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Cluster Analysis
A brief definition

Sorting objects in such a way that items in

the same group are more similar to each

other than to those in other groups.



Approaches to Cluster Analysis

I Partitioning algorithms

I Hierarchical algorithms

I Model based algorithms

I Mean shift algorithms



Partitioning Algorithms

Data: {x1, x2, ..., xn} , xi ∈ Rp

Means: µ1, µ2, ..., µK

Distances:

di = d (xi ,µ1, µ2, ..., µK ) = min
1≤k≤K

D (xi ,µk)



Partitioning Algorithms

Cluster Centers

(µ̂1,, ...,µ̂K ) = arg minT [d (x1,µ1, ..., µk) , ..., d (xn,µ1, ..., µk)]

Clusters

Ck =

{
xi : D (xi , µ̂k) = min

1≤l≤K
D (xi , µ̂l)

}



K-Means

D (a,b) =

 p∑
j=1

(ai − bi )
2

1/2

= ‖a− b‖2 (L2 distance)

T (d1, ..., dn) =
1

n

∑
d2
i



K-Mediods

D (a,b) =

p∑
j=1

|ai − bi | = ‖a− b‖1 (Manhattan Distance)

T (d1, ..., dn) =
1

n

∑
di



K-Tau

D (a,b) =

 p∑
j=1

(ai − bi )
2

1/2

= ‖a− b‖2 (L2 distance)

T (d1, ..., dn) = s2
1

n

∑
ρ

(
di
s

)

s = Med (di )



The Number of Clusters

I Estimating the number G of clusters is one of the most
difficult problems in cluster analysis

I A common approach: try different values of G and choose the
one that maximizes the clusters strength.

I Cluster strength can be measure in several ways:
I Silhouette
I Gap statistics
I Graphical approach (elbow in the interclass sum of squares

plot)



Mean Shift Algorithms

I Strategy: iteratively move the data points toward the cluster
centers.

I The number of different limiting points is an estimate for G .

I Example: in gravitational clustering data points are viewed as
particles of unit mass and zero velocity attracted toward
cluster centers by gravitational forces.

Number of Clusters = Number of Fix Points



Attractors

I Peña, Viladomat and Zamar (2012) present an algorithm –
ATTRACTORS – to move observations toward cluster
centers

I Iteratively, observations move to the location of its
nearest-neighbors median approaching several fix points

m0 = xi (data point)

Al = {k nearest neighbors of ml}

ml+1 = Medianxj∈Al
{xj}

I The sequence of local medians ml move toward the peaks and
away from the valleys of the data density



Attractors Domains

g(x) = F−1
[
F (x − d) +

α

2

]
F (x + d)− F (x − d) = α

x(m+1) = g(xm)
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Fisher’s Iris Datas
Projection on Setal Length and Width

  



Ring - Synthetic Data

 
 



Clusters Around Lower Dimensional Hyperplanes

I Traditional cluster centers are points

I Points are zero-dimensional hyperplanes

I Van Aelst, Wang, Zamar and Zhu (2006) propose an
algorithm to find clusters around low dimensional hyperplanes
(points, lines, planes, etc)

I The proposed algorithm is called Linear Grouping Algorithm
(LGA)

I Garcia-Escudero, Gordaliza, San Martin, Van Aelst and Zamar
(2009) develop a robust version



Application to Allometry

I Biologists investigate the relationships between sizes of organs
for different species.

I Generally, when the size of one organ is large the size of other
organs is also large

I For example, a larger body also requires a larger brain. These
relations are driven by the evolution process.



Brain Weight and Olfactory Bulb Volume

Data for 83 mammal species (log scale) kindly provided by Dr.
Jerison (UCLA)
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Application to Allometry

I Typically, there exists a linear association between the sizes of
organs

I The linear associations are not the same across different
classes of species because of different living habits,
environment, food sources, etc.

I Different mammal species developed their smell senses
according to their living environment, food searching, danger
identifying needs, etc.

I Hence, clustering according to different linear patterns is
necessary (a job for LGA).



Application to Allometry

I Automatic methods to decide the number of clusters yield 2
groups as the optimal number.

I Hence, without using external biological knowledge we would
choose k = 2 groups



Two Linear Clusters
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Two Linear Clusters

Group 1 Group 2

insectivores monkeys
carnivores apes
horses human
prosimians



Dr. Jerison Proposes Three Clusters

Group 1 Group 2 Group 3

insectivores prosimians monkeys
carnivores apes

horses human



Three Linear Clusters
LGA with k = 3 finds Dr. Jerison’s linear clusters
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Digitized Image Processing

Potential fields of application for robust cluster analysis

I Computer vision

I Anomaly detection

I Inspection of industrial items

I Search for tumors in microscopic images

I Search for vessel in satellite images





I Micrometastasis of tumor cells in circulating blood

I An algorithms tuned to find the rare events can process an
entire slide quickly and reliably without fatigue



Analysis of a high Resolution Satellite Image



The Satellite Image Data

I A satellite image provided by INFOSAT, covering 500m2 of
the ocean.

I The image has two components: clouds and water.

I The high resolution image (1 pixel = 0.02m2) is divided into
3844 square cells, each packing 16× 16 pixels.

I Each pixel conveys a gray-level intensity scaled between zero
and one.

I our dataset consists of 3844 points in a 256-dimensional
square.

I Goal: segment the image into two clusters: the cloud cluster
and the water cluster using K-Tau



Outliers in the Satellite Image Data

I A patch of higher altitude clouds bearing large gray-level
intensity levels

I The outliers brings up the level of the K-means clouds-cluster
center.



Water-Claud Segmentation



Cluster Outliers in the Satellite Image

I The small yacht reflects the signal different from the water
and the clouds in the image.

I the cells containing the boat should appear as cluster outliers.

I We identify the largest outlier, that is, the cell lying furthest
away from its cluster center



Finding the Tunante II in the Satellite Image



Analysis of Color Pictures
Argentina’s No-Signal TV Image

40 × 50 = 2000 pixels



Pixel Color

RGB-Color Coding

Each pixel corresponds to a 3-d vector:

( R, G , B ), 0 ≤ R,G ,B ≤ 1.

The vector ( R, G , B ) gives the intensity of red, green and blue
for the pixel.



For example:

(R,G ,B) = (1, 0, 0) = Red

(R,G ,B) = (0, 1, 0) = Green

(R,G ,B) = (0, 0, 1) = Blue

(R,G ,B) = (1, 1, 1) = White

(R,G ,B) = (0, 0, 0) = Black

(R,G ,B) = (.5, .6, 0) = Yellow



TELEFE Picture Again (left side only)



Mars Rover Curiosity
Part of a high resolution NASA’s picture

495 × 664 = 328,680 pixels



Mars Rover Curiosity
RGB - Representation



Color picture 2-d representation

I =
R + G + B

3
Intensity

S = 1− 3×min {R,G ,B}
R + G + B

Saturation



Mars Rover Curiosity
SI - Representation
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Cluster Analysis

I Image is divided into n = 3234 cells with 10× 10 pixels

I Each pixel has two values (I , S)

I Each observation represents a 200-d vector

(I1, ..., I100,S1, ...,S100)

I The picture has three components (clusters):

I shinning metal (SHM)
I opaque metal (OPM)
I sand (SND)



Picture Segmentation
From robust and non-robust clustering



Ouliers

I 15 % of the OPM–cluster cells are very opaque
(right lower corner in the picture)

I These cells have unusually low I–levels and high S–levels.

I These outliers upset the K-Means OPM–cluster center.



Cluster Centers
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Effect of Ouliers
I The shaded sand region is assigned to the OPM–cluster by

K-means.
I Recomputing the K-means clusters after removing these

outliers validates this reasoning.
I Now the K-means results are consistent with those of the

robust clustering procedures.



Automatic detection of missing objects

I The robust clustering sorted the cells as follows:
I n1 = 2500 SND-cluster cells
I n2 = 405 OPM-cluster cells
I n3 = 329 SHM-cluster cells

I The screw is made of a material – opaque metal – that makes
up 13% of the image



“Geographic” Step

I Restrict attention to the n2 × 2 Geographic Data Matrix with
the position (latitude and longitude) of the OPM–cluster cells

I Perform a second robust cluster analysis on these Geographic
data

I Isolated outliers in this second robust clustering are likely to
locate the missing piece.



The geographic data


