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Graphical model:

G = (V ,E )

V = {1, 2, ...,m} set of nodes

E ⊆ V × V set of edges
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Adjacent nodes and neighborhoods:

i and j are neighbors ⇔ (i , j) ∈ E

Undirected graph:

(i , j) ∈ E ⇔ (j , i) ∈ E
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Path from i to j :

ordered set {i1, i2, ..., il} ⊆ V

i1 = i , il = j

(ik , ik+1) ∈ E , k = 1, ..., l − 1
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Let A,B,C , be disjoint subsets of V .

C separates A and B if all path from A to B goes through some element
of C .
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Gaussian graphical model:

X =


X1
X2
...
Xm

 ∼ N (µ,Σ)

(i , j) ∈ E ⇔ Corr (Xi ,Xj | all other variables) 6= 0
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Conditional Independence (denoted by ⊥)

X1 ⊥ X2 | X3 ⇔ f (x1, x2 | x3) = f (x1 | x3) f (x2 | x3)

Notation: Let A = {i1, ..., il} ⊆ V

XA =


Xi1
Xi2
...
Xil
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Suppose that A, B and C are disjoint. Then

XA ⊥ XB | XC ⇔ f (xA, xB | xC ) = f (xA | xC ) f (xB | xC )
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Some general properties of ⊥

1 XA⊥ XB | XC ⇒ XB ⊥ XA | XC

2 XA⊥ XB | XC and U =h (XA)⇒ U ⊥ XB | XC

3 XA⊥ XB | XC and U =h (XA)⇒ XA ⊥ XB | (XC ,U)

4 XA⊥ XB | XC and XA⊥W| (XB ,XC )⇒ XA ⊥ (W,XB ) | XC
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Node neighborhood:

Ai = {j 6= i : (i , j) ∈ E}
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Markov-Like Properties

Local Markov property: for all i ,

Xi ⊥ XV \Ai | XAi , with Ai = Ai ∪ {i}

Global Markov property: let A,B,C , be disjoint subsets of V

if C separates A and B then XA ⊥ XB | XC
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Some important notes:

If the distribution of X has a positive and continuous density
(w.r.l.m.), then these Markov properties are equivalent.

Moreover, in this case, both Markov properties hold when E is defined
by the condition

“ (j , l) ∈ E iff

Xj and Xl are dependent given

given all the other variables ”
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Parametrization of the GGM

1) In terms of the conditional correlations:

E =
{
(j , l) ∈ V 2 : Corr

(
Xj ,Xl |XV \{j ,l}

)
6= 0

}
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2) In terms of the entries of the precision matrix (ωpq) = Ω = Σ−1

E =
{
(j , l) ∈ V 2 : ωjl 6= 0

}

Note: it can be shown that Corr
(
Xj ,Xl |XV \{j ,l}

)
= 0⇐⇒ ωjl = 0 (see

“Reading”)
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3) In terms of the Pearson correlation of the regression residuals

a) Let ej = Xj − E
(
Xj |XV \{j ,l}

)
and el = Xl − E

(
Xl |XV \{j ,l}

)
b) Let βjl = Corr (ej , el )

E =
{
(j , l) ∈ V 2 : βjl 6= 0

}

Note: it can be shown that Corr
(
Xj ,Xl |XV \{j ,l}

)
= βjl (see “Reading”)
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GLASSO proposed by Friedman, Hastie and Tibshirani (2008):

Ω̂ = arg min
Ω�0

{
tr (SΩ)− log det (Ω) + λ ∑

i 6=j
|ωij |

}

where

S is the sample covariance matrix, and

Ω = Σ−1 is the precision matrix
See the package “glasso” in CRAN
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Stepwise GGM

Set the entry threshold β (a number between 0 and 1)

Given a system of neighborhoods
{
A(k )j

}
compute the regression

residuals ej by regressing Xj on XA(k )j

For each l /∈ A(k )j (and therefore j /∈ A(k )l ) compute the Pearson
correlation

β̂jl =
e′jel√

e′jej
√
e′lel
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Let

∣∣∣β̂j0 l0 ∣∣∣ = max
l /∈A(k )j ,j∈V

∣∣∣β̂jl ∣∣∣
If
∣∣∣β̂j0 l0 ∣∣∣ ≥ β, set A(k+1)j0

= A(k )j0 ∪ {l0} , A
(k+1)
l0

= A(k )l0 ∪ {j0} ,

A(k+1)j = A(k )j for j 6= j0, l0 and continue.

If
∣∣∣β̂j0 l0 ∣∣∣ < β, stop
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