
Ensemble of Regularized Linear Models

Ruben Zamar

Department of Statistics, University of British Columbia

July 3, 2018



Joint work with

Laks Lakshmanan Ezequiel Smucler

Anthony Christidis



THE CURSE OF DIMENSIONALITY

HAS BEEN WIDELY ACKNOWLEGED

BUT THE BLESSING OF DIMENSIONALITY

IS SELDOM APPRECIATED



Linear Regression

yi = x′iβ0 + εi , i = 1, . . . , n

I yi response.

I xi ∈ Rp vector with p predictors.

I εi random errors.

I β0 ∈ Rp vector with p regression coefficients.



Notation

Data = (X, y)

X
n×p

=

 x11 x12 · · · x1p
...

...
...

xn1 xn2 · · · xnp

 y
n×1

=


y1
y2
...
yn



X
n×p

=
(

x1 x2 · · · xp−1 xp
)

=


x1
x2
...

xn





Centering and scaling

1

n

n∑
i=1

yi =
1

n

n∑
i=1

xij = 0 j = 1, ..., p

1

n

n∑
i=1

y2i =
1

n

n∑
i=1

x2ij = 1 j = 1, ..., p



Least Squares (Gauss 1795)

The classical estimate is

β̂LS = arg min
β∈Rp

n∑
i=1

(
yi − x′iβ

)2
= arg min

β∈Rp
‖y − Xβ‖2.

I Optimal when the errors are i.i.d. normal.

I Easy to compute.



High Dimension

Data-sets with p > n are nowadays standard.

Many examples in fields like chemometrics, genomics and others.

Examples:

1. Reponse is the content of a chemical compound in an item,
predictors are frequencies measured on a spectrum.

2. Response is the log survival time of patients suffering from a
serious illness. Predictors are expression levels of several
thousand genes.



Bias-variance trade-off

I Unless n is very large (n/p > 20, say) trading-off some bias
for a decrease in variance may be reasonable.

I Larger models have less bias but more variance.

Sparsity: many of the candidate variables included in the
model are not very useful.

I A possible approach: fit the LS estimate to a reduced subset
of predictors, but which one?



Best Subset Selection (Beale et al. 1967)

Fit LS to all possible subsets of predictors of size at most s, choose
the fit with lowest estimated prediction error.

Requires fitting many LS estimates. Not feasible unless s is small.

Moreover, the procedure is unstable (see Breiman (1995)).



Lasso (Tibshirani 1996)

β̂Lasso = arg min
β∈Rp

n∑
i=1

(
yi − x′iβ

)2
+ λ

p∑
j=1

|βj |.

= arg min
β∈Rp

‖y − Xβ‖2 + λ‖β‖1.

I Regularizes the LS estimate, well defined even if p > n.

I The penalty term shrinks the coefficients towards zero.

I λ regulates the shrinkage; usually chosen using
cross-validation. Bias - Variance trade-off.



Can we do better?

I Both LS and the Lasso estimate a single model.

I Optimally regularized models may not be able to take full
advantage of the richness in the data.

I In cases with a very high number of correlated predictors,
prediction accuracy may be improved by fitting several models
to the data and aggregating them.



A toy model

y = 0x1 + x2 + x3 + ε

1. (ε, x1, x2, x3) are jointly normal

2. Cov (ε, xj) = 0, j = 1, 2, 3

3. Cov (x1, x2) = Cov (x1, x3) = 0

4. Cov (x2, x3) = 0.90

5. Var(ε) = Var(x1) = Var(x2) = Var(x3) = 1



A toy numerical experiment

Generate 5000 independent observations from the model (test
sample)

Repeat the following 500 times:

I Generate a sample of 10 independent observations from the
model (training sample)

I Predict the test sample using each of the following procedures

1. Ordinary least squares (OLS)

2. Elastic net with cross-validated tuning parameter (ENET)

3. Ensemble of
I OLS using x1 and x2
I OLS using x3



Performance evaluation

ŷ
{OLS}
ki = prediction for yi (i = 1, ..., 5000) using OLS

and the kth training sample.

PMSEOLS
k =

1

5000

5000∑
i=1

(
ŷ
{OLS}
ki − yi

)2

PMSEOLS =
1

500

500∑
k=1

PMSEOLS
k

Similarly, we compute PMSEENET and PMSEENS.



Results

PREDICTION METHOD PMSE

OLS 1.74
ELASTIC NET 2.09

ENSEMBLE 1.33



Intuitive explanation of results

I In each ensembled model, a reduction in variance due to:

1. lower dimensionality
2. less multicollinearity

I An additional reduction of variance in the ensemble of the
models due to the averaging of nearly uncorrelated predictions

I A big relative increase of bias in the ensemble model,

I Decisive dominance of variance over bias.

LS ESEMBLE

Average Variance 0.74 0.32
Average Bias 0.0026 0.0094



Cheating?

I We have cheated in the “toy example”. Why?

I Because we have used our knowledge of the true model to
form the ensemble.



Search for an “optimal” ensemble

Suppose the number of ensembled models, G , is equal to two.

Even in this simple case we must evaluate a large number of
possible splits/models:

Model 1

xi1 , xi2 , ..., xip1

β1i1 , β
1
i2
, ..., β1ip1

Model 2

xj1 , xj2 , ..., xjp2

β2j1 , β
2
j2
, ..., β2jp2

Left-Out Variables

xk1 , xk2 , ..., xkp3

0, 0, ... , 0



Search for an “optimal” ensemble

G = 2 and p1 + p2 + p3 = p (no overlap)

# possible ensemblings = 3p

G ≥ 2 and p1 + p2 + · · ·+ pG+1 = p (no overlap)

# possible ensemblings = (G + 1)p

G ≥ 2 and p1 + p2 + · · ·+ pG+1 > p (allowing overlap)

# possible ensemblings = (Gp + 1)p



Notation

Y
n×G

=
(

y y · · · y
)

=


y1 y1 · · · y1
y2 y2 · · · y2
...

...
...

yn yn · · · yn



β
p×G

=

 β11 β21 · · · βG1
...

...
...

β1p β2p · · · βGp

 =
(
β1 β2 · · · βG

)



A non-convex relaxation

Minimize
O(y,X,β) =

G∑
g=1

(
1

2n
‖y − Xβg‖2 + pλS (βg ) + qλD ,g (β1, . . . ,βG )

)
,

where

I G number of models, allowing overlap.

I βg ∈ Rp coefficients for model g

I pλS penalty function (sparsity)

I qλD ,g penalty function (diversity)



A non-convex relaxation

For example,

pλS (βg ) = ‖βg‖1, (LASSO penalty)

and

qλD ,g (β1, . . . ,βG ) =
λD
2

∑
h 6=g

p∑
j=1

|βhj β
g
j |.



Looking at the terms for each single model

Og (y,X,β) =

=
‖y − Xβg‖2

2n
+ λS‖βg‖1 +

λD
2

∑
h 6=g

p∑
j=1

|βhj β
g
j |

=
‖y − Xβg‖2

2n
+

p∑
j=1

|βgj |(λS +
λD
2

∑
h 6=g

|βhj |)

=
‖y − Xβg‖2

2n
+

p∑
j=1

|βgj |wj ,g

with

wj ,g = (λS +
λD
2

∑
h 6=g

|βhj |)



Coordinate descent

At each step in the coordinate descent algorithm:

I We solve an Elastic Net type problem, where the weight of
the L1-penalty depends on the current solution

I Hence, each step in the coordinate-descent algorithm is a
convex minimization problem

I The coordinates most penalized in model g are those that
have large coefficients in the other models

An R package that implements the procedures presented in this
talk, called ensembleEN is available from
https://github.com/esmucler/ensembleEN.



The diversity penalty λD

I To gain some intuition about our Diversity Penalty, λD , we
consider an extreme situation:

I p = 1, G = 3, and λS = 1

I Surface level plot: Find the values of
(
β1
1 , β

2
1 , β

3
1

)
that satisfy

the equation:

|β11 |+ |β21 |+ |β31 |+ λD
(
|β11β21 |+ |β11β31 |+ |β31β21 |

)
= 1.



Surfaces for different values of λD
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Figure: Plots of the full penalty term for λS = 1 and three different
values of λD .



The objective function using matrix notation

The minimization problem can be posed as an ‘artificial’
multivariate linear regression problem:

O(y,X,β) =

1

2n
‖Y−Xβ‖2F+λS

(
(1− α)

2
‖β‖2F + α‖β‖1

)
+
λD
2

(
‖|β|′|β|‖1 − ‖β‖2F

)
,

where

I ‖ · ‖F is the Frobenius norm,

I |β| is the absolute value coordinate-wise and

I ‖ · ‖1 is the sum of the absolute values of the matrix entries.

I The diversity penalty penalizes correlation between the
different models



Aggregating the final predictions

I Let β̂ =
(
β̂
1
, β̂

2
, ..., β̂

G
)

be the ensemble problem solution.

I Let ŷg = x′β̂
g

(g = 1, ...,G ) be the g th model prediction.

We can aggregate the predictions (ŷ1, ..., ŷG ) in several ways:

I Plain average prediction (used in this work)

I Weighted average prediction (weights proportional to each
model precision)

I Stacking (Breiman 1996)



Plain Average

ŷ =
1

G

∑
ŷg

=
1

G

∑
x′β̂

g

= x′
(

1

G

∑
β̂
g
)

= x′β̂
∗

β̂
∗

=
1

G

∑
β̂
g



Weighted Average

ŷ =

∑
wg ŷ

g∑
wj

=

∑
wgx′β̂

g∑
wj

= x′

(∑
wg β̂

g∑
wj

)
= x′β̂

#

β̂
#

=

∑
wj β̂

g∑
wj



Stacking

I β̂
g
(i) (g = 1, ...,G ) coefficients computed leaving out i th case

I ŷgi = x′i β̂
g
(i)

ŷ11 ŷ21 · · · ŷG1 y1
ŷ12 ŷ22 · · · ŷG2 y2
...

...
...

...

ŷ1n ŷ2n · · · ŷGn yn



Stacking

J (α) =
∑[

yi −
∑

αg ŷ
g
i

]2

α̂ = arg min
αi≥0,

∑
α2
i =1

J (α)

β̂
s

=
∑

α̂g β̂
g



Application to Chemometric data

I The glass data set (Lamberge et al., 2000) was obtained from
an electron probe X-ray microanalysis of archaeological glass
samples

I The spectrum on 486 frequencies was measured on a total of
180 glass samples

I The goal is to predict the concentrations of several chemical
compounds using the spectrum



Application to Chemometric data

I We randomly split the data into a training set that has 50%
of the observations and a testing set that has the remaining
50%.

I for this example we used G = 10

I This procedure is repeated 500 times and the resulting
prediction MSEs are averaged.

I MSEs are reported relative to the best method.



Application to Chemometric data

Na2O MgO Al2O3 SO3 Cl

Lasso 1.17 1.10 1.22 1.12 1.36
Ens-Lasso 1.00 1.00 1.00 1.00 1.00

Table: Average relative PMSEs over 500 random splits into training and
testing sets



Tuning Parameters

I The values of the penalties, λS and λD can be chosen by
cross-validation.

I We find that increasing the number of models G does not, in
general, leads to overfitting

I We then recommend using the largest computationally
convenient value for G .



Simulation

1. The Lasso, using the package glmnet.

2. The Elastic Net with α = 3/4, using the package glmnet.

3. The sure independence screening (SIS), followed by fitting a
SCAD penalized least squares estimator, computed using the
package SIS-SCAD.

4. The MC+ penalized least squares estimator, using the
package SparseNet.

5. The Relaxed Lasso, using the package Relaxed.

6. The forward stepwise algorithm, using the package, called
Stepwise.

7. The Cluster Representative Lasso, proposed in using code
CRL kindly provided by Buhlmann.

8. Random Forest of, using the package RF.

9. The Random GLM method of using the package RGLM.



Some simulation results

I We generate 500 replications of a linear model with normal
predictors and errors, p = 1000 and n = 50.

β0 = (2, 2, 2, . . . , 0, 0), the blocks of 2’s has length [1000ζ].

I The active variables are correlated only with each other,
everything else is uncorrelated.



Results

ζ = 0.05 ζ = 0.1 ζ = 0.2
SNR PMSE SE PMSE SE PMSE SE

3 Lasso 1.55 0.01 1.46 0.01 1.40 0.01
Ens-Lasso 1.35 0.01 1.24 0.01 1.18 0.01

10 Lasso 2.30 0.02 2.03 0.01 1.90 0.01
Ens-Lasso 1.85 0.01 1.53 0.01 1.35 0.01

Table: Mean PMSEs and standard errors for Scenario 1 with ρ =0.2,
n=100, p=1000.



A consistency result

Theorem
Assume

I εi are i.i.d. zero mean normals.

I log(pn)/n→ 0.

I ‖β0‖1 = o(
√
n/ log(pn)).

Then there exist sequences of penalty parameters λnS and λnD such
that

1

n

∥∥∥∥∥∥
 1

G

G∑
g=1

Xβ̂
g

− Xβ0

∥∥∥∥∥∥
2

2

→ 0 in probability.



Some questions

I Non-convex optimization problem → no guarantees for
convergence. Is there a convex relaxation?

I Can we, in theory, guarantee better predictions than the
Lasso?



Some possible extensions

I GLMs, for example logistic regression: replace quadratic loss
with logistic loss.

I Other sparsity penalties: SCAD, MC+.

I Robustness to outliers: replace squared loss by a bounded loss
function.



Software/further reading

I An R package called ensembleEN implementing the method is
available from CRAN.

I The paper this talk is based on is available on arXiv.



Thank you


