Convex sets, functions, subgradient and
subdifferential
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Convex Sets and Functions

Convex Set: A subset C C RP is convex if for all z,y € C and 0 < a <1
we have ax + (1 — )y € C. That is, the line segment from z to y is fully
contained in C.

Convex Non-Convex

Convex Function: a function f: A C R® — R (where A is a convex set) is
convex if for all x;,x9 € A and all 0 < a < 1, we have

floxi+(1—a)x) <af (x1) + (1 - ) f(x2) (1)

and it is strictly convex if the inequality is strict for all 0 < o < 1 and x; # Xs.



f(x)=exp(x) f(x)=sin(x)
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Examples of convex functions in R:
o f(x)=1¢e", forall a
o f(z)=—1log(z), x>0
o f(z)=|z|", fora>1
o f(z)==xlog(z),z>0
Examples of convex functions in R?
e All affine functions: f(x) = a’x+b, (but not strictly convex)

e Some quadratic functions: f(x) = x@Qx + a’x+b, provided @ is non-
negative definite, @ = 0. Strictly convex if ) is positive definite Q) >~ 0

e All norms f(x) = ||x||. Recall that a norm is a function that satisfies a)
%[l = 0, b) [[x[| =0 iff x=0, c) [lax|| = |af|x|, and d) [Ix +y|| <
[+ lyll-



First Order Condition
Definition. A function f (x) is differentiable at x if the gradient

i
viw=| 7
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exists. A function f (x) is differentiable if V f (x) exists at every interior point
of its domain.

First Order Condition. A differentiable function f (x) with convex do-
main is convex iff

f@ 2+ ViE)(ly—x). (2)

The resader may wish to prove the equivalence of (1) and (2) for differentiable
convex functions.

Example: let f(x) be the convex function f (x) = 22, with Vf (z) = 2z. In
this case (2) becomes
y? > 2 + 2z (y — )

which is equivalent to (y — z)* > 0.

Global minimization of a differentiable convex function

A simple but important result. Suppose

1. f(x) is convex and differentiable

2. x( belongs to the interior of the domain of f.

A sufficient and necessary condition for xy to be a global minimizer of
f(x) is that Vf (xg) = 0.

Proof: Sufficiency follows directly from (2) and the fact that V f (x¢) =
0. The necessity follows because f (x) is differentiable and x¢ belongs to
the interior of the domain of f.

Remark: if f(x) is strictly convex then the global minimizer xq is
unique. To see that suppose that there is another global minimizer x;. Then
forall 0 < a < 1, flaxo+ (1 —a)x1) < af (x0) + (1 —a) f(x1) = f(x0),
contradicting the fact that xg is a global minimizer.



Coordinate-descent algorithm

In this section we will introduce the back-fitting algorithm, which in the context
of regularization is known as the coordinate-descent algorithm. Let f (x,y) be
a real valued function with x € R and y€ RY. Suppose that we have a way for
minimizing f (x,y) in y for each fixed x , and also for minimizing f (x,y) in
x for each fixed y. Starting from some initial value x° (e.g. x° = 0) we form a
decreasing sequence { f (Xk , yk)} as follows:

Fy) =2 F(x%y%) — F(x%y°),
Fxy) 2Ly —F(xhy) =2 f(xLyY) = F (YY),
Fxy) =&y - f(xy) > f(xy?) = F(x%y),
Fxy)2f&xy) = f&y) 2 &y =y, et
Hence, by construction
f (X;yk) > f (XkH,ka) , forall x (3)
and
f (x5 y) > (&), forally (4)
In particular
f (xk,yk) >f (x’”m,y’”m) , m=1,2,.. (5)

The following theorem shows that if f (x,y) is convex and differentiable, f (xk, yk)
converges to a global minimum, f(x*,y*). Later on, we will show that the
differentiability condition can be relaxed to sub-differentianility.

Theorem 1. Suppose that f: RPT? — R is

(i) convex and differentiable

(ii) There exists (x*,y*) € RPT? such that Vf (x*,y*) =0
(id) limy x,y) -0 £ (%, ¥) = 00
(

iv) limjy|—oo f (x,y) = 0o for all x and limx|~ f (X,y) = oo for all y

Then,
(a) limj_oo f (x*,¥%) = f(x*,¥").
If f(x,y) is strictly convex, then

(b) limg_ 0 (xk,yk) = (x*,y%).



Proof. By (iii) the sequence (xk,yk) is bounded. Therefore, every subse-
quence (ka,ykm) has a sub-subsequence (xk”’ﬁ,yk""j) — (Xy) as j — oc.
Now, by (3) and (5),

f (x, ykma‘) >f (kai“,ykmi“) > f (xk"‘ﬂ’+1,ykmi+1) for all x. (6)
Taking limit for j — oo in (6) we obtain
f(xy)>f(xy) forallx.
By (i) and (iv) the partial gradient, Vi f (x,y), satisfies
Vif (%,y) = 0. (7)

Similarly,
Vyf(x,y)=0. (8)

== _ [ Vxf(x¥) _( 0 _
Vf(x,y)—( Vyf(;(,y) )—( 0 >—0 (9)
By (i) (X,y) is a global minimizer of f (x,y) and so
f&y)=FE"y").

Therefore, Part (a) follows [all subsequence of f (x*,y*) has a sub-subsequence
that converges to f (x*,y*)]. For Part (b) just notice that the global minimizer
(x*,y*) is unique and so (X,y) = (x*,y*) [now we have that all subsequence
of (xk, yk) has a sub-subsequence that converges to (x*,y*)].

Therefore,

Subgradient and Subdifferential

Suppose that f (x) is real valued and defined on RP. A subgradient of f (x) is
any vector g € RP with the property

f@>fx)+g(y—x).

The function f (x) is subdifferentiable at x if there exists at least one subgra-
dient of f (x) at x. The set of subgradients of f (x) at x is called subdifferential
of f(x) at x and denoted 9f (x). The function f is called subdifferentiable if
it is subdifferentiable a all x.

Some Notes:

1. If f(x) is convex and continuous then it is subdifferentiable (0f (x) # ¢
for all x).



2. If g is a subgradient of f(x) then the affine function (of y) f(x)+
g’ (y —x) is a global lower bound for f (y). Geometrically, (g, —1) sup-
ports the epigraph at (x,f (x)):

yoxsm-re( § )20 prayer

3. The subdifferential 9f (x) is convex and closed.
Proof. Suppose g1,82 € 9f (x) and let 0 < a < 1. Then

af(y) = af (x)+og (y —%)
l-a)f(y)21-a)f(x)+(1-a)g(y —x%)
=
)2 fx)+lagi+(1-a)g] (y —x)
=

agr+ (1 —a)ge € 0f (x).

This proves the convexity of df (x). Closeness is shown in a similar fash-
ion.

4. Suppose that f (x) is convex and differentiable at x. Then df (x) = {V f (x)}.
Proof. We consider the univariate case (w.l.g.)
Suppose g € df (x) . Then,
g <lim W -1 @)

yla y—x

=Afi (@) =Vf(z) =g <Af(z).
On the other hand, for

g21im PO =T Ay oy A =g Af ).

ylz Yy—x

Therefore,

g=f"(z).

5. Suppose that 0f (x) = {g}. Then f is differentiable at x and g =V f (x).

Proof. We consider the univariate case (w.l.g.). By assumption g € 9f (z)
and so

W= f@) _ o L W) = f(2)
e A D

— Y/ ()



Therefore, for convex functions we always have Vf_(z) < Vfi(z).
Moreover, it can be shown that in the case

of convex functions the left and right derivatives are left and right subgra-
dients (left as an exercise). That is

f)>f@)+y-—2)Vi(z), forally<uz (10)
f>f@)+y—2)Vf(x), forally>z (11)

VS () =Vfy(z) =Vf(x) then [ is differentiable at 2 and by Point
3 above Of (z) = {Af (x)}. If

Vii(z) >V (2), (12)
then
fw=>f@)+W—z)Af-(2) > f(z)+ (y—2)Vfy () forally Slg
and by (10) and (13) "
Vi (@) € 0f (x). (14)
Moreover,
fW>f@)+w—2)Vi(z)> f(z)+(y—x) Vi (z) forally 2(;;)

and by (10), and (15) we have
Vit (z) €0f (z). (16)

Finally (12), (14) and (16) contradict the uniqueness of g.

. Suppose that fi (x) and f5 (x) are subdifferentiable at x. Then
I(fr(x) + f2(x) = 0f1 (%) + 02 (%) .

The meaning of the latest is as follows. If A and B are subsets of RP,
A+B={c:c=a+bac Abe B}.

. A point x* is a (global) minimizer of a convex function f iff 0 € 9f (x*).
Proof.
Sufficiency: 0 € 9f (x*) =f (x) > f (x*)+0' (x —x*) = f (x*) for all x.

Necessity: f(x) > f(x*) for all x =f(x) > f(x*) + 0" (x — x*) for all
x=0€df (x*).



Example 1
Let f(x)=|z|. In this case

{-1} <0
af(x){ [—1,1] z=0
{1} x>0

Since 0 € 9f (0), we have that = 0 is the unique global minimizer of f (x)

f(x)=]|x]| Subgradient
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Example 2:
Let f(t)=1|1—t +|2—t|. In this case

{(—1} +{-1} = {-2} t<1
1,0+ {-1}={6—1: -1 <5 <0} t=1

af (t) = {1} + — {1} = {0} 1<t<?2
(1 +1[0,1]={1+6:0<5<1} t=2
(1} + {1} = {-2} t>2

and 0 € 9f (t) for 1 <t <2, the entire interval [1,2] is a global minimizer of
fA)=1-t+[2-1.



f(x)=|1-t|+]| 2-t] Subgradient
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The reader can verify that in the case of three terms, f(¢) =1 —¢|+|2 — |+
|3 — t| say, we have

{-3} t<1

[—3,—1] t=1
{-1} l<t<2

of (t) = [-1,1] t=2
{1} 2<t<3

1,3] t=3

{3} t>3

and 0 € Of (t) if and only if t = 2. More generally, the reader can verify that if

OSSR

We can assume w.l.g. that 1 < z9 < -+ < x,, and notice that we have two
cases:
Case 1: n is odd
In this case
0€df(t) —=t= Z(nt1)/2-

Case 1: n is even



In this case
of 1) =0<=t¢€ [mn/g,mHn/Q} .

In summary:

The median minimizes

22;1 |z — 1.

Example 3:

Suppose that f1 (X),..., fm (X) are convex subdifferentiable functions at x. De-
fine

Then f (x) is also convex and subdifferentiable at x, and

Of (x) = CO{U;jeadf; (%)},

where A = {j: f; (x) is active at x} and CO (A) stand for “convex hull of A”,
which is defined as the smallest convex set that contains A.
For this example we take

file)=e® | fo(z)=¢€"

Then
e " <0
f(z) =max{e " "} =
e z>0
and
—e 7 <0
of (x) =4 [-1,1] x=0
e’ z>0

Note that the minimizer, 0, belongs to df (0) .
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Max of Convex Functions Subgradient
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