}_2 \in A$ and all $0 \le \alpha \le 1$, we have

$$f(\alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha) f(\mathbf{x}_2)$$
(1)

and it is strictly convex if the inequality is strict for all $0 < \alpha < 1$ and $\mathbf{x}_1 \neq \mathbf{x}_2$.



Examples of convex functions in R:

- $f(x) = e^{ax}$, for all a
- $f(x) = -\log(x), x > 0$
- $f(x) = |x|^{\alpha}$, for $\alpha \ge 1$
- $f(x) = x \log(x), x > 0$

Examples of convex functions in \mathbb{R}^p

- All affine functions: $f(\mathbf{x}) = \mathbf{a}'\mathbf{x} + b$, (but not strictly convex)
- Some quadratic functions: $f(\mathbf{x}) = \mathbf{x}Q\mathbf{x} + \mathbf{a'x} + b$, provided Q is nonnegative definite, $Q \succeq 0$. Strictly convex if Q is positive definite $Q \succ 0$
- All norms $f(\mathbf{x}) = \|\mathbf{x}\|$. Recall that a norm is a function that satisfies a) $\|\mathbf{x}\| \ge 0$, b) $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = \mathbf{0}$, c) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$, and d) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

First Order Condition

Definition. A function $f(\mathbf{x})$ is differentiable at \mathbf{x} if the gradient

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \partial f(\mathbf{x}) / \partial x_1 \\ \partial f(\mathbf{x}) / \partial x_2 \\ \vdots \\ \partial f(\mathbf{x}) / \partial x_p \end{pmatrix}$$

exists. A function $f(\mathbf{x})$ is differentiable if $\nabla f(\mathbf{x})$ exists at every interior point of its domain.

First Order Condition. A differentiable function $f(\mathbf{x})$ with convex domain is convex iff

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x}) (\mathbf{y} - \mathbf{x}).$$
(2)

The resader may wish to prove the equivalence of (1) and (2) for differentiable convex functions.

Example: let f(x) be the convex function $f(x) = x^2$, with $\nabla f(x) = 2x$. In this case (2) becomes

$$y^2 \ge x^2 + 2x\left(y - x\right)$$

which is equivalent to $(y-x)^2 \ge 0$.

Global minimization of a differentiable convex function

A simple but important result. Suppose

- 1. $f(\mathbf{x})$ is convex and differentiable
- 2. \mathbf{x}_0 belongs to the interior of the domain of f.

A sufficient and necessary condition for \mathbf{x}_0 to be a global minimizer of $f(\mathbf{x})$ is that $\nabla f(\mathbf{x}_0) = 0$.

Proof: Sufficiency follows directly from (2) and the fact that $\nabla f(\mathbf{x}_0) = 0$. The necessity follows because $f(\mathbf{x})$ is differentiable and \mathbf{x}_0 belongs to the interior of the domain of f.

Remark: if $f(\mathbf{x})$ is strictly convex then the global minimizer \mathbf{x}_0 is unique. To see that suppose that there is another global minimizer \mathbf{x}_1 . Then for all $0 < \alpha < 1$, $f(\alpha \mathbf{x}_0 + (1 - \alpha) \mathbf{x}_1) < \alpha f(\mathbf{x}_0) + (1 - \alpha) f(\mathbf{x}_1) = f(\mathbf{x}_0)$, contradicting the fact that \mathbf{x}_0 is a global minimizer.

Coordinate-descent algorithm

In this section we will introduce the *back-fitting algorithm*, which in the context of *regularization* is known as the *coordinate-descent algorithm*. Let $f(\mathbf{x}, \mathbf{y})$ be a real valued function with $\mathbf{x} \in \mathbb{R}^p$ and $\mathbf{y} \in \mathbb{R}^q$. Suppose that we have a way for minimizing $f(\mathbf{x}, \mathbf{y})$ in \mathbf{y} for each fixed \mathbf{x} , and also for minimizing $f(\mathbf{x}, \mathbf{y})$ in \mathbf{x} for each fixed \mathbf{y} . Starting from some initial value \mathbf{x}^0 (e.g. $\mathbf{x}^0 = 0$) we form a decreasing sequence $\{f(\mathbf{x}^k, \mathbf{y}^k)\}$ as follows:

$$\begin{aligned} f\left(\mathbf{x}^{0},\mathbf{y}\right) &\geq f\left(\mathbf{x}^{0},\mathbf{y}^{0}\right) \to f\left(\mathbf{x}^{0},\mathbf{y}^{0}\right), \\ f\left(\mathbf{x},\mathbf{y}^{0}\right) &\geq f\left(\mathbf{x}^{1},\mathbf{y}^{0}\right) \to f\left(\mathbf{x}^{1},\mathbf{y}\right) \geq f\left(\mathbf{x}^{1},\mathbf{y}^{1}\right) \to f\left(\mathbf{x}^{1},\mathbf{y}^{1}\right), \\ f\left(\mathbf{x},\mathbf{y}^{1}\right) &\geq f\left(\mathbf{x}^{2},\mathbf{y}^{1}\right) \to f\left(\mathbf{x}^{2},\mathbf{y}\right) \geq f\left(\mathbf{x}^{2},\mathbf{y}^{2}\right) \to f\left(\mathbf{x}^{2},\mathbf{y}^{2}\right), \\ f\left(\mathbf{x},\mathbf{y}^{2}\right) &\geq f\left(\mathbf{x}^{3},\mathbf{y}^{2}\right) \to f\left(\mathbf{x}^{3},\mathbf{y}\right) \geq f\left(\mathbf{x}^{3},\mathbf{y}^{3}\right) \to f\left(\mathbf{x}^{3},\mathbf{y}^{3}\right), \end{aligned}$$
 etc.

Hence, by construction

$$f\left(\mathbf{x}, \mathbf{y}^{k}\right) \ge f\left(\mathbf{x}^{k+1}, \mathbf{y}^{k+1}\right), \text{ for all } \mathbf{x}$$
 (3)

and

$$f\left(\mathbf{x}^{k},\mathbf{y}\right) \geq f\left(\mathbf{x}^{k+1},\mathbf{y}^{k+1}\right), \text{ for all } \mathbf{y}$$
 (4)

In particular

$$f\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right) \ge f\left(\mathbf{x}^{k+m}, \mathbf{y}^{k+m}\right), \quad m = 1, 2, \dots$$
(5)

The following theorem shows that if $f(\mathbf{x}, \mathbf{y})$ is convex and differentiable, $f(\mathbf{x}^k, \mathbf{y}^k)$ converges to a global minimum, $f(\mathbf{x}^*, \mathbf{y}^*)$. Later on, we will show that the differentiability condition can be relaxed to *sub-differentiability*.

Theorem 1. Suppose that $f: \mathbb{R}^{p+q} \to \mathbb{R}$ is

- (i) convex and differentiable
- (ii) There exists $(\mathbf{x}^*, \mathbf{y}^*) \in \mathbb{R}^{p+q}$ such that $\nabla f(\mathbf{x}^*, \mathbf{y}^*) = \mathbf{0}$
- (iii) $\lim_{\|(\mathbf{x},\mathbf{y})\|\to\infty} f(\mathbf{x},\mathbf{y}) = \infty$
- (iv) $\lim_{\|\mathbf{y}\|\to\infty} f(\mathbf{x},\mathbf{y}) = \infty$ for all \mathbf{x} and $\lim_{\|\mathbf{x}\|\to\infty} f(\mathbf{x},\mathbf{y}) = \infty$ for all \mathbf{y}

Then,

- (a) $\lim_{k\to\infty} f(\mathbf{x}^k, \mathbf{y}^k) = f(\mathbf{x}^*, \mathbf{y}^*).$
- If $f(\mathbf{x}, \mathbf{y})$ is strictly convex, then
- (b) $\lim_{k\to\infty} \left(\mathbf{x}^k, \mathbf{y}^k\right) = \left(\mathbf{x}^*, \mathbf{y}^*\right).$

Proof. By (iii) the sequence $(\mathbf{x}^k, \mathbf{y}^k)$ is bounded. Therefore, every subsequence $(\mathbf{x}^{k_m}, \mathbf{y}^{k_m})$ has a sub-subsequence $(\mathbf{x}^{k_{m_j}}, \mathbf{y}^{k_{m_j}}) \to (\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}})$ as $j \to \infty$. Now, by (3) and (5),

$$f\left(\mathbf{x}, \mathbf{y}^{k_{m_j}}\right) \ge f\left(\mathbf{x}^{k_{m_j}+1}, \mathbf{y}^{k_{m_j}+1}\right) \ge f\left(\mathbf{x}^{k_{m_j+1}}, \mathbf{y}^{k_{m_j+1}}\right) \quad \text{for all } \mathbf{x}.$$
 (6)

Taking limit for $j \to \infty$ in (6) we obtain

$$f(\mathbf{x}, \widetilde{\mathbf{y}}) \ge f(\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}})$$
 for all \mathbf{x} .

By (i) and (iv) the partial gradient, $\nabla_{\mathbf{x}} f(\mathbf{x}, \widetilde{\mathbf{y}})$, satisfies

$$\nabla_{\mathbf{x}} f\left(\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}}\right) = \mathbf{0}.\tag{7}$$

Similarly,

$$\nabla_{\mathbf{y}} f\left(\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}}\right) = \mathbf{0}.$$
(8)

Therefore,

$$\nabla f(\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}}) = \begin{pmatrix} \nabla_{\mathbf{x}} f(\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}}) \\ \nabla_{\mathbf{y}} f(\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}}) \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix} = \mathbf{0}$$
(9)

By (i) $(\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}})$ is a global minimizer of $f(\mathbf{x}, \mathbf{y})$ and so

$$f(\widetilde{\mathbf{x}},\widetilde{\mathbf{y}}) = f(\mathbf{x}^*,\mathbf{y}^*).$$

Therefore, Part (a) follows [all subsequence of $f(\mathbf{x}^k, \mathbf{y}^k)$ has a sub-subsequence that converges to $f(\mathbf{x}^*, \mathbf{y}^*)$]. For Part (b) just notice that the global minimizer $(\mathbf{x}^*, \mathbf{y}^*)$ is unique and so $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) = (\mathbf{x}^*, \mathbf{y}^*)$ [now we have that all subsequence of $(\mathbf{x}^k, \mathbf{y}^k)$ has a sub-subsequence that converges to $(\mathbf{x}^*, \mathbf{y}^*)$].

Subgradient and Subdifferential

Suppose that $f(\mathbf{x})$ is real valued and defined on \mathbb{R}^p . A subgradient of $f(\mathbf{x})$ is any vector $\mathbf{g} \in \mathbb{R}^p$ with the property

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}'(\mathbf{y} - \mathbf{x}).$$

The function $f(\mathbf{x})$ is subdifferentiable at \mathbf{x} if there exists at least one subgradient of $f(\mathbf{x})$ at \mathbf{x} . The set of subgradients of $f(\mathbf{x})$ at \mathbf{x} is called subdifferential of $f(\mathbf{x})$ at \mathbf{x} and denoted $\partial f(\mathbf{x})$. The function f is called subdifferentiable if it is subdifferentiable a all \mathbf{x} .

Some Notes:

1. If $f(\mathbf{x})$ is convex and continuous then it is subdifferentiable $(\partial f(\mathbf{x}) \neq \phi$ for all $\mathbf{x})$.

2. If **g** is a subgradient of $f(\mathbf{x})$ then the affine function (of **y**) $f(\mathbf{x}) + \mathbf{g}'(\mathbf{y} - \mathbf{x})$ is a global lower bound for $f(\mathbf{y})$. Geometrically, $(\mathbf{g}, -1)$ supports the epigraph at $(\mathbf{x}, f(\mathbf{x}))$:

$$(\mathbf{y} - \mathbf{x}, f(\mathbf{y}) - f(\mathbf{x})) \begin{pmatrix} \mathbf{g} \\ -1 \end{pmatrix} \ge 0 \text{ for all } \mathbf{y} \in \mathbb{R}^p$$

3. The subdifferential $\partial f(\mathbf{x})$ is convex and closed.

Proof. Suppose $\mathbf{g}_1, \mathbf{g}_2 \in \partial f(\mathbf{x})$ and let $0 \leq \alpha \leq 1$. Then

$$\alpha f(\mathbf{y}) \ge \alpha f(\mathbf{x}) + \alpha \mathbf{g}_{1}'(\mathbf{y} - \mathbf{x})$$
$$(1 - \alpha) f(\mathbf{y}) \ge (1 - \alpha) f(\mathbf{x}) + (1 - \alpha) \mathbf{g}_{2}'(\mathbf{y} - \mathbf{x})$$
$$f(\mathbf{y}) \ge f(\mathbf{x}) + [\alpha \mathbf{g}_{1} + (1 - \alpha) \mathbf{g}_{2}]'(\mathbf{y} - \mathbf{x})$$
$$\alpha \mathbf{g}_{1} + (1 - \alpha) \mathbf{g}_{2} \in \partial f(\mathbf{x}).$$

This proves the convexity of $\partial f(\mathbf{x})$. Closeness is shown in a similar fashion.

4. Suppose that $f(\mathbf{x})$ is convex and differentiable at \mathbf{x} . Then $\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}$. **Proof.** We consider the univariate case (w.l.g.) Suppose $g \in \partial f(x)$. Then,

$$g \leq \lim_{y \downarrow x} \frac{f(y) - f(x)}{y - x} = \Delta f_{+}(x) = \nabla f(x) \Rightarrow g \leq \Delta f(x).$$

On the other hand, for

$$g \ge \lim_{y \uparrow x} \frac{f(y) - f(x)}{y - x} = \Delta f_{-}(x) = \Delta f(x) \Rightarrow g \ge \Delta f(x).$$

Therefore,

 \Rightarrow

 \Rightarrow

$$g=f'\left(x\right).$$

5. Suppose that $\partial f(\mathbf{x}) = \{\mathbf{g}\}$. Then f is differentiable at \mathbf{x} and $\mathbf{g} = \nabla f(\mathbf{x})$. **Proof.** We consider the univariate case (w.l.g.). By assumption $g \in \partial f(x)$ and so

$$g \leq \lim_{y \downarrow x} \frac{f(y) - f(x)}{y - x} = \Delta f_+(x) \text{ and } g \geq \lim_{y \uparrow x} \frac{f(y) - f(x)}{y - x} = \nabla f_-(x)$$

Therefore, for convex functions we always have $\nabla f_{-}(x) \leq \nabla f_{+}(x)$. Moreover, it can be shown that in the case

of convex functions the left and right derivatives are left and right subgradients (left as an exercise). That is

$$f(y) \ge f(x) + (y - x)\nabla f_{-}(x), \quad \text{for all } y \le x \tag{10}$$

$$f(y) \ge f(x) + (y - x) \nabla f_+(x), \quad \text{for all } y \ge x \tag{11}$$

If $\nabla f_{-}(x) = \nabla f_{+}(x) = \nabla f(x)$ then f is differentiable at x and by Point 3 above $\partial f(x) = \{\Delta f(x)\}$. If

$$\nabla f_{+}(x) > \nabla f_{-}(x), \qquad (12)$$

then

$$f(y) \ge f(x) + (y - x) \Delta f_{-}(x) \ge f(x) + (y - x) \nabla f_{+}(x)$$
 for all $y \le x$
(13)

and by (10) and (13)

$$\nabla f_{+}(x) \in \partial f(x) . \tag{14}$$

Moreover,

$$f(y) \ge f(x) + (y-x)\nabla f_+(x) \ge f(x) + (y-x)\nabla f_-(x) \quad \text{for all } y \ge x$$
(15)

and by (10), and (15) we have

$$\nabla f_{+}(x) \in \partial f(x) . \tag{16}$$

Finally (12), (14) and (16) contradict the uniqueness of g.

6. Suppose that $f_1(\mathbf{x})$ and $f_2(\mathbf{x})$ are subdifferentiable at \mathbf{x} . Then

$$\partial \left(f_1 \left(\mathbf{x} \right) + f_2 \left(\mathbf{x} \right) \right) = \partial f_1 \left(\mathbf{x} \right) + \partial f_2 \left(\mathbf{x} \right).$$

The meaning of the latest is as follows. If A and B are subsets of R^p , $A + B = \{c : c = a + b, a \in A, b \in B\}$.

7. A point \mathbf{x}^* is a (global) minimizer of a convex function f iff $\mathbf{0} \in \partial f(\mathbf{x}^*)$. **Proof.**

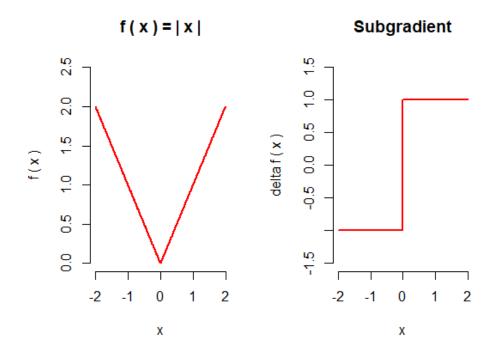
Sufficiency: $\mathbf{0} \in \partial f(\mathbf{x}^*) \Rightarrow f(\mathbf{x}) \ge f(\mathbf{x}^*) + \mathbf{0}'(\mathbf{x} - \mathbf{x}^*) = f(\mathbf{x}^*)$ for all \mathbf{x} . Necessity: $f(\mathbf{x}) \ge f(\mathbf{x}^*)$ for all $\mathbf{x} \Rightarrow f(\mathbf{x}) \ge f(\mathbf{x}^*) + \mathbf{0}'(\mathbf{x} - \mathbf{x}^*)$ for all $\mathbf{x} \Rightarrow \mathbf{0} \in \partial f(\mathbf{x}^*)$.

Example 1

Let f(x) = |x|. In this case

$$\partial f(x) = \begin{cases} \{-1\} & x < 0\\ [-1,1] & x = 0\\ \{1\} & x > 0 \end{cases}$$

Since $0 \in \partial f(0)$, we have that x = 0 is the unique global minimizer of f(x)

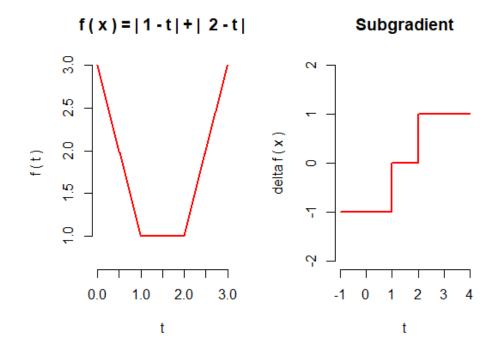


Example 2:

Let f(t) = |1 - t| + |2 - t|. In this case

$$\partial f\left(t\right) = \begin{cases} \left\{-1\right\} + \left\{-1\right\} = \left\{-2\right\} & t < 1\\ \left[-1,0\right] + \left\{-1\right\} = \left\{\delta - 1: -1 \le \delta \le 0\right\} & t = 1\\ \left\{1\right\} + - \left\{1\right\} = \left\{0\right\} & 1 < t < 2\\ \left\{1\right\} + \left[0,1\right] = \left\{1 + \delta: 0 \le \delta \le 1\right\} & t = 2\\ \left\{1\right\} + \left\{1\right\} = \left\{-2\right\} & t > 2 \end{cases}$$

and $0 \in \partial f(t)$ for $1 \le t \le 2$, the entire interval [1, 2] is a global minimizer of f(t) = |1 - t| + |2 - t|.



The reader can verify that in the case of three terms, f(t) = |1 - t| + |2 - t| + |3 - t| say, we have

$$\partial f(t) = \begin{cases} \{-3\} & t < 1\\ [-3, -1] & t = 1\\ \{-1\} & 1 < t < 2\\ [-1, 1] & t = 2\\ \{1\} & 2 < t < 3\\ [1, 3] & t = 3\\ \{3\} & t > 3 \end{cases}$$

and $0 \in \partial f(t)$ if and only if t = 2. More generally, the reader can verify that if

$$f(t) = \sum_{i=1}^{n} |x_i - t|.$$

We can assume w.l.g. that $x_1 < x_2 < \cdots < x_n$ and notice that we have two cases:

Case 1: n is odd In this case

$$0 \in \partial f(t) \iff t = x_{(n+1)/2}.$$

Case 1: n is even

In this case

$$\partial f(t) = 0 \Longleftrightarrow t \in \left[x_{n/2}, x_{1+n/2} \right].$$

In summary:

The median minimizes

$$\sum_{i=1}^{n} |x_i - t|.$$
(17)

Example 3:

Suppose that $f_{1}(\mathbf{x}), ..., f_{m}(\mathbf{x})$ are convex subdifferentiable functions at \mathbf{x} . Define

$$f\left(\mathbf{x}\right) = \max_{1 \le j \le m} \left\{ f_{j}\left(\mathbf{x}\right) \right\}.$$

Then $f(\mathbf{x})$ is also convex and subdifferentiable at \mathbf{x} , and

$$\partial f(\mathbf{x}) = CO\left\{\cup_{j\in A}\partial f_j(\mathbf{x})\right\},\$$

where $A = \{j : f_j(\mathbf{x}) \text{ is active at } \mathbf{x}\}$ and CO(A) stand for "convex hull of A", which is defined as the smallest convex set that contains A.

For this example we take

$$f_1(x) = e^{-x}$$
, $f_2(x) = e^x$

Then

$$f(x) = \max\{e^{-x}, e^x\} = \begin{cases} e^{-x} & x \le 0\\ e^x & x \ge 0 \end{cases}$$

and

$$\partial f(x) = \begin{cases} -e^{-x} & x < 0\\ [-1,1] & x = 0\\ e^{x} & x > 0 \end{cases}$$

Note that the minimizer, 0, belongs to $\partial f(0)$.

