Entropy

Definition of Entropy: Let X be a discrete random vector with
density f (x;) = P (X = x;). The entropy of X is defined as

H(X) ==Y f(x)log(f(x;)) = —E{log (f (X))} (1)

Since 0 < f(x;) < 1, it is clear that H (X) > 0. Moreover, entropy can
be interpreted as a measure of randomness or uncertainty. For example, if X
can take only two values a and b with probabilities p and (1 — p), respectively.
Then

H (X) = —plog(p) — (1 —p)log (1 —p)

Differentiating with respect to p

—log(p)—1+4+1log(l—p)+1=0

log <1—p) =0
p
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The most uncertain case is when a and b are equally likely. Notice that H (X)
doesn’t depend on the particular values of X, but in their probabilities.

Exercise 1: Suppose that X can take n possible values with probabilities
D1,D2, -, Pn- Show that in this case H (X) is maximized when p; = 1/n.



Definition of Differential EIltI‘OpyZ Let X be a continuous ran-
dom vector with density f (x). The differential entropy of X is defined as

H(X) = —E {log (f (X))} = —/-~/f<x> log (f (x)) dx

The definitions of entropy and differential entropy in terms of expected values
are identical. But the behavior of H in the discrete and continuous cases are
rather different.

1. Entropy can be negative in the continuous case.

Notice that in the continuous case we no longer have 0 < f(x) < 1 and
H (X) can be negative. For example, if X is Unif(0,a), a > 0, then

1 [ 1 1
H(X):—f/0 log () dx = —log (a) =log(a) <O foral 0<a<l.

a a

Notice that H (X) increases with a and H (X) — —oo when ¢ — 0.



H (X) is invariant under one-to-one transformations in the dis-
crete case but not in the continuous case.

In fact, let
g1 (X)
92 (X)
Y=gX)=| . (2)
9a (X)
be a one-to-one transformation. Let
hy (X)
ha (X)

If X is a discrete random vector with
pi =P (X =x)
then

H(Y)=-> P(Y=y,)log[P(Y =y,
= - P(g(X)=g(x))log [P (g(X) =g (x1))]

==Y P(X =x;)log[P (X =x;)]

= H (X)

On the other hand, if X is Unif(0,1) and Y = aX, then

H(X)=1log(l)=0 and H (YY) =log(a)



Exercise 2: if X is a continuous random vector and Y =MX, where
M is an invertible constant matrix, then

H(Y)=H (X) + log|det M] .

Exercise 3: Derive and analyze the entropy of the following random
variables: (a) Binomial(n,p); (b) Negative Binomial (m,p); (c) Poisson(\);
(d) N(u,0?); Gammaf(k, \) .



Definition of Mutual Information: mutual information is a
measure of the amount of information that the entries of a random vector have
about each other. Mutual information is defined as follows:

d
log (fx (x)) = > _log[fi (x:)]
=1
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Therefore, the mutual entropy (3) is the difference between the entropy that
we would have if the entries of X were independent and the entropy of the
actual joint distribution of X. Intuition indicates that D (X) > 0. The following
discussion shows that this is case.

Exercise 4: Let X be bivariate normal with means m and covariance

matrix
o o
V = 11 12 )
021 022

Calculate the mutual information of X.



Definition of Kullback-Leibler Distance: the Kullback Leibler
distance between two (multivariate) density distributions f (x) and fa (x) is de-
fined as follows

5(fi, f2) = Ey, {log (2 Eg)} _ /.../ﬁ (x) log (;; 8) dx
By Jensen’s inequality
e {ios (750 )} == L (750}
> - 11 { (265}
g [/.../b(x)dx] — log(1) =0




Finally, we notice that the mutual information is simply the Kullback—
Leibler distance between

d
AE) =f(x) and fo(x)=]]fi (=)
In fact,
5(f1,f2):/.../f(x)log lﬂdﬂ;()fv)] dy...dzy

= [+ [ G008l GOl dor.cdza— [+ [ )10 [[[ ;i @01 day...

H(X;)

— 1)~ Y [ () log i 1)) dr,

:ZH(Xi)—H(x).

Exercise 5: Let X; and X3 be multivariate normal random vectors
with means m; and m, and covariances Vi and Vs, respectively. Calculate the
Kullback-Leibler distance between X; and Xs.

dxd



A General Setting for the EM Algorithm

Recall that

7 (Y \ [ inclomplete data
—— \ X /7 augmented data
complete data

Then
Y =Ty (Z)

where the function T is the projection on the first k coordinates.
More generally, consider the case where
Y =t (Z),
where tg is a function, to : R — RF, with k < p. For example we could have

Al
Za
7= 73
Zy
Zs

and



Discrete Case

In this case we have

1(8]y) =log fy (y;0) Incomplete log-likelihood

1(0]z) = log fz (z;0) Complete log-likelihood

[(01y,6%) = Egyy g {log fz (2:0)} E-Step

=3 Doz (2:0)) gy o0 (2:6)

f(z0®)

:Z...Zlog[fz(Z;G)]f(y;e(k))

1z (26®)

hZ\y,(;(k) (Z;Q(k)) = m



F(0ly,6™) ="+ 3 log [z (2 0)] by g (2:6™)

1)
:Z...Zlog[fz(z,@}f(y;g(k))

Example. Let
Z
Z=\| 2
Zs

where 71, Zs, Z3 are independent, Z; ~Poisson(A), Zs ~Poisson(A) and Z3 ~Poisson(d).

Suppose that we observe
v Y] | Zi+ Zs Poisson(2))
LY T\ Zy+Zs Poisson(A + §)
Notice that Y7 and Ysare not independent. We can use the EM algorithm to

find the MLE for A and é.

The complete data log-likelihood (for n independent observations) is

1 1
LN 0121, 2y, Z) = K — 2\ +1log () > (Z1i + Zai) = 6+ log (6) - > Zs;
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and

i(A, SY1, Yy AP, 5<’f)) =K —2\+1log(\) (; ZYM> )

§5(&)

)\(k) +5(k ( Z}/QZ) 1Og

_ §(F) _
=K —-2\+log(\) Y1 -6+ WYzlog(é)

NOTE: We used the fact that Z3;|Ya; ~ Bin (Ya;,0/ (A4 6)) and so E (Z3;|Ys;) =
Yai6/ (A +3)

For the M-step we differentiate [ with respect to A and § and set the deriva-
tives equal to zero:

Y, 3 Y,
oy -1 _ AR+ 21
+ h\ 0= 2
. 5k .5k
Ly Y20 1 sy Y20®
&) 4 5(k) § ME) 4 (k)
Setting
Y. N
7725 =)= 0= Y2 -1
Yi/246 2

The ML problem has the unique solution A=Y, /2, 5=Y.-Y, /2, provided
Yy>Yi/2>0.

11



Continuous Case

In this case we must complete the transformation by adding another transfor-
mation

X =t1(Z) (complete the transformation)

such that
_ (Y \_{( to(Z)
—(x)- (4@
=t(Z) is a one-to-one
Then
L(0|t,) =log fr, (to:0) Incomplete log-likelihood
L(0]ty,t1) =log f (to,t1;0) Complete log-likelihood
i(9|t0, 9<k>) = Ep, o, o0 {log f (to, T1;60)} E-Step

f(toytl;e(k)>
:/.../logf(to,t1;9) f(to;e(k))dtl
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The Ascent Property of the EM Algorithm

We will explicitly consider the discrete case. Derivations for the continuous
case are identical.

First define the “improvement” or “increment” functions

a(6) =1 (00ly) — 1 (6ly) ()

d(9) = i(9<k>|y7 9““)) - i(9|y,9<‘“>) (5)

for the function we maximize in the M step, [(0|y, H(k)) , and the “target

function” which we actually wish to maximize, I (6]y), about the current value
6%). We have the following

Lemma

d@)<d®)  forall 0,

or equivalently

l~(9|y,0(k)>—l(9|y)§l~(9(k)|y,0(k))—l(H(k)|y), for all 0. (6)
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Proof:

[(0ly,0™)) = 1(0ly) = By g {log f (Z:0)} —log f (y:0)

= Ey)y o0 {log f (Z;0) —log f (y;0)}

Z;0
= Py {bg ?Ey;ﬁi}

= Eg)y g {log f (Z]y,0)}

< Ezpyom {logf (Z|y7 Q(k)>} by the Entropy Inequality

Notice that we have strict inequality unless f (Z|y, G(k)) = f(Zly,9) for some
0 # o), Hence,

fe)

[(0]y,6™) = 1(6ly) < Eyyy g0 {logw

gy s (59}~ gy s (56%)

_ [(g(k)‘y,g(k)> 3 <g(k)|y) ,

proving the desired inequality.
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The Ascending Property of the EM Algorithm

Theorem: TLet 6+) and 6®) be two consecutive steps in the EM
algorithm. That is

Z(9<k+1>|y,0<’“>) > l~<0|y,9(k)), for all 6.
Then
! (9(k+1)|y) > (G(k)\y> :
Proof.
I (0(k+1)|y) _ Z(e(kﬂ)‘y’e(k)) _ [[ (9(k+1)‘y,9(k)> 1 (9(k+1)|y)}

> Z(e(kﬂ)‘y’e(k)) _ [[ (e(k)b,,e(k)) 1 (e(k)b,ﬂ by (6)

> (e)(k)\y,e(’“)) n [z (9<k>\y) i <9<’<>|y,0<’“>)} by definition of §*+1

=1 (e)(k)\y) .
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