Mod 2: Convex Optimization and Coordinate Descent

Ruben Zamar Department of Statistics UBC

September 30, 2018

Ruben Zamar Department of Statistics

Convex Optimization

September 30, 2018 1 / 14

Convex Sets in \mathbb{R}^p

a, **b** \in $A \Rightarrow \alpha \mathbf{a} + (1 - \alpha) \mathbf{b} \in A$, for all $0 \le \alpha \le 1$

Image: Image:

3

Convex Functions

Let $A \subset R^p$ be a convex set and $f : A \to R$

f is **convex** if for all $0 \le \alpha \le 1$ and all **a**, **b** $\in A$ we have

$$f(\alpha \mathbf{a} + (1 - \alpha) \mathbf{b}) \leq \alpha f(\mathbf{a}) + (1 - \alpha) f(\mathbf{b})$$

f is strictly convex if for all $0 < \alpha < 1$ and all $\mathbf{a} \neq \mathbf{b} \in A$ we have

$$f(\alpha \mathbf{a} + (1 - \alpha) \mathbf{b}) < \alpha f(\mathbf{a}) + (1 - \alpha) f(\mathbf{b})$$

• Examples of convex functions in *R*:

Examples of convex functions in R^p

- All affine functions: $f(\mathbf{x}) = \mathbf{a}'\mathbf{x} + b$, (but not strictly convex)
- Some quadratic functions: f (x) = xQx + a'x+b, provided Q is non-negative definite, Q ≥ 0. Strictly convex if Q is positive definite Q > 0
- All norms $f(\mathbf{x}) = \|\mathbf{x}\|$. Recall that a norm is a function that satisfies a) $\|\mathbf{x}\| \ge 0$, b) $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = \mathbf{0}$, c) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$, and d) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

Differentiable Function on R^p

The function $f(\mathbf{x})$ is differentiable at \mathbf{x} if

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \partial f(\mathbf{x}) / \partial x_1 \\ \partial f(\mathbf{x}) / \partial x_2 \\ \vdots \\ \partial f(\mathbf{x}) / \partial x_p \end{pmatrix} \text{ exists.}$$

The function $f(\mathbf{x})$ is differentiable if the gradient $\nabla f(\mathbf{x})$ exists at each interior point of its domain.

First Order Condition for Convexity

Suppose the function $f(\mathbf{x})$ is differentiable on an open domain A. Then $f(\mathbf{x})$ is convex if and only if the first order condition below holds

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x}) (\mathbf{y} - \mathbf{x})$$
 for all $\mathbf{x}, \mathbf{y} \in A$.

Example

Consider the convex function

$$f(x) = x^2$$

In this case

$$\nabla f(x) = 2x$$

The first order condition for convexity is:

$$\begin{array}{rcl} f(y) & \geq & f(x) + \nabla f(x) \, (y-x) \\ y^2 & \geq & x^2 + 2x \, (y-x) \\ (y-x)^2 & \geq & 0 \end{array}$$

Global minimization of a differentiable convex function

Suppose

- $f(\mathbf{x})$ is convex and differentiable
- **x**₀ belongs to the interior of the domain of *f*.
 x₀ is a global minimizer of *f*(**x**) if and only if ∇*f*(**x**₀) = 0.

Proof: Sufficiency follows directly from (??) and the fact that $\nabla f(\mathbf{x}_0) = 0$. The necessity follows because $f(\mathbf{x})$ is differentiable and \mathbf{x}_0 belongs to the interior of the domain of f.

Remark: if $f(\mathbf{x})$ is **strictly convex** then the global minimizer \mathbf{x}_0 is **unique**. To see that suppose that there is another global minimizer \mathbf{x}_1 . Then for all $0 < \alpha < 1$, $f(\alpha \mathbf{x}_0 + (1 - \alpha) \mathbf{x}_1) < \alpha f(\mathbf{x}_0) + (1 - \alpha) f(\mathbf{x}_1) = f(\mathbf{x}_0)$, contradicting the fact that \mathbf{x}_0 is a global minimizer.

Coordinate-descent algorithm

Let $f(\mathbf{x}, \mathbf{y})$ be a real valued function with $\mathbf{x} \in R^p$ and $\mathbf{y} \in R^q$.

Suppose that we have a way for minimizing $f(\mathbf{x}, \mathbf{y})$ in \mathbf{y} for each fixed \mathbf{x} , and also for minimizing $f(\mathbf{x}, \mathbf{y})$ in \mathbf{x} for each fixed \mathbf{y} .

Back-Fitting:

Starting from some initial value \mathbf{x}^0 (e.g. $\mathbf{x}^0 = 0$) we form a decreasing sequence $\{f(\mathbf{x}^k, \mathbf{y}^k)\}$ as follows:

$$\begin{split} f\left(\mathbf{x}^{0},\mathbf{y}\right) &\geq f\left(\mathbf{x}^{0},\mathbf{y}^{0}\right) \rightarrow f\left(\mathbf{x}^{0},\mathbf{y}^{0}\right), \\ f\left(\mathbf{x},\mathbf{y}^{0}\right) &\geq f\left(\mathbf{x}^{1},\mathbf{y}^{0}\right) \rightarrow f\left(\mathbf{x}^{1},\mathbf{y}\right) \geq f\left(\mathbf{x}^{1},\mathbf{y}^{1}\right) \rightarrow f\left(\mathbf{x}^{1},\mathbf{y}^{1}\right), \\ f\left(\mathbf{x},\mathbf{y}^{1}\right) &\geq f\left(\mathbf{x}^{2},\mathbf{y}^{1}\right) \rightarrow f\left(\mathbf{x}^{2},\mathbf{y}\right) \geq f\left(\mathbf{x}^{2},\mathbf{y}^{2}\right) \rightarrow f\left(\mathbf{x}^{2},\mathbf{y}^{2}\right), \\ f\left(\mathbf{x},\mathbf{y}^{2}\right) &\geq f\left(\mathbf{x}^{3},\mathbf{y}^{2}\right) \rightarrow f\left(\mathbf{x}^{3},\mathbf{y}\right) \geq f\left(\mathbf{x}^{3},\mathbf{y}^{3}\right) \rightarrow f\left(\mathbf{x}^{3},\mathbf{y}^{3}\right), \quad \text{etc.} \end{split}$$

By construction

$$f\left(\mathbf{x},\mathbf{y}^{k}
ight) \geq f\left(\mathbf{x}^{k+1},\mathbf{y}^{k+1}
ight)$$
, for all \mathbf{x}

and

$$f\left(\mathbf{x}^{k},\mathbf{y}
ight) \geq f\left(\mathbf{x}^{k+1},\mathbf{y}^{k+1}
ight)$$
, for all \mathbf{y}

Moreover:

$$f\left(\mathbf{x}^{k},\mathbf{y}^{k}\right) \geq f\left(\mathbf{x}^{k+m},\mathbf{y}^{k+m}\right), \quad m=1,2,...$$

If $f(\mathbf{x}, \mathbf{y})$ is convex and differentiable, $f(\mathbf{x}^k, \mathbf{y}^k)$ converges to a global minimum, $f(\mathbf{x}^*, \mathbf{y}^*)$ (next theorem)

Later on, we will show that the differentiability condition can be relaxed to *sub-differentiability*.

Theorem 1. Suppose that $f(\mathbf{x}, \mathbf{y})$ is

(i) convex,

(ii) differentiable,

 $\text{(iii)} \ \nabla f\left(\mathbf{x}^*,\mathbf{y}^*\right) = \mathbf{0} \quad \text{ for some } \quad \left(\mathbf{x}^*,\mathbf{y}^*\right) \in R^{p+q}.$

(iv) If the domain of f is unbounded then

$$\lim_{\|(\mathbf{x},\mathbf{y})\|\to\infty}f\left(\mathbf{x},\mathbf{y}\right)=\infty$$

Then,

(a)
$$\lim_{k\to\infty} f(\mathbf{x}^k, \mathbf{y}^k) = f(\mathbf{x}^*, \mathbf{y}^*)$$
.
If $f(\mathbf{x}, \mathbf{y})$ is strictly convex, then
(b) $\lim_{k\to\infty} (\mathbf{x}^k, \mathbf{y}^k) = (\mathbf{x}^*, \mathbf{y}^*)$.

3