Mod 1: Bias-Variance Trade Off and Ridge Regression

Ruben Zamar Department of Statistics UBC

October 3, 2018

Ruben Zamar Department of Statistics

Module 2: Ridge Regression

October 3, 2018 1 / 30

Motivation:

Measure a quantity μ

- Can either use measurement X_1 or measurement X_2
- Suppose that $X_1 \sim N\left(\mu, \sigma^2\right)$ and $X_2 \sim N\left(\gamma, \tau^2\right)$
- Assume that $\tau < \sigma$

Otherwise X_1 would be obviously preferred (why?)

• Assume that $\gamma \neq \mu$

Otherwise X_2 would be obviously preferred (why?)

• Quadratic Loss

$$Q_i = E[(X_i - \mu)^2], \quad i = 1, 2$$

• L₁ Loss

$$L_i = E[|X_i - \mu|], \quad i = 1, 2$$

э

Image: A math a math

"Canonical" Representation

• Assume (w.l.g.) that $\mu = 0$: In fact,

$$\begin{aligned} A_i &= E\left[(X_i - \mu)^2\right] = E\left(Y_i^2\right) \quad \text{with} \\ Y_1 &\sim N\left(0, \sigma^2\right), \quad Y_2 \sim N\left(\gamma - \mu, \tau^2\right) = N\left(\delta, \tau^2\right) \end{aligned}$$

we can simply compare variables Y_1 and Y_2

- The assumption $\gamma \neq \mu$ becomes $|\delta| > 0$.
- This reasoning also applies to the L₁ Loss case

• For fixed d > 0

$$A_1 \quad < \quad A_2 \Leftrightarrow \frac{A_1}{\sigma} < \frac{A_2}{\sigma}$$

3

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

"Canonical" Representation

• Therefore, we can re-define

$$A_i = E\left[\left(\frac{X_i}{\sigma}\right)^2\right] = E\left[Z_i^2\right]$$

• In summary, we compare variables Z_1 and Z_2 with

$$Z_1 \sim N(0,1), \quad Z_2 \sim N\left(\frac{\delta}{\sigma}, \frac{\tau^2}{\sigma^2}\right) = N\left(\Delta, \xi^2\right)$$

where $0<\xi<1~$ and $|\Delta|>0$

Recall that

$$\Delta = \frac{\gamma - \mu}{\sigma}$$
 and $\xi = \frac{\tau}{\sigma}$

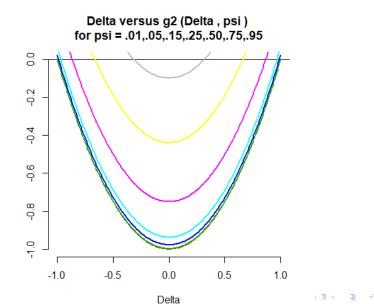
• Measurement X_2 is preferred if and only if

$$E\left(Z_2^2\right) < E\left(Z_1^2\right)$$

• That is, if and only if

$$g_2\left(\Delta,\xi
ight) \;\;=\;\; \xi^2+\Delta^2-1<0$$

Quadratic Loss Function

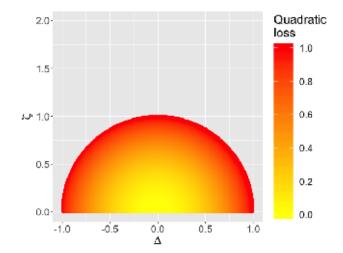


ξ	X_2 is Preferred if	ξ	X_2 is Preferred if
0.15	$ \Delta < 0.989$	 0.65	$ \Delta < 0.760$
0.25	$ \Delta < 0.968$	0.75	$ \Delta < 0.661$
0.35	$ \Delta < 0.937$	0.85	$ \Delta < 0.527$
0.45	$ \Delta < 0.893$	0.95	$ \Delta < 0.312$
0.55	$ \Delta < 0.835$	0.99	$ \Delta < 0.141$

æ

<ロト </p>

Quadratic Loss Function



Ruben Zamar Department of Statistics

October 3, 2018 10 / 30

э

• We will use the formula (students should verify it analytically)

$$E\left|N\left(\mathbf{a},b^{2}
ight)
ight| = 2\left(b\varphi\left(\mathbf{a}/b
ight) + \left|\mathbf{a}\right|\left[\Phi\left(\left|\mathbf{a}\right|/b
ight) - 1/2
ight]
ight)$$

• Using this formula

$$E\left|N\left(\Delta,\xi^{2}\right)\right|=2\left(\xi\varphi\left(\Delta/\xi\right)+\left|\Delta\right|\left[\Phi\left(\left|\Delta\right|/\xi\right)-1/2\right]\right)$$

and

$$E\left|N\left(0,1
ight)
ight|=2\varphi\left(0
ight)$$

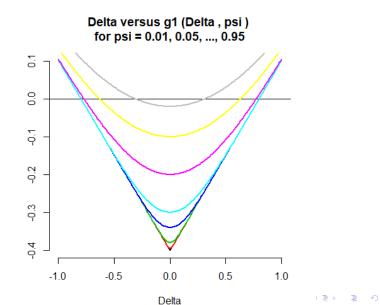
• In this case measurement X_1 should be preferred if and only if

$$E\left|N\left(\Delta,\xi^{2}\right)\right| < E\left|N\left(0,1\right)\right|$$

• That is, if and only if

 $g_{1}\left(\Delta,\xi
ight) \;\;=\;\; \xi\varphi\left(\Delta/\xi
ight)+\left|\Delta\right|\left[\Phi\left(\left|\Delta\right|/\xi
ight)-1/2
ight]-arphi\left(0
ight)<0$

L1 Loss Function

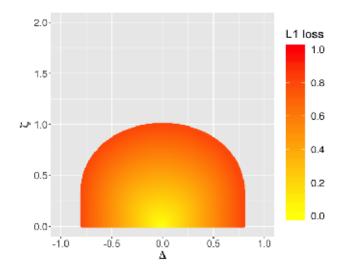


ξ	X_2 is Preferred if	${f \xi}$	X_2 is Preferred if
0.15	$ \Delta < 0.798$	0.65	$ \Delta < 0.706$
0.25	$ \Delta < 0.798$	0.75	$ \Delta < 0.630$
0.35	$ \Delta < 0.795$	0.85	$ \Delta < 0.513$
0.45	$ \Delta < 0.783$	0.95	$ \Delta < 0.310$
0.55	$ \Delta < 0.755$	0.99	$ \Delta < 0.141$

イロト イ団ト イヨト イヨト

3

L1 Loss Function



Ruben Zamar Department of Statistics

Module 2: Ridge Regression

October 3, 2018

< m# •

5/30

æ

Consider the linear regression model

$$y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i, \quad i = 1, ..., n$$

- The observations (y_i, x_{i1}, x_{i2}) , i = 1, ..., n are independent
- $\mathbf{x}_i = (x_{i1}, x_{i2})'$ and ε_i are independent

•
$$\varepsilon_i \sim N\left(0, \sigma^2\right)$$
 (take $\sigma = 1$ for simplicity)

Some notation:

$$X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{pmatrix} = (\mathbf{X}_1, \mathbf{X}_2), \qquad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

More notation:

Ruben Zamar Department of Statistics

Module 2: Ridge Regression

Comparison of Linear Regression Estimates

- Analysis will be conditional on the explanatory variables.
- To simplify the notations (and the analysis) we will assume

$$\langle m{X}_1,m{X}_1
angle \ = \ \langle m{X}_2,m{X}_2
angle = 1$$

We also set

$$\langle \mathbf{X}_1, \mathbf{X}_2
angle = r$$

Clearly,
$$|r| \leq 1$$
.

We have:

$$B = X'X = \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix}, \quad X' \mathbf{y} = \begin{pmatrix} \langle X_1, y \rangle \\ \langle X_2, y \rangle \end{pmatrix}$$

$$B^{-1} = rac{1}{1-r^2} \left(egin{array}{cc} 1 & -r \ -r & 1 \end{array}
ight)$$

We wish to compare two estimators for $\boldsymbol{\beta} = (\beta_1, \beta_2)'$:

The joint LS estimator

$$\widehat{oldsymbol{eta}}=\left(X'X
ight)^{-1}X'$$
 y $=B^{-1}X'$ y,

Interseparate LS estimator

$$\widehat{\boldsymbol{\alpha}} = \left(\begin{array}{c} \langle \mathbf{X}_1, \mathbf{y} \rangle / \langle \mathbf{X}_1, \mathbf{X}_1 \rangle \\ \langle \mathbf{X}_2, \mathbf{y} \rangle / \langle \mathbf{X}_2, \mathbf{X}_2 \rangle \end{array}\right) = \left(\begin{array}{c} \langle \mathbf{X}_1, \mathbf{y} \rangle \\ \langle \mathbf{X}_2, \mathbf{y} \rangle \end{array}\right) = X' \mathbf{y}$$

For the joint LS estimator we have:

 (\land)

$$E\left(\widehat{\beta}|X\right) = B^{-1}X'X\beta = \beta$$

$$Cov\left(\widehat{\beta}|X\right) = B^{-1}X'XB^{-1} = B^{-1} = \frac{1}{1-r^2} \begin{pmatrix} 1 & -r \\ -r & 1 \end{pmatrix}$$

For the joint LS estimator we have:

$$E\left(\widehat{\boldsymbol{\alpha}}|X\right) = X'X \boldsymbol{\beta} = B \boldsymbol{\beta} = \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} \beta_1 + r\beta_2 \\ \beta_2 + r\beta_1 \end{pmatrix}$$

and

$$Cov(\widehat{\boldsymbol{\alpha}}|X) = X'X = B = \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix}$$

Example 1: Compare $\hat{\beta}_1$ and $\hat{\alpha}_1 u \sin g$ quadratic loss. Assume that r = 0.5. We have

$$\widehat{\beta}_1 \sim N\left(\beta_1, \frac{1}{1-r^2}\right)$$

$$\mu \rightarrow \beta_1 \quad \sigma^2 \rightarrow \frac{1}{1-r^2}$$

We also have:

$$\widehat{\alpha}_1 \sim N(\beta_1 + r\beta_2, 1)$$

 $\gamma \rightarrow \beta_1 + r\beta_2 \quad \tau^2 \rightarrow 1$

Therefore

$$\Delta = \frac{\gamma - \mu}{\sigma} = \beta_2 r \sqrt{1 - r^2} \quad \text{and} \quad \xi = \frac{\tau}{\sigma} = \sqrt{1 - r^2}$$

Comparison of Linear Regression Estimates

To fix ideas suppose that we wish to use the Quadratic Loss and that

r = 0.5

Then

$$\xi = \sqrt{1 - r^2} = \sqrt{0.75}$$

The biased estimator $\widehat{\alpha}_1$ is preferred if and only if

$$egin{array}{rcl} |\Delta| &< \sqrt{1-{f \xi}^2} \ \left| rac{eta_2}{2\sqrt{0.75}}
ight| &< \sqrt{1-0.75} = rac{1}{2} \end{array}$$

That is

$$|\beta_2| < \sqrt{0.75} = 0.86603$$

Comparison of Linear Regression Estimates

Comparre $x_1\widehat{\beta}_1 + x_2\widehat{\beta}_2$ and $x_1\widehat{\alpha}_1 + x_2\widehat{\alpha}_2$. (a) Assume that r = 0.5 and take $x_1 = x_2 = 1$. (b) Assume that $\beta_1 = \beta_2 = 1$ and take $x_1 = x_2 = 1$ (a) We have

$$E\left(x_1\widehat{\beta}_1 + x_2\widehat{\beta}_2\right) = x_1\beta_1 + x_2\beta_2$$

$$Var\left(x_1\widehat{\beta}_1 + x_2\widehat{\beta}_2\right) = x_1^2 Var\left(\widehat{\beta}_1\right) + x_2^2 Var\left(\widehat{\beta}_2\right) + 2Cov\left(x_1\widehat{\beta}_1, x_2\widehat{\beta}_2\right)$$

$$= \left(x_1^2 + x_2^2 + 2x_1x_2r\right) / (1 - r^2)$$

$$\begin{array}{rcl} \mu & \rightarrow & x_1\beta_1 + x_2\beta_2 \\ \sigma^2 & \rightarrow & \left(x_1^2 + x_2^2 + 2x_1x_2r\right) / \left(1 - r^2\right) \end{array}$$

On the other hand:

$$E(x_1\hat{\alpha}_1 + x_2\hat{\alpha}_2) = x_1\beta_1 + x_2\beta_2 + r(x_1\beta_2 + x_2\beta_1)$$

$$\begin{aligned} \mathsf{Var}\left(x_{1}\widehat{\alpha}_{1}+x_{2}\widehat{\alpha}_{2}\right) &= x_{1}^{2}\mathsf{Var}\left(\widehat{\alpha}_{1}\right)+x_{2}^{2}\mathsf{Var}\left(\widehat{\alpha}_{2}\right)+2\mathsf{Cov}\left(x_{1}\widehat{\alpha}_{1},x_{2}\widehat{\alpha}_{2}\right)\\ &= x_{1}^{2}+x_{2}^{2}+2x_{1}x_{2}r\end{aligned}$$

$$\begin{array}{rcl} \gamma & \rightarrow & x_1\beta_1 + x_2\beta_2 + r\left(x_1\beta_2 + x_2\beta_1\right) \\ \tau^2 & \rightarrow & x_1^2 + x_2^2 + 2x_1x_2r \end{array}$$

Therefore

$$\Delta = \frac{\gamma - \mu}{\sigma} = r \left(x_1 \beta_2 + x_2 \beta_1 \right) \quad \text{and} \quad \xi = \frac{\tau}{\sigma} = \sqrt{1 - r^2}$$

Comparison of Linear Regression Estimates

Since

$$r = 0.5$$

 $x_1 = x_2 = 1$

Hence

$$\begin{array}{rcl} \mu & = & \beta_1 + \beta_2 \\ \gamma & = & \beta_1 + \beta_2 + \frac{\beta_1 + \beta_2}{2} = \frac{3}{2} \left(\beta_1 + \beta_2 \right) \end{array}$$

Then

$$\delta = \frac{\beta_1 + \beta_2}{2}$$

Ruben Zamar Department of Statistics

Module 2: Ridge Regression

Comparison of Linear Regression Estimates

Moreover

$$\sigma^{2} = \frac{x_{1}^{2} + x_{2}^{2} + 2x_{1}x_{2}r}{1 - r^{2}} = \frac{3}{3/4} = 4$$

$$\tau^{2} = x_{1}^{2} + x_{2}^{2} + 2x_{1}x_{2}r = 3$$

and

$$\Delta = rac{|eta_1 + eta_2|}{4} = \quad ext{and} \ ar{\xi} = \sqrt{rac{3}{4}}$$

Therefore, the biased estimator is preferred if and only if

$$\left|\frac{\beta_1+\beta_2}{4}\right| < \sqrt{1-\frac{3}{4}} = \frac{1}{2}$$

That is

$$|\beta_1 + \beta_2| < 2$$