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Module 4

4 Gaussian graphical models

by Marcelo Ruiz

4.1 Preliminaries

Graphs: A graph is a pair G = (V,E) where V 6= ∅ is the set of nodes and
E ⊆ V × V the set of edges. Two nodes i and j are are adjacent or neighbors if
(i, j) ∈ E. A graph is undirected if it satisfies the condition

∀(i, j) ∈ V 2 : (i, j) ∈ E if and only if (j, i) ∈ E.

For every node i ∈ V let

Ai = {j ∈ V \ {i} : (i, j) ∈ E} (1)

be its neighborhood.
A path from a node i to a node j is a sequence of nodes {i1, . . . , il} such that

i1 = i, ik = j and (ik, ik+1) ∈ E for all k = 1, . . . , l − 1. Given A,B,C, disjoint
subsets of V , we say that C separates A and B if for any i ∈ A and j ∈ B, if
there exits a path from i to j, it intersects C.

Conditional Independence: if X, Y and Z are discrete random variables we
say that X, Y are independent given Z, X � X | Z, if and only if (iff)

P (X = x, Y = y|Z = z) = P (X = x|Z = z)P (Y = y|Z = z)

∀x, y, z such that P (Z = z) > 0. If (X,Y, Z) admits a joint density then

X � Y | Z iff fXY |Z(x, y|z) = fX|Z(x|z)fY |Z(y|z).

∀x, y, z such that fZ(z) > 0 provided all the densities are continuous.

Remark 1 Note that:

i) This definition can be easily extended to (vectors) XA � XB | XC where
A,B,C are set of indexes.

ii) Here functions on discrete spaces are considered continuous.

iii) A more general and rigorous definition of conditional independence (re-
quiring measure theory) is beyond the scope of this course.
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Figure 1: G1 = (V1, E1).

Some properties of the conditional independence are listed below (their
proofs are good exercises).

Lemma 2 The following properties are valid:

C.1) if X � Y | Z then Y � X | Z

C.2) If X � Y | Z and U = h(X) then U � Y | Z where h is a (measurable)
function (on the sample space of the r.v. X).

C.3) If X � Y | Z and U = h(X) then X � Y | (Z,U), with h as in (C.2).

C.4) if X � Y | Z and X �W | (Y, Z) then X � (W,Y ) | Z.

Proof. Exercise.

Graphical model: Let X = (X1, . . . , Xp) be a random vector with distribu-
tion P . A Graphical Model (GM) is the pair (G, P ) such that V = {1, . . . , p}
and E is defined by

(i, j) /∈ E if and only if Xi � Xj | XV \{i,j}. (2)

Example 3 Let (X1, X2, . . . , X7) be a random vector with distribution P and
let G1 = (V1, E1) be its graphical model represented in Figure 1.

a) Note that A1 = {2, 3} and A5 = {2, 3, 7}, X1 � X7 | XV \{1,7} and “given
the remaining variables” X1 and X2 are dependent.

b) But, can we conclude that X1 � X7 | X{3,4,5}?

Markov properties: one of the main purposes of graphical modeling consists
in representing the dependence structure of a distribution.

Let X = (X1, . . . , Xp) ∼ P , V = {1, . . . , p} and let G = (V,E) be a graph.
We say P satisfies (with respect to G) the
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Figure 2: G1 = (V1, E1).

• pairwise property (P) if for every (i, j) /∈ E:

Xi � Xj | XV \{i,j}.

• global (G) property if for every disjoints sets A,B,C such that C separates
A and B it is satisfied that

XA � XB | XC .

• local (L) property if for every node i

Xi � XV \cl(i) | XAi ,

where cl(i) = Ai ∪ {i} denotes its closure.

Example 4 Let (X1, X2, . . . , X7) ∼ P and G1 = (V1, E1) as in the previous
example and represented by Figure 2. Assume also that P satisfies, with respect
to G1, the three Markov properties.

Some conclusions:

a) X1 � X7 | XV \{1,7} (as before)

b) X1 � X7 | X{3,4,5} because C = {3, 4, 5} separates the sets A = {1} and
B = {7}, and

c) X1 � X{4,5,6,7} | X{2,3}.

Proposition 5 Let X ∼ P and G = (V,E) be as in the previous definition.
Then
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a) for any distribution P

Global =⇒ Local =⇒ Pairwise ;

b) if the distribution P has a positive and continuous density (w.r.l.m.), then
the Markov properties are equivalent.

Proof.

a) Assume that (G) property hold and let i ∈ V . As Ai separates {i} and
V \ cl(i) then, by (G), (L) follows; i.e. property Xi � XV \cl(i) | XAi .

Assume now that (L) holds and consider two nodes i and j such that
(i, j) /∈ E and let

Y = X{i}, X = XV \cl(i), Z = XAi
and U = h(X) = X(V \cl(i))\{j}

(note that as j /∈ Ai h is well defined and consists in the projection of the
coordinates X(V \cl(i)) on X(V \cl(i))\{j}).

By the (L) propertyX � Y |Z holds. Using this fact and the (C.3) property
of the conditional independence it follows that

X � Y |(Z,U)⇔ X{i} � XV \cl(i)|(XAi
, X(V \cl(i))\{j})

Note now that, as (i, j) /∈ E (and then j /∈ Ai)

Ai ∪ ((V \ cl(i)) \ {j}) = V \ {i, j};

and so

X{i} � XV \cl(i)|XV \{i,j}.

Applying (C.2) with X, Y and Z as before but U = h(X) = X{j} (the
projection of XV \cl(i) on the X{j} coordinate)

Xi � Xj � XV \{i,j}

is established.

b) See Lauritzen (1996, pp. 34–45). Schematically, to prove b) first it is
shown that (G)⇐⇒ (L)⇐⇒ (P ) if and only if ∀A,B,C,D disjoint subsets
if A � B|(C ∪ D) and A � C|(B ∪ D) then A � (B ∪ C)|D. Then, the
factorization concept is used and the theorem of Hammersley and Clifford
close the proof. See details in in Lauritzen (1996, pp. 34–45).
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Gaussian Graphical Model
A Gaussian Graphical Model (GGM) is a GM such that P is the multivariate

Gaussian distribution; i.e. X = (X1, . . . , Xp)
> ∼ N(µ,Σ).

Remark 6 A GGM satisfies the three Markov Properties

The following proposition (easy to prove) characterizes a neighborhood in
terms of the conditional independence.

Proposition 7 In a GGM, for every node i, if Ai 6= ∅ then

Ai =
⋂
A∈Ei

A with Ei = {A ⊂ V \ {i} : Xi � XV \(A∪{i}) | XA};

i.e. Ai is the smallest subset of V \{i} such that Xi is conditionally independent
of the remaining variables, given XAi

.

Proof. Denote Mi =
⋂
A∈Ei A and let us prove that Mi = Ai. By the local

Markov property, Ai ∈ Ei and so

Ei ⊆ Ai.

Let j ∈ Ai and assume for the sake of contradiction that j /∈ Mi. Hence, by
definition of Mi, there exists Ao ∈ Ei such that j /∈ Ao.

So, Xi � XV \(Ao∪{i}) | XAo and by the global property Ao separates {i} and
V \ (Ao ∪{i}). As (i, j) ∈ E then (i, j) is a path from a i to a j; in consequence
this path have to intersect Ao. So i ∈ Ao or j ∈ Ao, and this is a contradiction.
Hence

Ai ⊆ Ei,

and the proof is complete.

4.2 Conditional dependence in a GGM

Hereafter we assume that

X = (X1, . . . , Xp)
> ∼ N(0,Σ)

with a positive definite covariance matrix Σ.
Notation: If A is a subset of V = {1, . . . , p}, XA denotes the vector of variables

with subscripts in A in increasing order and, for every fixed pair of nodes (i, l),

set X>1 = (Xi, Xl), X>2 = XV \{i,l} and X =
(
X>1 ,X

>
2

)>
.

Parametrization of E: the following definitions and equalities give different
representation of the set of edges.
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P.1) The conditional correlation of (Xi, Xl)|XV \{i,l}, is defined as

corr
(
Xi, Xl|XV \{i,l}

)
=

cov
(
Xi, Xl | XV \{i,l}

)√
var

(
Xi | XV \{i,l}

)
var

(
Xl | XV \{i,l}

) . (3)

P.2) If Ω = (ωij)i,j=1...,p denotes the precision matrix Σ−1, then

corr
(
Xi, Xl|XV \{i,l}

)
= − ωil√

ωiiωll
. (4)

P.3) Consider the regression error of X1 on X2 defined by ε = X1 − X̂1 =
X1 − β>X2 and let εi and εl denote the entries of ε (i.e. ε> = (εi, εl)).
Usually, εi and εl are called the residuals associated to Xi and Xl in the
regression of X1 on X2.

The partial correlation coefficient betweenXi andXl, denoted by ρil·V \{i,l},
is defined as the Pearson correlation coefficient of the residuals; that is,

ρil·V \{i,l} =
cov (εi, εl)√

var (εi)var (εl)
(5)

and both, correlation and conditional coefficients are equal.

The following proposition establishes differents ways to represent (parametrize)
E:

Proposition 8 For a GGM, the set of edges E satisfies

E = {i, l ∈ V : corr
(
Xi, Xl|XV \{i,l}

)
6= 0} (6)

= {i, l ∈ V : ωi,l ∈ Ω and 6= 0}
= {i, l ∈ V : ρil·V \{i,l} 6= 0}.

Proof. The first equality is immediate. Second and third equalities follow if we
show (4) and that the conditional and partial correlation coefficients are equal.

To prove (4) first note that
(
X>1 ,X

>
2

)>
has multivariate normal distribution

with mean 0 and covariance matrix(
Σ11 Σ12

Σ21 Σ22

)
(7)

such that Σ11 has dimension 2×2, Σ12 has dimension 2×(p−2) and so on. The
matrix in (7) is a partition of a permutation of the original covariance matrix
Σ, according into blocks Σu,j , u, j = 1, 2.

Moreover, the conditional distribution of X1|X2 is normal and satisfies that

e (X1|X2) = β>X2 and cov (X1|X2) = Σ11 − Σ12Σ−122 Σ21, (8)
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where β> = Σ12Σ−122 is denominated the matrix of regression coefficients of X1

on X2, and X̂1 = β>X2 is the optimal predictor of X1.
If we set (

Σ11 Σ12

Σ21 Σ22

)−1
=

(
Ω11 Ω12

Ω21 Ω22

)
then, the blocks Ωi,j can be written explicitly in terms of Σi,j or Σ−1i,j and, in

particular Ω11 =
(
Σ11 − Σ12Σ−122 Σ21

)−1
where

Ω11 =

(
ωii ωil
ωli ωll

)
is the submatrix of Ω (with rows i and l and columns i and l). Hence, by (8),

cov (X1|X2) = Σ11 − Σ12Σ−122 Σ21 (9)

= Ω−111

=
1

ωiiωll − ωilωli

(
ωll −ωil
−ωli ωii

)
and, in consequence, (3) can be expressed as in (4).

Now consider the regression error ε of X1 on X2 as before. ε is independent
of X̂1 and has normal distribution with mean 0 and matrix covariance Ψ11 with
elements denoted by

Ψ11 =

(
ψii ψil
ψli ψll

)
. (10)

A straightforward calculation shows that

Ψ11 = cov (X1) + cov
(
X̂1

)
− 2cov

(
X1, X̂1

)
= Σ11 + Σ12Σ−122 Σ22Σ−122 Σ21 − 2Σ12Σ−122 Σ21

= Σ11 − Σ12Σ−122 Σ21 = Ω−111 .

Therefore, by this equality, (9) and (4), the partial correlation coefficient
and the conditional correlation are equal

ρil·V \{i,l} = corr
(
Xi, Xl|XV \{i,l}

)
(11)

=
ψil√
ψiiψll

.
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4.3 Covariance selection

Note that even when p is moderate the number of different graphs with p nodes
can be big enough: 2p(p−1)/2!. Indeed, the total number of edges of a subset of

p nodes are

(
p

2

)
, then the total number of graphs is the total number of subsets

of the set
{

1, . . . ,
(
p
2

)}
that is equal to 2(p

2) = 2p(p−1)/2.

Let (X1j , . . . , Xpj)
>

, j = 1, . . . , n be a random sample from X ∼ N(0,Σ).
Covariance selection (Dempster, 1970) consists in finding procedures that, based
on the sample, determine the set of edges of the associated GGM or, equivalently,
the conditionally dependent pairs of variables (given the rest) or, the non-zero
elements of the precision matrix.

Underlying to the covariance selection is the principle of parsimony in para-
metric model fitting “parameters should be introduced sparingly and only when
data indicate they are required” (Dempster, 1970).

Covariance selection is not a selection variables problem. It is a problem of
(conditional dependence) “relationships”selection between variables.

Moreover, note that

1. In a high-dimensional framework, when p > n, the sample covariance
matrix S is not invertible and the maximum likehood estimate (MLE) of
Σ does not exist.

2. When p/n ≤ 1, but close to 1, S is invertible but ill-conditioned, dramat-
ically increasing the estimation error.

To deal with these problems several covariance selection procedures have
been proposed based on the assumption that the inverse of the covariance ma-
trix, the precision matrix, is sparse.

4.4 Covariance selection using Lasso

Instead of assuming that there exists a fixed true underlying fixed model Mein-
shausen and Bühlmann (2006) assume a more flexible approach: the number of
nodes p = p(n) = |V (n)| and the covariance matrix Σ = Σ(n) “depends” on the
number of observations. The mentioned authours propose to estimate the graph
(covariance selection) using Lasso. In this subsection, we give some aspects of
their work.

OLS estimates: let βi ∈ Rp be the (population) coefficient of the regression
of Xi on the remaining variables XV \{i}; that is

βi = argmin
β:βi=0

E

(
Xi −

∑
k∈V

βkXk

)2

. (12)
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If βij denotes the j–th coefficient of βi, then

βij = −ωij
ωii

and {j ∈ \{i} : βij 6= 0} = {j ∈ \{i} : ωij 6= 0}

that implies

Ai =
{
j ∈ \{i} : βij 6= 0

}
. (13)

Let X be the matrix of dimension n× p containing n independent observa-
tions of X, such that the columns Xi corresponds to the vector of n independent
observations of Xi. Sea 〈·, ·〉 the (usual) inner product in Rn and ‖·‖2 its corre-
sponding norm.

So the least square estimates β̂
i,ls

of βi is

β̂
i,ls

= argmin
β:βi=0

n−1 ‖Xi −Xβ‖22 . (14)

Under sparsity it is necessary to change the estimation strategy, considering
Lasso estimation.

Lasso estimates β̂
i,λ

of βi is given by

β̂
i,λ

= argmin
β:βi=0

(
n−1 ‖Xi −Xβ‖22 + λ ‖β‖1

)
,

where ‖β‖1 =
∑
k∈V |βk| is the `1 norm and λ ∈ [0,∞ ).

The estimated (by lasso) neighborhood, Âλi is given by

Âλi =
{
j ∈: β̂i,λj 6= 0

}
.

Consistent neighborhood estimation.
It is possible to control the Type I and II errors imposing certain rate to

the penalization parameter. More specifically, under certain conditions and
assuming that

λn ∼ dn−(1−ε)/2

for some κ < ε < ξ and d > 0 then there exists some c > 0 such that for i ∈ V ,

P
(
Âλi ⊆ Ai

)
= 1−O(exp(−cnε))

P
(
Ai ⊆ Âλi

)
= 1−O(exp(−cnε))

as n→∞.
What kind of assumptions? We only mention two:
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• High dimensionality. The number of variables can grow as a power
of the number of observations: ∃γ > 0, such that

p(n) = O(nγ) para n→∞. (15)

• Sparsity. Restricts the size of the neighborhood: ∃0 ≤ κ < 1 such that

max
i∈ V
|Ai| = O(nκ) for n→∞. (16)

Lasso Estimation of E: for each variable fit a lasso model using the
others as predictors and, considering that

E = {(i, j) : i ∈ Aj and j ∈ Ai}

then define the estimated set of edges as

Êλ,∧ = {(i, j) : i ∈ Âλj and j ∈ Âλi }, or

Êλ,∨ = {(i, j) : i ∈ Âλj or j ∈ Âλi }.

Both Êλ,∧ and Êλ,∨ consistently estimates the set of non-zero elements
of the set of edges E.

The penalty term λ is chosen such that, for a level α = α(λ) the probability
of falsely joining two distinct connectivity components with the edge set is
bounded by that level (see detalis in Meinshausen and Bühlmann, 2006).

4.5 A Graphical Stepwise Approach to Covariance Selec-
tion

According to (11) and the discussion therein, the partial correlation can be also
used to perform covariance selection. For every node i ∈ V , let Ai be its neigh-
borhood as it was defined previously. As we emphasize before, conditionally on
its neighbors, Xi is independent of all the other variables; i.e.,

∀i ∈ V : Ai 6= ∅ : ∀l /∈ Ai (l 6= i) : Xi � Xl|XAi . (17)

In consequence, if a “tentative” graphical model is given by the system of neigh-
borhoods {Ai}pi=1 and l /∈ Ai (and therefore i /∈ Al), then the partial correlation
between Xi and Xl can be obtained by the following procedure:

1. regress Xi on XAi and form the regression residual εi; regress Xl on XAl

and form the regression residual εl and then

2. calculate the Pearson correlation between εi and εl.

Hence, this procedure suggest the following:

Graphical Stepwise Algorithm
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Input: the (centered) data {x1, ...,xn} , and the forward and backward thresh-
olds αf and αb.

Initialization. Set A0
1 = A0

2 = · · · = A0
p = φ

Given Ak
1 ,Ak

2 , ...,Ak
p we compute Ak+1

1 ,Ak+1
2 , ...,Ak+1

p as follows.

Forward Step. For each i = 1, ..., p do the following.

For each l /∈ Ak
i calculate fk

il as follows.

(a) Regress the ith variables on the variables with subscript in the set Ak
i

and compute the regression residuals ek
i =

(
eki1, e

k
i2, ..., e

k
in

)
.

(b) Regress the lth variables on the variables with subscript in the set Ak
l

and compute the regression residuals ek
l =

(
ekl1, e

k
l2, ..., e

k
ln

)
.

(c) Compute the Pearson correlation fk
il between ek

i and ek
l .

If
max

l/∈Ak
i ,i∈V

∣∣∣fk
il

∣∣∣ = ∣∣∣fk
i0l0

∣∣∣ ≥ αf

set Ak+1
i0

= Ak
i0 ∪ {l0} , A

k+1
l0

= Ak
l0
∪ {i0} , Ak+1

l = Ak
l for l 6= i0, l0

If
max

∣∣∣fk
il

∣∣∣ = ∣∣∣fk
i0l0

∣∣∣ < αf

Stop.

Backward Step. For each i = 1, ..., p do the following.

For each l ∈ Ak+1
i calculate bkil as follows.

(a) Regress the ith variables on the variables with subscript in the set
Ak+1

i \ {l} and compute the regression residuals rki =
(
rki1, r

k
i2, ..., r

k
in

)
.

(b) Regress the lth variables on the variables with subscript in the set
Ak+1

l \ {i} and compute the regression residuals rkl =
(
rkl1, r

k
l2, ..., r

k
ln

)
.

(c) Compute the Pearson correlation bkil between rki and rkl .

If
min

l∈Ak
i ,i∈V

∣∣∣bkil∣∣∣ = ∣∣∣bki0l0 ∣∣∣ ≤ αb

set Ak+1
i0
→ Ak+1

i0
\ {l0} , Ak+1

l0
→ Ak+1

l0
\ {i0} , Ak+1

l → Ak+1
l for l 6= i0, l0

Summarizing: the Graphical Stepwise Algorithm (GSA) begins with the

family of empty neighborhoods, Â(0)
i = ∅ for each i ∈ V (i.e., the initial set of

edges is empty). There are two basic steps, the forward and the backward:

• in the forward step, the algorithm finds a new edge (i0, l0) provided the
largest absolute value of the empirical Pearson correlation between resid-
uals corresponding to the variables Xi0 , Xl0 is big enough (no less than
the threshold αf ) and, otherwise the algorithm stop;

• next, in the backward step the algorithm estimates the empirical Pearson
correlation between residuals under the presence of the lately added edge;
if the minimum of the absolute value of the empirical Pearson correlation
between residuals is not big enough (less or equal than the threshold αb)
then the corresponding edge is eliminated. And so on.
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The ouput of the GSA is a collection of estimated neighbors ÂGSi and the

set of estimated edges ÊGS =
{

(i, j) ∈ V 2 : j ∈ ÂGSi
}

. To simplify we omit the

superscript GS.

Selection of thresholds by cross-validation
Let X be a p × n matrix with columns xj = (x1j , . . . , xpj)

>
, j = 1, . . . , n,

corresponding to n independent and identically distributed observations.
Assume that the graphical model is given by the system of neighborhoods

{Ai}i∈V0
where for every i ∈ V0, Ai 6= ∅. Without loss of generality we suppose

that V0 = {1, . . . , I}, with 1 ≤ I ≤ p and, let
{
Âi
}
i∈V0

be the collection of

estimated neighborhoods by the GSA.
For every node i ∈ V0, denote Ai =

{
Xi1 , . . . Xipi

}
with pi = |Ai| and

i1 < . . . ipi and, consider the regression of Xi on Ai

Xi = β>Ai
XAi

+ εi (18)

where now XAi
is the column vector

(
Xi1 , . . . Xipi

)>
.

For every i = 1, . . . , n let Xi = (xi1, . . . , xin) denote the ith–row of the
matrix X. So, for the model given by (18) after the GSA (based on a pair of
thresholds (αf , αb)) is run the regression residuals vector, ei = (e1, . . . , en)>,
can be written as

e>i = Xi − β̂
>
iÂi

XÂi
(19)

where β̂
>
iÂi

is the estimated regression coefficients and

XÂi
=

 xi11 · · · xi1n
... · · ·

...
xip̂i1 · · · xip̂in

 (20)

is the matrix of the sample observations corresponding to the selected variables
Xi1 , . . . , Xip̂i

and p̂i is the size of the estimated neighborhood Âi. Note that p̂i,

Âi and β̂iÂi
depend on the thresholds (αf , αb) and that not necessarily pi and

p̂i are equal.
Partition the data set {xj}1≤j≤n at random into K disjoint subsets of ap-

proximately equal size, the jth subset having size nj ≥ 2,

K∑
j=1

nj = n.

For every j, let {x(j)
i }1≤i≤nj

be the jth subset, the validation set, and its

complement {x̃(j)
i }1≤i≤n−nj

, the training set.
Fix αf , αb a pair of forward and backward thresholds, respectively. Now, for

every j let (see the notation introduced in (19) and (20))

β̂
(j)>

1Â(j)
1

, . . . , β̂
(j)>

IjÂ(j)
Ij
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be the estimated regression coefficients computed by the GSA based on the

observations in the training set {x̃(j)
l }1≤l≤n−nj

and on the chosen thresholds
(αf , αb).

If x
(j)
k = (x

(j)
1k , . . . , x

(j)
pk ), k = 1, . . . , nj is the validation set, then for every

node i X
(j)
i =

(
x
(j)
i1 , . . . , x

(j)
inj

)
is the sample of size nj corresponding to the

variable Xi and let

X̂
(j)
i = β̂

(j)>

iA(j)
i

XÂj
i
, (21)

where

XÂj
i

=


x
(j)
i11

· · · x
(j)
i1nj

... · · ·
...

x
(j)
ipi1

· · · x
(j)
ip̂inj

 .

If we write X̂
(j)
i = X̂

(j)
i (αf , αb) to emphasize the dependence of X̂

(j)
i on the

thresholds, the K–fold cross–validation function is defined as

CV (αf , αb) =
1

n

K∑
j=1

p∑
i=1

∥∥∥X(j)
i − X̂

(j)
i (αf , αb)

∥∥∥2 (22)

where ‖·‖ the L2-norm or euclidean distance in Rp.
The K–fold cross–validation forward–backward thresholds α̂f , α̂b are defined

as
(α̂f , α̂b) = argmin

(αf ,αb)∈H
CV (αf , αb) (23)

where H is a grid of ordered pairs (αf , αb) in [0, 1]× [0, 1] over which we perform
the search.
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Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and
variable selection with the lasso. The Annals of Statistics. 3, 1436–1462

13


