Linear Regression
Given data
(yiaxi) t=1,..,n, Yi € R7 X; € RP

we wish to find a real function g (x) that optimally approximates the given data:

gx) 2y im =1, (1)

The function g may be assumed to belong to some space of functions, G. For
example G could be the set of all the linear functions

g (x) = fo+ B'%,

leading to linear regression, or G could be the set of twice differentiable functions
with bounded curvature leading to cubic splines. Moreover, the requirement
that g (x;) approximates y; can be formalized in several ways, leading to different
estimates g (x;) including least squares (LS), least absolute regression, robust
regression, etc.

Ordinary Least Squares Regression

~/

015 = (Bo,ﬁ ) = arg (g;i)g) Z (i — Bo — ,B/Xi)Q

The matrix

1 T11 T1p

1 T21 T2p
X = .

1 x,1 Tnp

is called “the design matrix”and the vector

Y1
Y2
y= .
Yn
is called “the response vector”. If X has full rank (that is, if rank(X) =p+1 <
n) then it can be shown that

0=(X'X)"Xy.

Ridge Regression

One way to manage the bias-variance trade-off in linear regression is to add a
penalty term, for example )\Z?:l 512», to the loss function:

n p

T (B0, By A) =3 (i — Bo — B'x:)* + A 52 (2)

i=1 j=1



where A > 0 is a tuning parameter. This technique was originally invented by
the Russian mathematician Andrey Tikhonov and later expounded in statistics
by Arthur E. Hoerl, who called it ridge regression. R

Consider the problem of minimizing J (5y, 3, A) and let 3(\) be a minimizer
of (2) for the given value of . If A = 0, we are back to OLS, that is 3(0) = Bo -
On the other hand, it should be intuitively clear that if A — oo, then B()\) —
0. The effect of the penalty parameter A is to shrink the regression coefficient
toward zero.

Computation of 3()).

In this context, it is convenient to center and to scale the variables so that

n n
> yi=> mi; =0,
i=1 =1

to remove the need for the intercept parameter, Gy, and

n n
2 2
IR
i=1 i=1
to account for the fact that J (8,A) is not scale invariant.
Notice that, for fixed A,
P

=S (i - Bx) + A B2

i=1 j=1

is differentiable and strictly convex, so if [A?()\) solves the equation

-3 (yz - ﬁ/Xi) i1 + AB1 0
J(B)) = —2 - (yz - 5/Xi) iz + ABa _ 0
_Z:l 1( /le)xlp—i_)\ﬁp 0

then it ,@(/\) uniquely minimizes J (3,\) in 3 for this value of \.

There are at least two approaches for calculating 3()\), which are described
below.

Approach 1: (coordinate descent). Set B° = 0 and given 8 = (ﬁl B B}’;)



set

k k k
ef; = Yi — Ba%iz — - — Byip
Eo_ k+1 k k
ey =i — B1 T — B3Tiz — - — BpTip
ko k+1 k+1 k
e?)i =Y — ﬂl Ti1 — 54 Tig — - ﬂpxip
k k+1 k+1 k+1
€pi = Yi — T — By X — - — By Ti(p—1)

We will use the convention: if b < a then Z i+ =0 Notice that

’—a

n j—1 2 p
9(8) =3 (b= Brm) #2820 | 30 (857 + 30 (8]
i=1 j'=1 §'=j+1

72 — Bjz;ji) +Aﬁ§+c

is a convex and diferentiable function of 3;. So the solution of

—22 = Bjxji) xj; +2M8; = 0

is the unique minimizer of g (8;). We have

n

Z (6?7 — ﬁjl’ﬂ) Zji + /\5J = — Zeé‘?i:rﬁ + Bj ()\ + 1) =0

i=1 i=1

nok
L eTa
Bt = ZZITA” L for j=1,2,

)

Approach 2: (expanded OLS): We can view (2) as an expanded OLS prob-
lem with expanded response vector

78,3 = [y - %8|

with
Y1
Y2
Ynx1 v Ko
Ynip)x1=| Yn =(0"X ) and X =
0 pxt VAL,
0
Then

B\ = (5(/)?)71 X'y



Cross Validation

All the formulas and derivations so far were made for a fixed value of A. Nat-
urally the results and conclusions of any data analysis will depend on the par-
ticular value of . Therefore, the problem of estimating A is of much practical
importance.

There is no point in minimizing J (B (\),\) because the best fit to the
training data is obviously obtained at A\ = 0, the unconstrained minimizer.
However, in some situations assigning a positive value to A may be convenient
to prevent overfitting of the training data. This is another manifestation of the
bias-variance trade-off discussed at the beginning of this section.

To choose A\ we search for a model with a good out-of-sample generalization
performance. In principle, to optimize the out-of-sample performance we need

an independent test dataset {(y;,x;)}/ """, to compute
. n+m R 9
A\ = arg min Z (y1 - x.8 ()\)) :

i=n—+1
However, in most situations, the test dataset {(y;, xl)}?:;j_l is not available. A
practical solution consists of splitting the training dataset {(y;,x;)},_, in two

~

parts, one used to estimate 3 (\) (for fixed values of A) and the other to estimate
A. Naturally, different splits of the data may lead to different estimates .
At this point we need to set some notations. Let

I={12,..,n},
and consider random partitions of size nq :
LUulb=1, ©LNIl,=¢, #I=n,
for some fixed number 1 <n; <n. Now we describe the following algorithm.

1. Let D={0= XA < Ay < -+ < Ak}, an appropriate grid of values of A.
2. Let {(I{,15) : #I} =ny,b=1,..., B}
3. For each pair (b,k), b=1,...,B and k = 1, ..., K compute

A" (W) = argmin | 37 (v —xiB)° + A 8]

iel?

GOt =3 o —xi8" w)]

ielb



4. Form the estimated generalization error for each A\, k=1,..., K

1 B
GOw) = 5 DG 0w b)
b=1

5. Set

A =arg éréléle (Ak)-
6. Output X and

n
~

8= argn}l@in Z (v —xi8)* + X|8]1°

i=1

Leave-One-Out Crossvalidation:

The particular case where n; = n — 1 leads to the popular approach called
leave-one-out crossvalidation. In this case instead of random splits we consider
all the possible n splits with the j* case set aside for testing and the remaining
cases used for training.

L;-Regression

We will see that OLS is non-resistent to the presence of outliers in the training
data. The reason for the lack of robustness is the rapid increase of the quadratic
loss function . Some resistance can be gained by replacing the quadratic loss
function p(x) = 22 by the L;-loss functionp(x) = |z|. In this case,

0L, = (Boﬁ) = arg min Y |y; — Bo — B'xi|. 3)
(Bo,B)
The corresponding L;-regression loss function,

T (Bo,B) = |vi — Bo — B'xil,

is convex but not differentiable. In this case, computing a global minimizer,
(Bo,ﬂ), is considerable harder, compared with the OLS case.To better deal

with (3) and for other derivations we can use the concept of subgradient of a
convez function.

First consider the simpler case when p = 1. that is, consider the loss function:

J (Bo, B1) = Z lyi — Bo — Pri]
i=1



We will use the method of coordinate descent discussed before (see Theorem 1).
First, set (7 = 0 and minimize

T (B0,0) = > lyi — Bol - (4)
i=1

The solution to (4) is
By = Med (;)

Second, set By = 3] and minimize

go (B1) =J (38751) = Xn: ’(yz - A8) — b
i=1

=[5 — Brai] (5)
i=1

with N
Ui =Yi — 58'
Now
n
Ago (Br) =D _0Gi — brasl = Y Oy — Prmi
i=1 {i:z;#0}
i
- % o] B0
{i:z;#£0} !
Equivalently, we wish to solve
> widlz— B =0
{@:2;7#0}
with ~
_ Y _ |24
zi=>— and W= =——"—"—""—.
Z; Z{jmj#o} |‘TJ|
At this point, for simplicity, we will assume that z; < zo < --+ < z,, with

m = #{j :|z;| > 0}. If this is not the case, we must work with the distinct
values of the z/s and associate each of them with the sum of the corresponding
|2,|'s. Consider the following distribution

) z w F

1 Z1 w1 F1 = W1

2 22 Wa Fo = wi +ws

3 23 wz  F3 = wi +ws + w3
m  Zm W F,=1

At this point we consider two cases:



Case 1. There exist 1 < k < m such that Fi, = 0.5
Let zx < B1 < zi+1 and notice that in this case

m k m
i=1 =1 i=k-+1

Therefore, for example

El Bkt 2kt
! 2

minimizes g (81) given by (5).

Case 2. There exist 1 < k < m such that Fy, < 0.5 and Fy41 > 0.5
Let 81 = z; and notice that in this case, for all —1 < § <1,

k-1 m m
S witdwp— D wi €Y wd |z — il
i=1 i=k+1 i=1

k-1
Z;ik—o—l Wi — Y iy Wi

wy

(5:

(which is between —1 and 1, why?) we conclude that 3! = zj, minimizes g (8;)
given by (5). In summary, let

k=max{j: F; <0.5}

If Fi, = 0.5, take

El Bkt 2kt
! 2

otherwise take R
5% = Zk.

In fact, in all cases, B% = 2, always minimizes g (1) given by (5) (why?).

Computing Algorithm

Based on the discussion above we apply the following iterative algorithm. Set
n
s=Y_|ul
j=1

1. Input. The values (z;,y;), i=1,...,n

2. Initialization. Set 8° = (88, 8Y) = (Med (y;) ,0) and choose a value for
setting the absolute precision d.



3. Tteration. While
857" — 85| > 185]6 and |1 - Y| > |19,
given oF = (ﬁg,ﬁf) ,compute 88! = (66”1, f“) as follows:

(a) Ignore for this calculation cases with z; = 0.
(b) Set, for z; # 0,
. _ Bk ;
_ Y By L w; = M
ZT; S

Zi

(c) Denote by ¢; (j = 1,...,m) the sorted, distinct values of z;, and
denote by ; their corresponding weights. For example, if z;, and z;,
are the only two values of z; equal to {3 then m = z;, + 2.

(d) Calculate

J
F; = Zm, Il=1,...m
1=1

(e) Set
j* =max{j: F; <05}
If Fj- = 0.5, set
k1 _ G T2
! 2
If Fj» <0.5 set
k1 _
1= G

4. Set
k k
0" = Med {yi—xifT)

5. Output: After stop, return the values ( [ f“).

Note: If we have p > 1, steps a-e are modified as follows. First, instead of
x; we have z4;, ¢ =1,...,p and instead of s we have

n
Sq = Z |qil -
Jj=1
Moreover, instead of
k
o Iy
=P = lai]
xZ; S
we have . .
vi — By — Zl;ﬁq B |z4:]
Zqi = , Wi = —-
Lqi Sq

The remaining calculations are modified in an obvious way.



LASSO

Another way to manage the bias-variance trade-off in linear regression is to add
the penalty term A Z?Zl |35, to the quadratic loss function:

1 2 u
J(Bo.ByN) = 5> (i = Bo— B'x:)" + A D15l (6)
i=1 j=1
As in the case of ridge regression, it is convenient to center and scale the variables
so that . .
i=1 i=1
and

n n

2 2
dui=Y al=1
=1 =1

With this pre-processing (6) become

n

1 2 -
J(ﬁa)\):§Z(yi—ﬁ/Xi) +)\Z|ﬁj\
i=1 j=1

Notice that, for fixed A, J (B, A) is sub-differentiable and convex, and so

it has a global minimizer B(A\). In order to implement a coordinate-descent

algorithm to compute B()), we will derive a “close form formula” for the case
p=1. That is, we consider the minimization problem

M:

1
=1

and the first order condition
OeaJ Ba —{ Z ﬁzz $L+)\aﬁ|}
i=1

or equivalently

0¢ {Z%yiﬁAaw}

i=1

which is in turn equivalent to

(Z Tigi ﬁ) €204 (7)
=1

We set r=>"" , z;y; and consider two cases.

Case 1: |r| > A



If » > A, then setting 8 (A\) = r — X solves (7) because 3 (A\) =r—A > 0=
A0 |B| = {\} and we have

r—08(\)=2A
r—(r—XA)=2A

If r < A, weset 5(\) =7+ A which again solves (7) because S (\) =r+ A <
0= \|8| = {—)\} and we have

r—FA\) ==X
r—(r+A)=-X

Case 2: |r| < A
Since we have —A < r < A, there exist —1 < ¢y <1 such that r = topA. We
now set 3 (A) = 0 and notice that condition (7) becomes

re{th: -1<t<1}
which is true with ¢t = to. Hence, § (A) = 0 minimizes J (5, A) .

The Soft Threshold Operator

The solution to condition (7) can be elegantly expressed using the “soft threshold
operator” which is given by the function

r+ A if r<—A
S (r,A) = sign (r) (Jr] = \)* = 0 if -A<r<A
r—A if > A

A plot of S (r,1), as a function of r, with A equal to one is given below.

10



Soft Threshold

S(r,1)

-1
|

-2
[

Computing Algorithm for the LASSO

Based on the discussion in the previous section, we can implement the following
coordinate-descent computing algorithm for the LASSO regression estimate.

1. Input. Data: (y;,x;) ¢ = 1,...,n with all the measurements centered

and scaled so that

and
Si-o Yo
where, naturally, (aq, ....,ap)2 = (a%, ....,af,) .

Absolute error: § > 0.
2. Initialization. 8° = (0,...,0) € R?

3. Iteration. While
Hﬁkﬂ _5kH > 3§

given BF = (ﬁ{“, ...,6}’;) compute B! = (5{““, ...755“) as follows:

ﬁjk-’—lzs(r‘;c’A)? j:17"')p

11



with
n
k ~
T = E TijYij
i=1

and

B = (07ﬁ§,ﬂ§7...7ﬁ§,1,5§) . U=y — X8
B = (BFT1,0,85,...85 1, B5), o =vi —x|B5

k k+1 pk+1 k k ~ k
/63 :( 1+ ) 2+ 707"'761)—1761))7 yi3:yi_xgﬁ3

k k+1 k+1 k+1 k+1 k ~ k
ﬁp:( 11L ) 2+ ) 3+ PRER) pirlaﬂp)a yip:yi_xgﬁp

4. Output. The pair ()\, 5’““), with 51 = (B, gi+1).

Crossvalidation: The choice of A is made by crossvalidation, using an
algorithm similar to that described for ridge regression earlier on.
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