
Entropy

Definition of Entropy: Let X be a discrete random vector with
density f (xi) = P (X = xi) . The entropy of X is defined as

H (X) = −
∑

f (xi) log (f (xi)) = −E {log (f (X))} (1)

Since 0 < f (xi) < 1, it is clear that H (X) ≥ 0. Moreover, entropy can
be interpreted as a measure of randomness or uncertainty. For example, if X
can take only two values a and b with probabilities p and (1− p) , respectively.
Then

H (X) = −p log (p)− (1− p) log (1− p)

Differentiating with respect to p

− log (p)− 1 + log (1− p) + 1 = 0

log

(
1− p
p

)
= 0

1− p
p

= 1⇒ p = 1/2.

The most uncertain case is when a and b are equally likely. Notice that H (X)
doesn’t depend on the particular values of X, but in their probabilities.

Exercise 1: Suppose that X can take n possible values with probabilities
p1, p2, ..., pn. Show that in this case H (X) is maximized when pi = 1/n.
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Definition of Differential Entropy: Let X be a continuous ran-
dom vector with density f (x) . The differential entropy of X is defined as

H (X) = −E {log (f (X))} = −
∫
· · ·
∫
f (x) log (f (x))dx

The definitions of entropy and differential entropy in terms of expected values
are identical. But the behavior of H in the discrete and continuous cases are
rather different.

1. Entropy can be negative in the continuous case.

Notice that in the continuous case we no longer have 0 < f (x) < 1 and
H (X) can be negative. For example, if X is Unif(0, a) , a > 0, then

H (X) = −1

a

∫ a

0

log

(
1

a

)
dx = − log

(
1

a

)
= log (a) < 0 for all 0 < a < 1.

Notice that H (X) increases with a and H (X)→ −∞ when a→ 0.

2



2. H (X) is invariant under one-to-one transformations in the dis-
crete case but not in the continuous case.

In fact, let

Y = g (X) =


g1 (X)
g2 (X)

...
gd (X)

 (2)

be a one-to-one transformation. Let

X = g−1 (Y) = h (Y) =


h1 (X)
h2 (X)

...
hd (X)


If X is a discrete random vector with

pi = P (X = xi)

then

H (Y) = −
∑

P (Y = yi) log [P (Y = yi)]

= −
∑

P (g (X) = g (xi)) log [P (g (X) = g (xi))]

= −
∑

P (X = xi) log [P (X = xi)]

= H (X)

On the other hand, if X is Unif(0, 1) and Y = aX, then

H (X) = log (1) = 0 and H (Y ) = log (a)
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Exercise 2: if X is a continuous random vector and Y =MX, where
M is an invertible constant matrix, then

H (Y) = H (X) + log |detM| .

Exercise 3: Derive and analyze the entropy of the following random
variables: (a) Binomial(n, p); (b) Negative Binomial (m, p) ; (c) Poisson(λ) ;
(d) N

(
µ, σ2

)
; Gamma(k, λ) .
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Definition of Mutual Information: mutual information is a
measure of the amount of information that the entries of a random vector have
about each other. Mutual information is defined as follows:

D (X) =

d∑
i=1

H (Xi)−H (X) (3)

If the entries X1, X2, ..., Xd of the random vector X are independent then

fX (x) =

d∏
i=1

fi (xi)

log (fX (x)) =

d∑
i=1

log [fi (xi)]

H (X) =

∫
· · ·
∫ d∑

i=1

log [fi (xi)]

[
d∏
i=1

fi (xi)

]
dx1...dxd

=

d∑
i=1

∫
log [fi (xi)] fi (xi) dxi

=

d∑
i=1

H (Xi)

Therefore, the mutual entropy (3) is the difference between the entropy that
we would have if the entries of X were independent and the entropy of the
actual joint distribution of X. Intuition indicates that D (X) ≥ 0. The following
discussion shows that this is case.

Exercise 4: Let X be bivariate normal with means m and covariance
matrix

V =

(
σ11 σ12
σ21 σ22

)
.

Calculate the mutual information of X.
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Definition of Kullback-Leibler Distance: the Kullback–Leibler
distance between two (multivariate) density distributions f1 (x) and f2 (x) is de-
fined as follows

δ (f1, f2) = Ef1

{
log

(
f1 (X)

f2 (X)

)}
=

∫
· · ·
∫
f1 (x) log

(
f1 (x)

f2 (x)

)
dx

By Jensen’s inequality

Ef1

{
log

(
f1 (X)

f2 (X)

)}
= −Ef1

{
log

(
f2 (X)

f1 (X)

)}

≥ − log

[
Ef1

{(
f2 (X)

f1 (X)

)}]

= − log

[∫
· · ·
∫
f2 (x)dx

]
= − log (1) = 0
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Finally, we notice that the mutual information is simply the Kullback–
Leibler distance between

f1 (x) = f (x) and f2 (x) =

d∏
i=1

fi (xi) .

In fact,

δ (f1, f2) =

∫
· · ·
∫
f (x) log

[
f (x)∏d

i=1 fi (xi)

]
dx1...dxd

=

∫
· · ·
∫
f (x) log [f (x)] dx1...dxd −

∫
· · ·
∫
f (x) log

[
d∏
i=1

fi (xi)

]
dx1...dxd

= −H (x)−
n∑
i=1

H(Xi)︷ ︸︸ ︷∫
fi (xi) log [fi (xi)] dxi

=

n∑
i=1

H (Xi)−H (x) .

Exercise 5: Let X1 and X2 be multivariate normal random vectors
with means m1 and m2 and covariances V1 and V2, respectively. Calculate the
Kullback-Leibler distance between X1 and X2.
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A General Setting for the EM Algorithm

Recall that

Z︸︷︷︸
complete data

=

(
Y
X

)
=

(
inclomplete data
augmented data

)

Then
Y = T0 (Z)

where the function T0 is the projection on the first k coordinates.

More generally, consider the case where

Y = t0 (Z) ,

where t0 is a function, t0 : Rp → Rk, with k < p. For example we could have

Z=


Z1

Z2

Z3

Z4

Z5



and

Y=

 Y1
Y2
Y3

 =

 Z1

Z2 + Z3

Z4 + Z5

 = t0 (Z)
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Discrete Case

In this case we have

l (θ|y) = log fY (y; θ) Incomplete log-likelihood

l (θ|z) = log fZ (z; θ) Complete log-likelihood

l̃
(
θ|y, θ(k)

)
= EZ|y,θ(k) {log fZ (z; θ)} E–Step

=
∑
· · ·
∑

log [fZ (z; θ)]hZ|y,θ(k)

(
z; θ(k)

)

=
∑
· · ·
∑

log [fZ (z; θ)]
f
(
z; θ(k)

)
f
(
y; θ(k)

)

hZ|y,θ(k)

(
z; θ(k)

)
=
fZ

(
z; θ(k)

)
fY

(
y; θ(k)

)
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l̃
(
θ|y, θ(k)

)
=
∑
· · ·
∑

log [fZ (z; θ)]hZ|y,θ(k)

(
z; θ(k)

)

=
∑
· · ·
∑

log [fZ (z; θ)]
f
(
z; θ(k)

)
f
(
y; θ(k)

)

Example. Let

Z =

 Z1

Z2

Z3


where Z1, Z2, Z3 are independent, Z1 ∼Poisson(λ), Z2 ∼Poisson(λ) and Z3 ∼Poisson(δ).

Suppose that we observe

Y=

(
Y1
Y2

)
=

(
Z1 + Z2

Z2 + Z3

)
∼
(

Poisson(2λ)
Poisson(λ+ δ)

)

Notice that Y1 and Y2are not independent. We can use the EM algorithm to
find the MLE for λ and δ.

The complete data log-likelihood (for n independent observations) is

l (λ, δ|Z1,Z2,Z3) = K − 2λ+ log (λ)
1

n

∑
(Z1i + Z2i)− δ + log (δ)

1

n

∑
Z3i
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and

l̃
(
λ, δ|Y1,Y2, λ

(k), δ(k)
)

= K − 2λ+ log (λ)

(
1

n

∑
Y1i

)
− δ

+
δ(k)

λ(k) + δ(k)

(
1

n

∑
Y2i

)
log (δ)

= K − 2λ+ log (λ)Y 1 − δ +
δ(k)

λ(k) + δ(k)
Y 2 log (δ)

NOTE: We used the fact that Z3i|Y2i ∼ Bin (Y2i, δ/ (λ+ δ)) and so E (Z3i|Y2i) =
Y2iδ/ (λ+ δ) .

For the M-step we differentiate l̃ with respect to λ and δ and set the deriva-
tives equal to zero:

−2 +
Y 1

λ
= 0 =⇒ λ̂(k+1) =

Y 1

2

−1 +
Y 2δ

(k)

λ(k) + δ(k)
1

δ
= 0 =⇒ δ̂(k+1) =

Y 2δ
(k)

λ(k) + δ(k)

Setting

Y 2δ

Y 1/2 + δ
= δ =⇒ δ̂ = Y 2 −

Y 1

2

The ML problem has the unique solution λ̂ = Y 1/2, δ̂ = Y 2 − Y 1/2, provided
Y 2 > Y 1/2 > 0.
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Continuous Case

In this case we must complete the transformation by adding another transfor-
mation

X = t1 (Z) (complete the transformation)

such that

T=

(
Y
X

)
=

(
t0 (Z)
t1 (Z)

)

= t (Z) is a one-to-one

Then

l (θ|t0) = log fT0
(t0; θ) Incomplete log-likelihood

l (θ|t0, t1) = log f (t0, t1; θ) Complete log-likelihood

l̃
(
θ|t0, θ

(k)
)

= ET1|t0,θ(k) {log f (t0,T1; θ)} E–Step

=

∫
· · ·
∫

log f (t0, t1; θ)
f
(
t0, t1; θ(k)

)
f
(
t0; θ(k)

) dt1
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The Ascent Property of the EM Algorithm

We will explicitly consider the discrete case. Derivations for the continuous
case are identical.

First define the “improvement” or “increment” functions

d (θ) = l
(
θ(k)|y

)
− l (θ|y) (4)

d̃ (θ) = l̃
(
θ(k)|y, θ(k)

)
− l̃
(
θ|y, θ(k)

)
(5)

for the function we maximize in the M step, l̃
(
θ|y, θ(k)

)
, and the “target

function” which we actually wish to maximize, l (θ|y) , about the current value
θ(k). We have the following

Lemma

d (θ) ≤ d̃ (θ) for all θ,

or equivalently

l̃
(
θ|y, θ(k)

)
− l (θ|y) ≤ l̃

(
θ(k)|y, θ(k)

)
− l
(
θ(k)|y

)
, for all θ. (6)
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Proof:

l̃
(
θ|y, θ(k)

)
− l (θ|y) = EZ|y,θ(k) {log f (Z; θ)} − log f (y; θ)

= EZ|y,θ(k) {log f (Z; θ)− log f (y; θ)}

= EZ|y,θ(k)

{
log

f (Z; θ)

f (y; θ)

}

= EZ|y,θ(k) {log f (Z|y, θ)}

≤ EZ|y,θ(k)

{
log f

(
Z|y, θ(k)

)}
by the Entropy Inequality

Notice that we have strict inequality unless f
(
Z|y, θ(k)

)
= f (Z|y, θ) for some

θ 6= θ(k). Hence,

l̃
(
θ|y, θ(k)

)
− l (θ|y) ≤ EZ|y,θ(k)

log
f
(
Z; θ(k)

)
f
(
y; θ(k)

)


= EZ|y,θ(k)

{
log f

(
Z; θ(k)

)}
− EZ|y,θ(k)

{
log f

(
y; θ(k)

)}

= l̃
(
θ(k)|y, θ(k)

)
− l
(
θ(k)|y

)
,

proving the desired inequality.
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The Ascending Property of the EM Algorithm

Theorem: Let θ(k+1) and θ(k) be two consecutive steps in the EM
algorithm. That is

l̃
(
θ(k+1)|y, θ(k)

)
≥ l̃
(
θ|y, θ(k)

)
, for all θ.

Then

l
(
θ(k+1)|y

)
≥ l
(
θ(k)|y

)
.

Proof.

l
(
θ(k+1)|y

)
= l̃
(
θ(k+1)|y, θ(k)

)
−
[
l̃
(
θ(k+1)|y, θ(k)

)
− l
(
θ(k+1)|y

)]

≥ l̃
(
θ(k+1)|y, θ(k)

)
−
[
l̃
(
θ(k)|y, θ(k)

)
− l
(
θ(k)|y

)]
by (6)

≥ l̃
(
θ(k)|y, θ(k)

)
+
[
l
(
θ(k)|y

)
− l̃
(
θ(k)|y, θ(k)

)]
by definition of θ(k+1)

= l
(
θ(k)|y

)
.

15


