
Linear Regression

Given data
(yi,xi) i = 1, ..., n, yi ∈ R, xi ∈ Rp

we wish to find a real function g (x) that optimally approximates the given data:

g (xi) ≈ yi, i− = 1, ..., n. (1)

The function g may be assumed to belong to some space of functions, G. For
example G could be the set of all the linear functions

g (x) = β0 + β
′x,

leading to linear regression, or G could be the set of twice differentiable functions
with bounded curvature leading to cubic splines. Moreover, the requirement
that g (xi) approximates yi can be formalized in several ways, leading to different
estimates ĝ (xi) including least squares (LS), least absolute regression, robust
regression, etc.

Ordinary Least Squares Regression

θ̂LS =
(
β̂0, β̂

′)
= arg min

(β0,β)

∑(
yi − β0 − β′xi

)2
The matrix

X =

1 x11 · · · x1p
1 x21 · · · x2p
...

...
...

1 xn1 · · · xnp

is called “the design matrix”and the vector

y =

y1
y2
...
yn

is called “the response vector”. If X has full rank (that is, if rank(X) = p+1 <
n) then it can be shown that

θ̂ = (X ′X)
−1
X ′y.

Ridge Regression

One way to manage the bias-variance trade-off in linear regression is to add a
penalty term, for example λ

∑p
j=1 β

2
j , to the loss function:

J (β0,β, λ) =

n∑
i=1

(
yi − β0 − β′xi

)2
+ λ

p∑
j=1

β2j (2)

1

where λ ≥ 0 is a tuning parameter. This technique was originally invented by
the Russian mathematician Andrey Tikhonov and later expounded in statistics
by Arthur E. Hoerl, who called it ridge regression.
Consider the problem of minimizing J (β0,β, λ) and let β̂(λ) be a minimizer

of (2) for the given value of λ. If λ = 0, we are back to OLS, that is β̂(0) = β̂OLS .
On the other hand, it should be intuitively clear that if λ → ∞, then β̂(λ) →
0. The effect of the penalty parameter λ is to shrink the regression coeffi cient
toward zero.

Computation of β̂(λ).

In this context, it is convenient to center and to scale the variables so that

n∑
i=1

yi =

n∑
i=1

xij = 0,

to remove the need for the intercept parameter, β0, and

n∑
i=1

y2i =

n∑
i=1

x2ij = n

to account for the fact that J (β,λ) is not scale invariant.
Notice that, for fixed λ,

J (β,λ) =

n∑
i=1

(
yi − β′xi

)2
+ λ

p∑
j=1

β2j

is differentiable and strictly convex, so if β̂(λ) solves the equation

∇J (β,λ) = −2

−
∑n
i=1

(
yi − β′xi

)
xi1 + λβ1

−
∑n
i=1

(
yi − β′xi

)
xi2 + λβ2

...
−
∑n
i=1

(
yi − β′xi

)
xip + λβp

 =

0
0
...
0

 .

then it β̂(λ) uniquely minimizes J (β,λ) in β for this value of λ.

There are at least two approaches for calculating β̂(λ), which are described
below.

Approach 1: (coordinate descent). Set β0 = 0 and given βk =
(
βk1 , β

k
2 , ..., β

k
p

)

2

set

ek1i = yi − βk2xi2 − · · · − βkpxip
ek2i = yi − βk+11 xi1 − βk3xi3 − · · · − βkpxip
ek3i = yi − βk+11 xi1 − βk+12 xi2 − βk4xi4 − · · · − βkpxip
...

ekpi = yi − βk+11 xi1 − βk+12 xi2 − · · · − βk+14 xi(p−1)

We will use the convention: if b < a then
∑b
j′=a dj′ = 0 Notice that

g (βj) =

n∑
i=1

(
ekji − βjxji

)2
+ λβ2j + λ

 j−1∑
j′=1

(
βk+1j′

)2
+

p∑
j′=j+1

(
βkj′
)2

=

n∑
i=1

(
ekji − βjxji

)2
+ λβ2j + C

is a convex and diferentiable function of βj . So the solution of

−2
n∑
i=1

(
ekji − βjxji

)
xji + 2λβj = 0

is the unique minimizer of g (βj) . We have
n∑
i=1

(
ekji − βjxji

)
xji + λβj = −

n∑
i=1

ekjixji + βj (λ+ 1) = 0

βk+1j =

∑n
i=1 e

k
jixji

1 + λ
, for j = 1, 2, ..., p

Approach 2: (expanded OLS): We can view (2) as an expanded OLS prob-
lem with expanded response vector

J (β, λ) =
∥∥∥ỹ − X̃β∥∥∥2

with

ỹ(n+p)×1=

y1
y2
...
yn
0
...
0

=

(
yn×1
0p×1

)
and X̃ =

 Xn×p

√
λIp

 .

Then

β (λ) =
(
X̃ ′X̃

)−1
X̃ ′ỹ

3

Cross Validation

All the formulas and derivations so far were made for a fixed value of λ. Nat-
urally the results and conclusions of any data analysis will depend on the par-
ticular value of λ. Therefore, the problem of estimating λ is of much practical
importance.
There is no point in minimizing J (β (λ) , λ) because the best fit to the

training data is obviously obtained at λ = 0, the unconstrained minimizer.
However, in some situations assigning a positive value to λ may be convenient
to prevent overfitting of the training data. This is another manifestation of the
bias-variance trade-off discussed at the beginning of this section.
To choose λ we search for a model with a good out-of-sample generalization

performance. In principle, to optimize the out-of-sample performance we need
an independent test dataset {(yi,xi)}n+mi=n+1 to compute

λ̂ = argmin

n+m∑
i=n+1

(
yi − x′iβ̂ (λ)

)2
.

However, in most situations, the test dataset {(yi,xi)}n+mi=n+1 is not available. A
practical solution consists of splitting the training dataset {(yi,xi)}ni=1 in two
parts, one used to estimate β̂ (λ) (for fixed values of λ) and the other to estimate
λ. Naturally, different splits of the data may lead to different estimates λ̂.

At this point we need to set some notations. Let

I = {1, 2, ..., n} ,

and consider random partitions of size n1 :

I1 ∪ I2 = I, I1 ∩ I2 = φ, #I1 = n1,

for some fixed number 1 ≤ n1 ≤ n. Now we describe the following algorithm.

1. Let D = {0 = λ1 < λ2 < · · · < λK} , an appropriate grid of values of λ.

2. Let
{(
Ib1, I

b
2

)
: #Ib1 = n1, b = 1, ..., B

}
3. For each pair (b, k), b = 1, ..., B and k = 1, ...,K compute

βb (λk) = argmin
β

∑
i∈Ib1

(yi − x′iβ)
2
+ λk ‖β‖2

G (λk, b) =
∑
i∈Ib2

[
yi − x′iβb (λk)

]2

4

4. Form the estimated generalization error for each λk, k = 1, ...,K

G (λk) =
1

B

B∑
b=1

G (λk, b)

5. Set
λ̂ = arg min

1≤k≤K
G (λk) .

6. Output λ̂ and

β̂ = argmin
β

[
n∑
i=1

(yi − x′iβ)
2
+ λ̂ ‖β‖2

]

Leave-One-Out Crossvalidation:

The particular case where n1 = n − 1 leads to the popular approach called
leave-one-out crossvalidation. In this case instead of random splits we consider
all the possible n splits with the jth case set aside for testing and the remaining
cases used for training.

L1-Regression

We will see that OLS is non-resistent to the presence of outliers in the training
data. The reason for the lack of robustness is the rapid increase of the quadratic
loss function . Some resistance can be gained by replacing the quadratic loss
function ρ(x) = x2 by the L1-loss functionρ(x) = |x|. In this case,

θ̂L1 =
(
β̂0, β̂

)
= arg min

(β0,β)

∑∣∣yi − β0 − β′xi∣∣ . (3)

The corresponding L1-regression loss function,

J (β0,β) =
∑∣∣yi − β0 − β′xi∣∣ ,

is convex but not differentiable. In this case, computing a global minimizer,(
β̂0, β̂

)
, is considerable harder, compared with the OLS case.To better deal

with (3) and for other derivations we can use the concept of subgradient of a
convex function.

First consider the simpler case when p = 1. that is, consider the loss function:

J (β0, β1) =

n∑
i=1

|yi − β0 − β1xi|

5

We will use the method of coordinate descent discussed before (see Theorem 1).
First, set β1 = 0 and minimize

J (β0, 0) =

n∑
i=1

|yi − β0| . (4)

The solution to (4) is
β̂00 = Med (yi)

Second, set β0 = β̂00 and minimize

g0 (β1) = J
(
β̂00 , β1

)
=

n∑
i=1

∣∣∣(yi − β̂00)− β1xi∣∣∣ = n∑
i=1

|ỹi − β1xi| (5)

with
ỹi = yi − β̂00 .

Now

∂g0 (β1) =

n∑
i=1

∂ |ỹi − β1xi| =
∑

{i:xi 6=0}

∂ |ỹi − β1xi|

=
∑

{i:xi 6=0}

|xi| ∂
∣∣∣∣ ỹixi − β1

∣∣∣∣ = 0
Equivalently, we wish to solve∑

{i:xi 6=0}

wi∂ |zi − β1| = 0

with

zi =
ỹi
xi

and wi =
|xi|∑

{j:xj 6=0} |xj |
.

At this point, for simplicity, we will assume that z1 < z2 < · · · < zm, with
m = # {j : |xj | > 0} . If this is not the case, we must work with the distinct
values of the z′is and associate each of them with the sum of the corresponding
|xj |′s. Consider the following distribution

i z w F
1 z1 w1 F1 = w1
2 z2 w2 F2 = w1 + w2
3 z3 w3 F3 = w1 + w2 + w3
...

...
...

...
m zm wm Fm = 1

At this point we consider two cases:

6

Case 1. There exist 1 ≤ k < m such that Fk = 0.5
Let zk < β1 < zk+1 and notice that in this case

m∑
i=1

wi∂ |zi − β1| =
k∑
i=1

wi −
m∑

i=k+1

wi = 0.

Therefore, for example

β̂11 =
zk + zk+1

2

minimizes g (β1) given by (5).

Case 2. There exist 1 ≤ k < m such that Fk < 0.5 and Fk+1 > 0.5
Let β1 = zk and notice that in this case, for all −1 ≤ δ ≤ 1,

k−1∑
i=1

wi + δwk −
m∑

i=k+1

wi ∈
m∑
i=1

wi∂ |zi − β1|

δ =

∑m
i=k+1 wi −

∑k−1
i=1 wi

wk

(which is between −1 and 1, why?) we conclude that β̂11 = zk minimizes g (β1)
given by (5). In summary, let

k = max {j : Fj ≤ 0.5}

If Fk = 0.5, take

β̂11 =
zk + zk+1

2

otherwise take
β̂11 = zk.

In fact, in all cases, β̂11 = zk always minimizes g (β1) given by (5) (why?).

Computing Algorithm

Based on the discussion above we apply the following iterative algorithm. Set

s =

n∑
j=1

|xj |

1. Input. The values (xi, yi) , i = 1, ..., n

2. Initialization. Set θ0 =
(
β00 , β

0
1

)
= (Med (yi) , 0) and choose a value for

setting the absolute precision δ.

7

3. Iteration. While∣∣βk+10 − βk0
∣∣ > ∣∣βk0 ∣∣ δ and

∣∣βk+11 − βk1
∣∣ > ∣∣βk1 ∣∣ δ,

given θk =
(
βk0 , β

k
1

)
,compute θk+1 =

(
βk+10 , βk+11

)
as follows:

(a) Ignore for this calculation cases with xi = 0.

(b) Set, for xi 6= 0,

zi =
yi − βk0
xi

, wi =
|xi|
s

(c) Denote by ζj (j = 1, ...,m) the sorted, distinct values of zi, and
denote by πj their corresponding weights. For example, if zi1 and zi2
are the only two values of zi equal to ζ1 then π1 = zi1 + zi2 .

(d) Calculate

Fj =

j∑
l=1

πl, l = 1, ...,m

(e) Set
j∗ = max {j : Fj ≤ 0.5}

If Fj∗ = 0.5, set

βk+11 =
ζj∗ + zj∗+1

2
If Fj∗ < 0.5 set

βk+11 = ζj∗

4. Set
βk+10 = Med

i=1,...,n

{
yi − xiβk+11

}
5. Output: After stop, return the values

(
βk+10 , βk+11

)
.

Note: If we have p > 1, steps a-e are modified as follows. First, instead of
xi we have xqi, q = 1, ..., p and instead of s we have

sq =

n∑
j=1

|xqi| .

Moreover, instead of

zi =
yi − βk0
xi

, wi =
|xi|
s

we have

zqi =
yi − βk0 −

∑
l 6=q β

k
l xli

xqi
, wqi =

|xqi|
sq

.

The remaining calculations are modified in an obvious way.

8

LASSO

Another way to manage the bias-variance trade-off in linear regression is to add
the penalty term λ

∑p
j=1 |βj |, to the quadratic loss function:

J (β0,β, λ) =
1

2

n∑
i=1

(
yi − β0 − β′xi

)2
+ λ

p∑
j=1

|βj | (6)

As in the case of ridge regression, it is convenient to center and scale the variables
so that

n∑
i=1

yi =

n∑
i=1

xij = 0,

and
n∑
i=1

y2i =

n∑
i=1

x2ij = 1

With this pre-processing (6) become

J (β, λ) =
1

2

n∑
i=1

(
yi − β′xi

)2
+ λ

p∑
j=1

|βj |

Notice that, for fixed λ, J (β, λ) is sub-differentiable and convex, and so
it has a global minimizer β̂(λ). In order to implement a coordinate-descent
algorithm to compute β̂(λ), we will derive a “close form formula” for the case
p = 1. That is, we consider the minimization problem

J (β, λ) =
1

2

n∑
i=1

(yi − βxi)2 + λ |β|

and the first order condition

0 ∈ ∂J (β, λ) =
{
−

n∑
i=1

(yi − βxi)xi + λ∂ |β|
}

or equivalently

0 ∈
{

n∑
i=1

xiyi − β − λ∂ |β|
}

which is in turn equivalent to(
n∑
i=1

xiyi − β
)
∈ λ∂ |β| (7)

We set r =
∑n
i=1 xiyi and consider two cases.

Case 1: |r| > λ

9

If r > λ, then setting β (λ) = r− λ solves (7) because β (λ) = r− λ > 0 =⇒
λ∂ |β| = {λ} and we have

r − β (λ) = λ

r − (r − λ) = λ

If r < λ, we set β (λ) = r + λ which again solves (7) because β (λ) = r + λ <
0 =⇒ λ∂ |β| = {−λ} and we have

r − β (λ) = −λ
r − (r + λ) = −λ

Case 2: |r| ≤ λ
Since we have −λ ≤ r ≤ λ, there exist −1 ≤ t0 ≤ 1 such that r = t0λ. We

now set β (λ) = 0 and notice that condition (7) becomes

r ∈ {tλ : −1 ≤ t ≤ 1}

which is true with t = t0. Hence, β (λ) = 0 minimizes J (β, λ) .

The Soft Threshold Operator

The solution to condition (7) can be elegantly expressed using the “soft threshold
operator”which is given by the function

S (r, λ) = sign (r) (|r| − λ)+ =

 r + λ if r < −λ
0 if −λ ≤ r ≤ λ

r − λ if r > λ

A plot of S (r, 1) , as a function of r, with λ equal to one is given below.

10

Computing Algorithm for the LASSO

Based on the discussion in the previous section, we can implement the following
coordinate-descent computing algorithm for the LASSO regression estimate.

1. Input. Data: (yi,xi) i = 1, ..., n with all the measurements centered
and scaled so that ∑

yi = 0,
∑

xi = 0

and ∑
y2i = 0,

∑
x2i = 1

where, naturally, (a1,, ap)
2
=
(
a21,, a

2
p

)
.

Absolute error: δ > 0.

2. Initialization. β0 = (0, ..., 0) ∈ Rp

3. Iteration. While ∥∥∥βk+1 − βk∥∥∥ > δ,

given βk =
(
βk1 , ..., β

k
p

)
compute βk+1 =

(
βk+11 , ..., βk+1p

)
as follows:

βk+1j = S
(
rkj , λ

)
, j = 1, ..., p

11

with

rkj =

n∑
i=1

xij ỹij

and

βk1 =
(
0, βk2 , β

k
3 , ..., β

k
p−1, β

k
p

)
, ỹi1 = yi − x′iβk1

βk2 =
(
βk+11 , 0, βk3 , ..., β

k
p−1, β

k
p

)
, ỹi2 = yi − x′iβk2

βk3 =
(
βk+11 , βk+12 , 0, ..., βkp−1, β

k
p

)
, ỹi3 = yi − x′iβk3

βkp =
(
βk+11 , βk+12 , βk+13 , ..., βk+1p−1 , β

k
p

)
, ỹip = yi − x′iβkp

4. Output. The pair
(
λ,βk+1

)
, with βk+1 =

(
βk+11 , ..., βk+1p

)
.

Crossvalidation: The choice of λ is made by crossvalidation, using an
algorithm similar to that described for ridge regression earlier on.

12

