Linear Regression

Given data

$$(y_i, \mathbf{x}_i)$$
 $i = 1, \dots, n, y_i \in R, \mathbf{x}_i \in R^p$

we wish to find a real function $g(\mathbf{x})$ that optimally approximates the given data:

$$g(\mathbf{x}_i) \approx y_i, \quad i = 1, ..., n.$$
 (1)

The function g may be assumed to belong to some space of functions, \mathcal{G} . For example \mathcal{G} could be the set of all the linear functions

$$g\left(\mathbf{x}\right) = \beta_0 + \boldsymbol{\beta}' \mathbf{x}$$

leading to linear regression, or \mathcal{G} could be the set of twice differentiable functions with bounded curvature leading to cubic splines. Moreover, the requirement that $g(\mathbf{x}_i)$ approximates y_i can be formalized in several ways, leading to different estimates $\hat{g}(\mathbf{x}_i)$ including least squares (LS), least absolute regression, robust regression, etc.

Ordinary Least Squares Regression

$$\widehat{\boldsymbol{\theta}}_{LS} = \left(\widehat{eta}_{0}, \widehat{\boldsymbol{eta}}'\right) = rg\min_{\left(eta_{0}, \boldsymbol{eta}
ight)} \sum \left(y_{i} - eta_{0} - \boldsymbol{eta}'\mathbf{x}_{i}
ight)^{2}$$

The matrix

$$X = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix}$$

is called "the design matrix" and the vector

$$\mathbf{y} = \left(\begin{array}{c} y_1\\y_2\\\vdots\\y_n\end{array}\right)$$

is called "the response vector". If X has full rank (that is, if $\operatorname{rank}(X) = p + 1 < n$) then it can be shown that

$$\widehat{\boldsymbol{\theta}} = \left(X'X \right)^{-1} X' \mathbf{y}.$$

Ridge Regression

One way to manage the bias-variance trade-off in linear regression is to add a penalty term, for example $\lambda \sum_{j=1}^{p} \beta_j^2$, to the loss function:

$$J(\beta_0, \boldsymbol{\beta}, \boldsymbol{\lambda}) = \sum_{i=1}^{n} \left(y_i - \beta_0 - \boldsymbol{\beta}' \mathbf{x}_i \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$
(2)

where $\lambda \geq 0$ is a tuning parameter. This technique was originally invented by the Russian mathematician Andrey Tikhonov and later expounded in statistics by Arthur E. Hoerl, who called it *ridge regression*.

Consider the problem of minimizing $J(\beta_0, \beta, \lambda)$ and let $\hat{\beta}(\lambda)$ be a minimizer of (2) for the given value of λ . If $\lambda = 0$, we are back to OLS, that is $\hat{\beta}(0) = \hat{\beta}_{OLS}$. On the other hand, it should be intuitively clear that if $\lambda \to \infty$, then $\hat{\beta}(\lambda) \to \mathbf{0}$. The effect of the penalty parameter λ is to shrink the regression coefficient toward zero.

Computation of $\widehat{\boldsymbol{\beta}}(\lambda)$.

In this context, it is convenient to center and to scale the variables so that

$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} x_{ij} = 0,$$

to remove the need for the intercept parameter, β_0 , and

$$\sum_{i=1}^{n} y_i^2 = \sum_{i=1}^{n} x_{ij}^2 = n$$

to account for the fact that $J(\beta,\lambda)$ is not scale invariant.

Notice that, for fixed λ ,

$$J(\boldsymbol{\beta}, \lambda) = \sum_{i=1}^{n} (y_i - \boldsymbol{\beta}' \mathbf{x}_i)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

is differentiable and strictly convex, so if $\widehat{\boldsymbol{\beta}}(\lambda)$ solves the equation

$$\nabla J(\boldsymbol{\beta}, \boldsymbol{\lambda}) = -2 \begin{pmatrix} -\sum_{i=1}^{n} (y_i - \boldsymbol{\beta}' \mathbf{x}_i) x_{i1} + \lambda \beta_1 \\ -\sum_{i=1}^{n} (y_i - \boldsymbol{\beta}' \mathbf{x}_i) x_{i2} + \lambda \beta_2 \\ \vdots \\ -\sum_{i=1}^{n} (y_i - \boldsymbol{\beta}' \mathbf{x}_i) x_{ip} + \lambda \beta_p \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

then it $\widehat{\boldsymbol{\beta}}(\lambda)$ uniquely minimizes $J(\boldsymbol{\beta},\lambda)$ in $\boldsymbol{\beta}$ for this value of λ .

There are at least two approaches for calculating $\widehat{\boldsymbol{\beta}}(\lambda)$, which are described below.

Approach 1: (coordinate descent). Set
$$\beta^0 = \mathbf{0}$$
 and given $\beta^k = (\beta_1^k, \beta_2^k, ..., \beta_p^k)$

 set

$$e_{1i}^{k} = y_{i} - \beta_{2}^{k} x_{i2} - \dots - \beta_{p}^{k} x_{ip}$$

$$e_{2i}^{k} = y_{i} - \beta_{1}^{k+1} x_{i1} - \beta_{3}^{k} x_{i3} - \dots - \beta_{p}^{k} x_{ip}$$

$$e_{3i}^{k} = y_{i} - \beta_{1}^{k+1} x_{i1} - \beta_{2}^{k+1} x_{i2} - \beta_{4}^{k} x_{i4} - \dots - \beta_{p}^{k} x_{ip}$$

$$\vdots$$

$$e_{pi}^{k} = y_{i} - \beta_{1}^{k+1} x_{i1} - \beta_{2}^{k+1} x_{i2} - \dots - \beta_{4}^{k+1} x_{i(p-1)}$$

We will use the convention: if b < a then $\sum_{j'=a}^{b} d_{j'} = 0$ Notice that

$$g(\beta_j) = \sum_{i=1}^n \left(e_{ji}^k - \beta_j x_{ji} \right)^2 + \lambda \beta_j^2 + \lambda \left(\sum_{j'=1}^{j-1} \left(\beta_{j'}^{k+1} \right)^2 + \sum_{j'=j+1}^p \left(\beta_{j'}^k \right)^2 \right)$$
$$= \sum_{i=1}^n \left(e_{ji}^k - \beta_j x_{ji} \right)^2 + \lambda \beta_j^2 + C$$

is a convex and differentiable function of $\beta_j.$ So the solution of

$$-2\sum_{i=1}^{n} \left(e_{ji}^{k} - \beta_{j}x_{ji}\right) x_{ji} + 2\lambda\beta_{j} = 0$$

is the unique minimizer of $g\left(\beta_{j}\right).$ We have

$$\sum_{i=1}^{n} \left(e_{ji}^{k} - \beta_{j} x_{ji} \right) x_{ji} + \lambda \beta_{j} = -\sum_{i=1}^{n} e_{ji}^{k} x_{ji} + \beta_{j} \left(\lambda + 1 \right) = 0$$
$$\beta_{j}^{k+1} = \frac{\sum_{i=1}^{n} e_{ji}^{k} x_{ji}}{1+\lambda}, \quad \text{for} \quad j = 1, 2, ..., p$$

Approach 2: (expanded OLS): We can view (2) as an expanded OLS problem with expanded response vector

$$J(\boldsymbol{\beta}, \boldsymbol{\lambda}) = \left\| \widetilde{\mathbf{y}} - \widetilde{X} \boldsymbol{\beta} \right\|^2$$

with

$$\widetilde{\mathbf{y}}_{(n+p)\times 1} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{y}_{n\times 1} \\ \mathbf{0}_{p\times 1} \end{pmatrix} \text{ and } \widetilde{X} = \begin{pmatrix} X_{n\times p} \\ \sqrt{\lambda}I_p \end{pmatrix}.$$

Then

$$\boldsymbol{eta}\left(\lambda
ight)=\left(\widetilde{X}'\widetilde{X}
ight)^{-1}\widetilde{X}'\widetilde{\mathbf{y}}$$

Cross Validation

All the formulas and derivations so far were made for a fixed value of λ . Naturally the results and conclusions of any data analysis will depend on the particular value of λ . Therefore, the problem of estimating λ is of much practical importance.

There is no point in minimizing $J(\beta(\lambda), \lambda)$ because the best fit to the training data is obviously obtained at $\lambda = 0$, the unconstrained minimizer. However, in some situations assigning a positive value to λ may be convenient to prevent *overfitting of the training data*. This is another manifestation of the bias-variance trade-off discussed at the beginning of this section.

To choose λ we search for a model with a good out-of-sample generalization performance. In principle, to optimize the out-of-sample performance we need an independent test dataset $\{(y_i, \mathbf{x}_i)\}_{i=n+1}^{n+m}$ to compute

$$\widehat{\lambda} = \arg\min \sum_{i=n+1}^{n+m} \left(y_i - \mathbf{x}'_i \widehat{\boldsymbol{\beta}} \left(\lambda \right) \right)^2$$

However, in most situations, the test dataset $\{(y_i, \mathbf{x}_i)\}_{i=n+1}^{n+m}$ is not available. A practical solution consists of splitting the training dataset $\{(y_i, \mathbf{x}_i)\}_{i=1}^n$ in two parts, one used to estimate $\hat{\beta}(\lambda)$ (for fixed values of λ) and the other to estimate λ . Naturally, different splits of the data may lead to different estimates $\hat{\lambda}$.

At this point we need to set some notations. Let

$$I = \{1, 2, ..., n\},\$$

and consider random partitions of size n_1 :

$$I_1 \cup I_2 = I, \quad I_1 \cap I_2 = \phi, \quad \#I_1 = n_1,$$

for some fixed number $1 \le n_1 \le n$. Now we describe the following algorithm.

- 1. Let $\mathcal{D} = \{0 = \lambda_1 < \lambda_2 < \cdots < \lambda_K\}$, an appropriate grid of values of λ .
- 2. Let $\{(I_1^b, I_2^b) : \#I_1^b = n_1, b = 1, ..., B\}$
- 3. For each pair (b, k), b = 1, ..., B and k = 1, ..., K compute

$$\boldsymbol{\beta}^{b}(\lambda_{k}) = \arg\min_{\boldsymbol{\beta}} \left[\sum_{i \in I_{1}^{b}} \left(y_{i} - \mathbf{x}_{i}^{\prime} \boldsymbol{\beta} \right)^{2} + \lambda_{k} \left\| \boldsymbol{\beta} \right\|^{2} \right]$$
$$C(\lambda_{k}, b) = \sum_{i} \left[y_{i} - \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}^{b}(\lambda_{k}) \right]^{2}$$

$$G\left(\lambda_{k},b\right) = \sum_{i \in I_{2}^{b}} \left[y_{i} - \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}^{b}\left(\lambda_{k}\right)\right]^{2}$$

4. Form the estimated generalization error for each $\lambda_k, k = 1, ..., K$

$$G\left(\lambda_{k}\right) = \frac{1}{B}\sum_{b=1}^{B}G\left(\lambda_{k},b\right)$$

5. Set

$$\widehat{\lambda} = \arg\min_{1 \le k \le K} G\left(\lambda_k\right).$$

6. Output $\widehat{\lambda}$ and

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \left[\sum_{i=1}^{n} \left(y_i - \mathbf{x}'_i \boldsymbol{\beta} \right)^2 + \widehat{\lambda} \left\| \boldsymbol{\beta} \right\|^2 \right]$$

Leave-One-Out Crossvalidation:

The particular case where $n_1 = n - 1$ leads to the popular approach called *leave-one-out crossvalidation*. In this case instead of random splits we consider all the possible *n* splits with the j^{th} case set aside for testing and the remaining cases used for training.

L_1 -Regression

We will see that OLS is non-resistent to the presence of outliers in the training data. The reason for the lack of robustness is the rapid increase of the quadratic loss function . Some resistance can be gained by replacing the quadratic loss function $\rho(x) = x^2$ by the L₁-loss function $\rho(x) = |x|$. In this case,

$$\widehat{\boldsymbol{\theta}}_{L_1} = \left(\widehat{\beta}_0, \widehat{\boldsymbol{\beta}}\right) = \arg\min_{(\beta_0, \boldsymbol{\beta})} \sum \left| y_i - \beta_0 - \boldsymbol{\beta}' \mathbf{x}_i \right|.$$
(3)

The corresponding L_1 -regression loss function,

$$J(\beta_0, \boldsymbol{\beta}) = \sum |y_i - \beta_0 - \boldsymbol{\beta}' \mathbf{x}_i|,$$

is convex but not differentiable. In this case, computing a global minimizer, $(\hat{\beta}_0, \hat{\beta})$, is considerable harder, compared with the OLS case. To better deal with (3) and for other derivations we can use the concept of *subgradient of a convex function*.

First consider the simpler case when p = 1. that is, consider the loss function:

$$J(\beta_0, \beta_1) = \sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i|$$

We will use the method of coordinate descent discussed before (see Theorem 1). First, set, $\beta = 0$ and minimize

First, set $\beta_1 = 0$ and minimize

$$J(\beta_0, 0) = \sum_{i=1}^{n} |y_i - \beta_0|.$$
(4)

The solution to (4) is

$$\widehat{\beta}_0^0 = \mathrm{Med}\left(y_i\right)$$

Second, set $\beta_0 = \hat{\beta}_0^0$ and minimize

$$g_0(\beta_1) = J\left(\hat{\beta}_0^0, \beta_1\right) = \sum_{i=1}^n \left| \left(y_i - \hat{\beta}_0^0 \right) - \beta_1 x_i \right| = \sum_{i=1}^n |\tilde{y}_i - \beta_1 x_i|$$
(5)

with

$$\widetilde{y}_i = y_i - \widehat{\beta}_0^0.$$

Now

$$\partial g_0(\beta_1) = \sum_{i=1}^n \partial |\widetilde{y}_i - \beta_1 x_i| = \sum_{\{i:x_i \neq 0\}} \partial |\widetilde{y}_i - \beta_1 x_i|$$
$$= \sum_{i=1}^n |x_i| \partial \left| \frac{\widetilde{y}_i}{2} - \beta_1 \right| = 0$$

$$= \sum_{\{i:x_i \neq 0\}} |x_i| \cup |x_i| - |x_i| = |x_i|$$

Equivalently, we wish to solve

$$\sum_{\{i:x_i\neq 0\}} w_i \partial |z_i - \beta_1| = 0$$

with

$$z_i = rac{\widetilde{y}_i}{x_i} \quad ext{and} \quad w_i = rac{|x_i|}{\sum_{\{j: x_j
eq 0\}} |x_j|}.$$

At this point, for simplicity, we will assume that $z_1 < z_2 < \cdots < z_m$, with $m = \#\{j : |x_j| > 0\}$. If this is not the case, we must work with the distinct values of the z'_i s and associate each of them with the sum of the corresponding $|x_j|'$ s. Consider the following distribution

i	z	w	F
1	z_1	w_1	$F_1 = w_1$
2	z_2	w_2	$F_2 = w_1 + w_2$
3	z_3	w_3	$F_3 = w_1 + w_2 + w_3$
÷	÷	:	÷
m	z_m	w_m	$F_m = 1$

At this point we consider two cases:

Case 1. There exist $1 \le k < m$ such that $F_k = 0.5$ Let $z_k < \beta_1 < z_{k+1}$ and notice that in this case

$$\sum_{i=1}^{m} w_i \partial |z_i - \beta_1| = \sum_{i=1}^{k} w_i - \sum_{i=k+1}^{m} w_i = 0.$$

Therefore, for example

$$\widehat{\beta}_1^1 = \frac{z_k + z_{k+1}}{2}$$

minimizes $g(\beta_1)$ given by (5).

Case 2. There exist $1 \le k < m$ such that $F_k < 0.5$ and $F_{k+1} > 0.5$ Let $\beta_1 = z_k$ and notice that in this case, for all $-1 \le \delta \le 1$,

$$\sum_{i=1}^{k-1} w_i + \delta w_k - \sum_{i=k+1}^m w_i \in \sum_{i=1}^m w_i \partial |z_i - \beta_1|$$
$$\delta = \frac{\sum_{i=k+1}^m w_i - \sum_{i=1}^{k-1} w_i}{w_k}$$

(which is between -1 and 1, why?) we conclude that $\widehat{\beta}_1^1 = z_k$ minimizes $g(\beta_1)$ given by (5). In summary, let

$$k = \max\left\{j : F_j \le 0.5\right\}$$

If $F_k = 0.5$, take

$$\widehat{\beta}_1^1 = \frac{z_k + z_{k+1}}{2}$$

otherwise take

$$\widehat{\beta}_1^1 = z_k.$$

In fact, in all cases, $\hat{\beta}_1^1 = z_k$ always minimizes $g(\beta_1)$ given by (5) (why?).

Computing Algorithm

Based on the discussion above we apply the following iterative algorithm. Set

$$s = \sum_{j=1}^{n} |x_j|$$

- 1. **Input.** The values (x_i, y_i) , i = 1, ..., n
- 2. Initialization. Set $\theta^0 = (\beta_0^0, \beta_1^0) = (Med(y_i), 0)$ and choose a value for setting the absolute precision δ .

3. Iteration. While

 $\left|\beta_{0}^{k+1}-\beta_{0}^{k}\right|>\left|\beta_{0}^{k}\right|\delta \quad \text{and} \quad \left|\beta_{1}^{k+1}-\beta_{1}^{k}\right|>\left|\beta_{1}^{k}\right|\delta,$

given $\boldsymbol{\theta}^k = \left(\beta_0^k, \beta_1^k\right)$, compute $\boldsymbol{\theta}^{k+1} = \left(\beta_0^{k+1}, \beta_1^{k+1}\right)$ as follows:

- (a) Ignore for this calculation cases with $x_i = 0$.
- (b) Set, for $x_i \neq 0$,

$$z_i = \frac{y_i - \beta_0^k}{x_i} \quad , \quad w_i = \frac{|x_i|}{s}$$

- (c) Denote by ζ_j (j = 1, ..., m) the sorted, distinct values of z_i , and denote by π_j their corresponding weights. For example, if z_{i_1} and z_{i_2} are the only two values of z_i equal to ζ_1 then $\pi_1 = z_{i_1} + z_{i_2}$.
- (d) Calculate

$$F_j = \sum_{l=1}^j \pi_l, \ l = 1, ..., m$$

(e) Set

$$j^* = \max\{j : F_j \le 0.5\}$$

If $F_{j^*} = 0.5$, set

If $F_{i^*} < 0.5$ set

$$\beta_1^{k+1} = \frac{\zeta_{j^*} + z_{j^*+1}}{2}$$

 $\beta_1^{k+1} = \zeta_{j^*}$

4. Set

$$\beta_0^{k+1} = \operatorname{Med}_{i=1,\dots,n} \left\{ y_i - x_i \beta_1^{k+1} \right\}$$

5. **Output:** After stop, return the values $(\beta_0^{k+1}, \beta_1^{k+1})$.

Note: If we have p > 1, steps a-e are modified as follows. First, instead of x_i we have $x_{qi}, q = 1, ..., p$ and instead of s we have

$$s_q = \sum_{j=1}^n |x_{qi}|.$$

Moreover, instead of

$$z_i = \frac{y_i - \beta_0^k}{x_i} \quad , \quad w_i = \frac{|x_i|}{s}$$

we have

$$z_{qi} = \frac{y_i - \beta_0^k - \sum_{l \neq q} \beta_l^k x_{li}}{x_{qi}} \quad , \quad w_{qi} = \frac{|x_{qi}|}{s_q}.$$

The remaining calculations are modified in an obvious way.

LASSO

and

Another way to manage the bias-variance trade-off in linear regression is to add the penalty term $\lambda \sum_{j=1}^{p} |\beta_j|$, to the quadratic loss function:

$$J(\beta_0, \boldsymbol{\beta}, \boldsymbol{\lambda}) = \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \beta_0 - \boldsymbol{\beta}' \mathbf{x}_i \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
(6)

As in the case of ridge regression, it is convenient to center and scale the variables so that

$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} x_{ij} = 0,$$
$$\sum_{i=1}^{n} y_i^2 = \sum_{i=1}^{n} x_{ij}^2 = 1$$

With this pre-processing (6) become

$$J(\boldsymbol{\beta}, \boldsymbol{\lambda}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \boldsymbol{\beta}' \mathbf{x}_i)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Notice that, for fixed λ , $J(\beta, \lambda)$ is sub-differentiable and convex, and so it has a global minimizer $\hat{\beta}(\lambda)$. In order to implement a coordinate-descent algorithm to compute $\hat{\beta}(\lambda)$, we will derive a "close form formula" for the case p = 1. That is, we consider the minimization problem

$$J(\beta, \boldsymbol{\lambda}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \beta x_i)^2 + \lambda |\beta|$$

and the first order condition

$$0 \in \partial J \left(\beta, \boldsymbol{\lambda}\right) = \left\{-\sum_{i=1}^{n} \left(y_i - \beta x_i\right) x_i + \lambda \partial \left|\beta\right|\right\}$$

or equivalently

$$0 \in \left\{ \sum_{i=1}^{n} x_i y_i - \beta - \lambda \partial \left| \beta \right| \right\}$$

which is in turn equivalent to

$$\left(\sum_{i=1}^{n} x_i y_i - \beta\right) \in \lambda \partial \left|\beta\right| \tag{7}$$

We set $r = \sum_{i=1}^{n} x_i y_i$ and consider two cases.

Case 1: $|r| > \lambda$

If $r > \lambda$, then setting $\beta(\lambda) = r - \lambda$ solves (7) because $\beta(\lambda) = r - \lambda > 0 \Longrightarrow \lambda \partial |\beta| = \{\lambda\}$ and we have

$$r - \beta \left(\lambda \right) = \lambda$$
$$r - \left(r - \lambda \right) = \lambda$$

If $r < \lambda$, we set $\beta(\lambda) = r + \lambda$ which again solves (7) because $\beta(\lambda) = r + \lambda < 0 \implies \lambda \partial |\beta| = \{-\lambda\}$ and we have

$$r - \beta (\lambda) = -\lambda$$

 $r - (r + \lambda) = -\lambda$

Case 2: $|r| \leq \lambda$

Since we have $-\lambda \leq r \leq \lambda$, there exist $-1 \leq t_0 \leq 1$ such that $r = t_0 \lambda$. We now set $\beta(\lambda) = 0$ and notice that condition (7) becomes

$$r \in \{t\lambda : -1 \le t \le 1\}$$

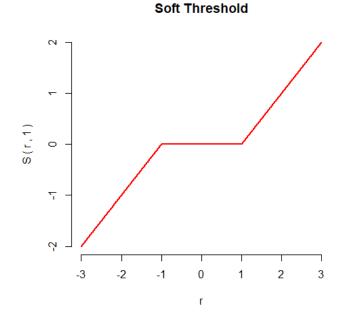
which is true with $t = t_0$. Hence, $\beta(\lambda) = 0$ minimizes $J(\beta, \lambda)$.

The Soft Threshold Operator

The solution to condition (7) can be elegantly expressed using the "soft threshold operator" which is given by the function

$$S(r,\lambda) = sign(r)(|r| - \lambda)^{+} = \begin{cases} r + \lambda & \text{if } r < -\lambda \\ 0 & \text{if } -\lambda \le r \le \lambda \\ r - \lambda & \text{if } r > \lambda \end{cases}$$

A plot of S(r, 1), as a function of r, with λ equal to one is given below.



Computing Algorithm for the LASSO

Based on the discussion in the previous section, we can implement the following coordinate-descent computing algorithm for the LASSO regression estimate.

1. Input. Data: (y_i, \mathbf{x}_i) i = 1, ..., n with all the measurements centered and scaled so that $\sum y_i = 0, \quad \sum \mathbf{x}_i = \mathbf{0}$

and

$$\sum y_i^2 = 0, \quad \sum \mathbf{x}_i^2 = \mathbf{1}$$

where, naturally, $(a_1, ..., a_p)^2 = (a_1^2, ..., a_p^2)$. Absolute error: $\delta > 0$.

- 2. Initialization. $\boldsymbol{\beta}^0 = (0, ..., 0) \in \mathbb{R}^p$
- 3. Iteration. While

$$\left\|\boldsymbol{\beta}^{k+1} - \boldsymbol{\beta}^k\right\| > \delta_{\boldsymbol{\beta}}$$

given $\boldsymbol{\beta}^{k} = \left(\beta_{1}^{k}, ..., \beta_{p}^{k}\right)$ compute $\boldsymbol{\beta}^{k+1} = \left(\beta_{1}^{k+1}, ..., \beta_{p}^{k+1}\right)$ as follows:

 $\beta_{j}^{k+1}=S\left(r_{j}^{k},\lambda\right),\quad j=1,...,p$

with

$$r_j^k = \sum_{i=1}^n x_{ij} \widetilde{y}_{ij}$$

 and

$$\boldsymbol{\beta}_{1}^{k} = (0, \beta_{2}^{k}, \beta_{3}^{k}, ..., \beta_{p-1}^{k}, \beta_{p}^{k}), \quad \widetilde{y}_{i1} = y_{i} - \mathbf{x}_{i}' \boldsymbol{\beta}_{1}^{k} \\ \boldsymbol{\beta}_{2}^{k} = (\beta_{1}^{k+1}, 0, \beta_{3}^{k}, ..., \beta_{p-1}^{k}, \beta_{p}^{k}), \quad \widetilde{y}_{i2} = y_{i} - \mathbf{x}_{i}' \boldsymbol{\beta}_{2}^{k} \\ \boldsymbol{\beta}_{3}^{k} = (\beta_{1}^{k+1}, \beta_{2}^{k+1}, 0, ..., \beta_{p-1}^{k}, \beta_{p}^{k}), \quad \widetilde{y}_{i3} = y_{i} - \mathbf{x}_{i}' \boldsymbol{\beta}_{3}^{k}$$

$$\boldsymbol{\beta}_{p}^{k} = \left(\beta_{1}^{k+1}, \beta_{2}^{k+1}, \beta_{3}^{k+1}, ..., \beta_{p-1}^{k+1}, \beta_{p}^{k}\right), \quad \tilde{y}_{ip} = y_{i} - \mathbf{x}_{i}' \boldsymbol{\beta}_{p}^{k}$$

4. **Output**. The pair
$$(\lambda, \beta^{k+1})$$
, with $\beta^{k+1} = (\beta_1^{k+1}, ..., \beta_p^{k+1})$.

Crossvalidation: The choice of λ is made by crossvalidation, using an algorithm similar to that described for ridge regression earlier on.