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Abstract

Data sets can be very large, highly multidimensional and of mixed quality. This thesis
provides feasible and robust methods for estimating multivariate location and scatter
matrix for such data. Our estimates scale well to very large sample sizes and dimensions
and are resistant to the presence of multivariate outliers.

Statisticians use contamination or mizture models to study the performance of robust
alternatives to classical statistical procedures. Most multivariate contamination models
for numeric data proposed to date (see Hampel et al., 1986) assume that the majority of
the observations comes from a nominal distribution such as a multivariate normal distri-
bution, while the remainder comes from another multivariate distribution that generates
outliers. We stress that such outliers could be “bad” data due to recording errors of all
kinds, or they could be a highly informative subset of the data that leads to the discov-
ery of unexpected knowledge in areas such as business operations, credit card fraud, and
even the analysis of performance statistics of professional athletes. Unfortunately, the
previously available models do not adequately represent reality for many multivariate
data sets that arise in practice. It may often happen that outliers occur in each of the
variables independently of the other variables or in special dependency patterns.

We introduce a new contamination model that overcomes the main drawbacks of the
current models by taking into account different sources of variability in the data, and
allowing greater flexibility. Moreover, our model permits for situations where extreme
values of one or more variables (not necessarily outliers) may increase the likelihood of
outliers or gross errors in other variables.

There is a large statistical literature on robust covariance and correlation matrix
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estimates, with an emphasis on affine equivariant estimates that possess high breakdown
points and small worst case biases. All such estimates have unacceptable exponential
complexity 2P in the number of variables p. And one of the more attractive of these
estimates, the Stahel-Donoho estimate, has an unacceptable quadratic complexity n? in
the number of observations n. These estimates may be applied in large data applications
with large p and n only by the use of adhoc sampling methods that render the robustness
properties of the estimates unclear.

In this thesis we focus on pairwise robust scatter matrix estimates and coordinate-wise
location estimates. The pairwise scatter estimates are based on coordinate-wise robust
transformations (the quadrant correlation estimate, and the coordinate-wise Huberized
estimates). We show that such estimates are computationally simple, and have attractive

robustness properties under the existing and the newly proposed contamination models.
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Chapter 1

Introduction

It is desirable to develop methods for extracting reliable and useful information from large
high-dimensional data sets of mixed quality. Our thesis is that the existing contamination
models used to represent high-dimensional data of mixed quality are not completely
satisfactory. Therefore we propose a new contamination model and robust estimation
procedures which are feasible/scalable to higher dimensions and appear to work relatively
well regardless of the size, dimension and quality of the data set.

The focus of our work is on the robust estimation of multivariate location and scat-
ter matrices (i.e. covariance and correlation matrices). These quantities are of great
importance as they form the underpinnings of linear estimation theory.

We begin by discussing the role of robust estimations in statistics, and by providing
some motivation for our work. Then, we provide a problem statement, a list of thesis

contributions, and an outline of this thesis.

1.1 Robust Estimates

Statistics are extracted from data sets to infer properties of their underlying source dis-
tribution. Usually, these statistics are estimates of the parameters of the distribution.
In the derivation of an estimate, modeling assumptions are made about the source dis-
tribution, e.g., i.i.d. (independent and identically distributed) data points or restriction
to a particular parametric family of distributions. Those estimates which offer better

performance usually make strict assumptions on the data; however, when these assump-



tions are invalid, the quality of the estimates can be quite poor. One aspect of robust
statistics is to address the scenario where most, but not all, of the data points are drawn
i.i.d. from a particular distribution. We wish to characterize this distribution. For ex-
ample, consider the sample mean and median as estimates of the mean of a Gaussian
distribution. The sample mean is the minimum variance estimate in this case, but it
is not robust as it can be made arbitrarily bad by corrupting a single data point. The
median, on the other hand, is very robust as at least 50% of the data points have to
be corrupted to make the estimate arbitrarily bad; however, this robustness comes at
the price of a significantly higher variance on the estimate. This example illustrates a
fundamental trade-off, resistance versus efficiency. This leads to the primary objective
in robust statistics the search for estimates which are not only resistant to model de-
viations but also perform well under the correct model. It should be emphasized that
one should not infer that the ultimate goal of robust statistics is to ignore outlying data
points. Such a naive use of robust statistics could waste possible information contained
in the outliers themselves. Robust estimates should merely reflect the bulk of the data
points. Nonetheless, possessing a robust estimate often makes it easier to detect outliers
which tend to be hidden in non-robust statistics. These outliers can then be separately
analyzed for their own structure and information.

In the following section, we illustrate the dramatic effects that outliers can have on

non-robust estimates.

1.1.1 Applications and Uses of Robust Estimates

Covariance and correlation matrices estimated from data sets are used for a variety
of purposes. For example, pairwise sample correlation coefficients are often examined
in an exploratory data analysis (EDA) stage to determine which variables are highly
correlated with one another. Estimated covariance matrices are used as the basis for

computing principal components for both general principal components analysis (PCA),
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Figure 1.1: Woodmod 5-D Data with Outliers.

and for manual or automatic dimensionality reduction and variable selection. Estimated
covariance matrices are also the basis for detecting multidimensional outliers through
computation of the so-called Mahalanobis distances of the cases (rows) of a data set.

Unfortunately, the classical sample covariance and correlation matrix estimates, mo-
tivated by either Gaussian maximum likelihood or simple method of moments principles,
are very sensitive to the presence of multidimensional outliers. Even a small fraction
of outliers can distort these classical estimates to the extent that the estimates are very
misleading, and virtually useless in any of the above applications. To cope with the prob-
lem of outliers, statisticians have invented robust methods that are not much influenced
by outliers for a wide range of problems, including estimation of covariance and correla-
tion matrices. We illustrate the extent to which outliers can distort classical correlation
matrix estimates and the value of having a robust correlation matrix estimate with the
small five-dimensional data set example illustrated in Figures 1.1 — 1.2

Figure 1.1 shows all pairwise scatter plots of the 5-dimensional data set called “Wood-

mod”. This data set clearly has at least several multidimensional outliers that show up as
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a cluster in several of the scatterplots. Note that while these outliers are clearly outliers
in two-dimensional space, they are not univariate outliers, i.e., they do not show up as
well-detached outliers in any of the variables. Figure 1.2(a) shows the result of computing
all pairwise classical correlations by both the classical method (sample correlation coeffi-
cients) and a particular robust method known as the Fast MCD (FMCD). The lower left
triangle of values shows both the classical and robust correlation coefficient estimates,
while the upper right triangle of ellipses visually represent the contours of a bivariate
Gaussian density with zero means, unity variances, and correlation coefficients given by
the classical and robust correlation coefficient estimates. A nearly circular ellipse indi-
cates an estimated correlation coefficient of nearly zero. A narrow ellipse with its major
axis oriented along the +45 degree (-45 degree) direction indicates a large positive (neg-
ative) estimated correlation coefficient. From the visual representation, we immediately
see differences between the classical and robust correlations, sometimes very substantial

differences, including changes of sign. For example, the classical correlation between V4



and V5 is -.24 whereas the robust correlation is +.65. The latter is quite consistent
with what we might expect if we deleted the small cluster of outliers occurring in the
scatterplot of V4 versus V5 in Figure 1.1.

A common way of detecting multidimensional outliers is to use the classical Maha-

lanobis distance:
d(x;) = (x; — o) C " (xi — fu). (1.1)

In the above expression x; is the i-th data vector of dimension p (the transpose of the i-th
row of the data set), fu is the vector of sample means of the variables (columns) of the
data set, and C is the usual sample covariance matrix estimate. Under the assumption
that the data is multivariate normal and that we use known values g and C in place
of the above estimates, the d(x;) would have chi-squared distribution with p degrees
of freedom. With reasonably large sample sizes, the sample mean vector and sample
covariance matrix will be close to their true values, and it is common practice to use the
square-root of chi-squared (with p degrees of freedom) percent point such as .95 or .99
as a threshold to compare the square-root of d(x;) with, and declare x; to be an outlier
if it exceeds this threshold. If we follow this classical approach for the Woodmod data
of Figure 1.1, we get the results in the right-hand panel of Figure 1.2(b). The horizontal
dashed line is the square-root of the 95% point of a chi-squared distribution with 5 degrees
of freedom. Clearly, no points are declared outliers by the classical Mahalanobis distance
approach. This is because the outliers have distorted the classical C so much that it does
not produce reliable Mahalanobis distances. On the other hand, the left-hand panel of
Figure 1.2(b), based on a robust C (and a robust f) result in detection of not only the
cluster of four very large outliers evident on the scatterplots of Figure 1.1, but also three
additional moderate-sized outliers.

The above example serves to vividly illustrate the inadequacy of classical correla-
tion and covariance matrices in the presence of outliers and the valuable role of robust

alternatives.



1.1.2 Robust Proposals of Scatter Estimates

Statistical literature contains a substantial number of papers proposing and studying the
properties of robust scatter matrix estimation. An important early approach was that
of M-estimates, first suggested by Hampel (1973), and studied by Maronna (1976) and
Huber (1977, 1981). These estimates are positive definite, affine equivariant and relatively
easy to compute, but have as a substantial limitation the fact that their breakdown point
(BP) — i.e., the maximum proportion of outliers that the estimate can safely tolerate —
is at most 1/p where p is the dimension of the data. This is not satisfactory, because
it means that the breakdown point becomes smaller with increasing dimension, where
there are more opportunities for outliers to occur.

Subsequently, there has been considerable emphasis on obtaining positive definite,
affine equivariant estimates with a high breakdown point, namely a breakdown point of
one-half. The best known is probably the minimum volume ellipsoid (MVE) estimate
introduced by Rousseeuw (1984) and discussed by Rousseeuw and Leroy (1987) and
Rousseeuw and Van Zomeren (1990). It consists of taking as location estimate the center
of the smallest regular ellipsoid containing half the points of the data set. The scatter
estimate is then defined by the shape matrix of that ellipsoid. However, Davies (1992)
showed that the MVE estimate is not \/n consistent, making it less attractive for effi-
ciency reasons. The MVE estimate has also been generalized to multivariate S-estimates
(Davies, 1987; Lopuhad, 1989; Lopuhaé and Rousseeuw, 1991). Rousseeuw (1985) intro-
duced the minimum covariance determinant (MCD) estimate which has the normal rate
of convergence. The MCD location and scatter estimates are the average and covariance
matrix computed on that half of the data which attain the smallest determinant of their
covariance matrix. Croux and Haesbroeck (1999) showed that MCD is more efficient
than MVE in high-dimensions, and therefore recommend the use of the MCD.

Another important class of affine equivariant high breakdown point estimates are

those based on projections: the Stahel-Donoho (SD) estimate proposed by Stahel (1981)



and Donoho (1982) and studied by Maronna and Yohai (1995); P-estimates (Maronna,
Stahel and Yohai, 1992); and a recent proposal by Pefia and Prieto (2001).

1.2 Problem, Motivation and Approach

Exact computation of robust estimates is feasible only for small data sets. An alternate
remedy for large data sets is the approximate computation which is usually based on
subsampling. The algorithm of subsampling is composed of taking a number N; of
subsamples, generally of size p + 1, to obtain an initial set of solutions, which are the
starting point for the search for a (hopefully global) extremum. Ruppert (1992) developed
a heuristic procedure for S-estimates. Even though the subsampling algorithms tend
to lessen the computational burden for robust estimation, the numerical complexity of
subsampling algorithms becomes critical for high-dimensional data sets. In order to
ensure a given breakdown point, the value of N, must increase exponentially with p. A
high enough value of N, is also necessary to ensure stability of the result. In general,
the subsampling methods are feasible for moderate p, but computing them for large p in
a reasonable time requires using values of N; which imply giving up a high breakdown
point. Woodruff and Rocke (1993, 1994) proposed procedures to deal with this problem.
Rousseeuw and Van Driesen (1999) proposed the Fast MCD (FMCD), a procedure much
more effective than naive subsampling for minimizing the objective function of the MCD,
which seems capable of yielding “good” solutions without requiring huge values of Nj.
But FMCD still requires substantial running time for large p. Recently Pena and Prieto
(2001) proposed a fast algorithm based on the Kurtosis of projections, which does not
require subsampling. However, the main drawback remains the lack of feasible methods
to compute the estimates for large high-dimensional data sets.

Much faster estimates with high breakdown points can be computed if one is willing
to drop the requirements of positive definiteness and affine equivariance. Early proposals

of robust procedures are of this type, see Bickel (1964) and Sen and Puri (1971). A



straightforward approach for multivariate location is to simply calculate a robust location
estimate for each individual variable. In the case of multivariate scatter, one can similarly
apply a robust covariance or correlation coefficient estimate to each pair of variables.
Estimates of this type are called coordinate-wise and pairwise.

There are many proposals for robust univariate location estimates (see for example
Hampel et al., 1986). Many researchers obtain several multivariate versions of typi-
cally univariate notions such as medians, L-estimates and R-estimates. The multivariate
medians are known as the spatial median (also called mediancenter or L;-median), the
Tukey or halfspace median, the Oja median and the Liu or simplicial median; proposed
respectively by Haldane (1948), Tukey (1975), Oja (1983) and Liu (1990).

There are also several proposals for the robust estimation of covariance or correlation
of a pair of variables. The simplest methods are based on: (i) classical ranks, such
as the Spearman’s p and Kendall’s 7 (see Abdullah, 1990); (ii) classical correlations
applied after coordinate-wise outlier-insensitive transformations, such as the quadrant
correlation (QC) and 1-D “Huberized” data (Huber, 1981, page 204); and (iii) bivariate
outlier resistant methods such as the method proposed by Gnanadesikan and Kettenring
(1972) and studied by Devlin, Gnanadesikan and Kettenring (1981).

Unfortunately, the resulting multivariate location and scatter matrix estimates are
not affine equivariant and the scatter matrix is not guaranteed to be positive definite.
Rousseeuw and Molenberghs (1993) proposed several methods to deal with the problem
of negative eigenvalues. Note that, although the scatter matrices obtained by approaches
(i) and (ii) are positive definite, they require a correction to make them consistent for
normal data, and the correction destroys their positive definiteness.

In recognition of this opportunity, Maronna and Zamar (2002) recently proposed a
new method based on a modification of approach (iii) that preserves positive definite-
ness and has an “almost affine equivariant” property. However, the particular pairwise

estimate they used is not nearly as fast as one might like.



In this thesis, we follow in a similar spirt of Maronna and Zamar (2002). We consider
the use of the quadrant correlation and Huberized estimates of approach (ii) above,
which are very transparent in the way they work, and enable fast scalable computation
for large data applications, with complexity O(n)-O(p?) for the resulting p x p covariance

or correlation matrix.

1.3 Contributions and Outline of the Thesis

Most multivariate contamination models for numeric data proposed to date (see for
example, Hampel et al. 1986) assume that the majority of the observations comes from
a nominal distribution such as a multivariate normal distribution, while the remainder
comes from another multivariate distribution that generates outliers. The inadequacy of
the exiting contamination models for large multivariate data sets has been pointed out
by many researchers including Rey (2001) and Zamar and Alqallaf (2001).

The contributions of this thesis are as follows:

e We introduce a flexible multivariate contamination model which allows for different
types of contamination in the data. We show several real data examples from the
literature suggesting the need for a more general and flexible model. We argue that
the proposed model is more appropriate than the existing ones because it is more
flexible and better describes different types of possible correlation structures that
can occur in practice. We incorporate this feature in our model by allowing its

different components to be correlated.

Affine equivariant multivariate location and scatter estimates do not scale well for
large sample sizes and highly dimensional data sets. In addition, the new contamina-
tion model reveals the possible lack of robustness of these estimates, and suggests that
the coordinate-wise and pairwise approaches may be useful to overcome some of the

robustness problems.



e We study pairwise robust estimates of scatter matrices based on coordinate-wise
robust transformations (the quadrant correlation and the coordinate-wise Huber-
ized estimates). We assess the performance of the proposed pairwise estimates and
compare them with the Fast MCD using Monte Carlo simulations and the new

contamination model.

e We study the asymptotic properties (consistency and asymptotic normality) of the
Huberized correlation coefficient estimates and obtain the mathematical expression
for the asymptotic variance of these estimates. Using this expression, we construct
an estimate for the variance of the estimated Huberized correlation coefficient.
We also verify, using extensive Monte Carlo simulations, that estimated variances

approximate well the finite sample variances of the correlation coefficient estimates.

e We distinguish between two kinds of bias in the quadrant and the Huberized cor-
relation coefficient estimates due to the fraction of contamination and because of
the structure of the estimates. We then show how to correct for the bias caused by
the structure of the estimates. This correction has the drawback that the corrected

correlation matrix may no longer be positive definite.

e We show that an improved scalability of the positive definite scatter matrix es-
timate, proposed by Maronna and Zamar (2002), can be obtained by using the
quadrant correlation coefficient estimates instead of the bivariate outlier resistant

method (proposed by Gnanadesikan and Kettenring, 1972).

e We extend Huber’s (1981) asymptotic maximum bias (maxbias) derivations of
the Huberized correlation coefficient estimates to more general cases, where lo-
cations and scales are unknown. In particular, we analytically derive the maxbias
of the quadrant correlation coefficient and implement numerical computation of the

maxbias of the Huberized correlation coeflicients.
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e We provide the minimaxity properties of the coordinate-wise median in the context

of the new contamination model.

e We give numerical evidence suggesting that affine equivariant estimates break down

for high-dimensional data under the new contamination model.

The rest of the thesis is organized as follows. Chapter 2 provides the background ma-
terial on robust estimation in the univariate setting. We present the robust estimation of
multivariate location and covariance, in which we generalize familiar concepts in the uni-
variate case and discuss the difficulties that occur in the transition to higher dimensions.
We describe three different types of multivariate location and covariance estimates; the
M-estimates, the S-estimates and the MCD-estimate.

In chapter 3, we introduce the new class of multivariate contamination model and
show that it is more appropriate than the existing contamination models. In particular,
we give some real data examples from the literature to illustrate that. We study the
different correlation structures that the contamination indicators of the variables may
have in the contamination model. We also illustrate the dependency situations among
the components of the contamination model.

In chapter 4, we present the pairwise robust estimates of scatter matrices. We report
the results of Monte Carlo studies that assess the performance of the pairwise estimates
and compare with the Fast MCD. We study the asymptotic properties (consistency and
asymptotic normality) of the Huberized correlation coefficient estimates. We present the
asymptotic maximum bias of the Huberized correlation coefficient estimates. Finally,
we illustrate the implementation of the quadrant and Huberized correlation coefficient
estimates on three real data sets. We show that the proposed methods are capable
of computing robust location and covariance estimates and detecting multidimensional
outliers on arbitrarily large data sets.

Chapter 5 discusses the coordinate-wise robust multivariate location estimates. We

11



study the coordinate-wise median estimate, in which we show its minimaxity properties
under the new contamination model.

Chapter 6 contains a brief list of the results obtained in this thesis, the challenges
that remain to be solved and the directions we foresee for future work.

To facilitate the reading of the thesis, some of the proofs for the results presented will

be relegated to the chapter appendix.
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Chapter 2

Background and Related Work

In this chapter, we review robust estimation techniques specifically tailored to estimating
multivariate location and scatter. Particular attention will be paid to three methods: M-
estimates, S-estimates and the minimum covariance determinant (MCD) estimate. The
intuition behind these estimates is to find the location and covariance estimate by trying
to simultaneously identify and down-weight outliers in the estimates; although, they do
so in different ways. These methods and their attributes will be discussed in this chapter.

To briefly introduce these estimates, let (z1, ..., z,) € RP denote a collection of data
points. The majority of them are assumed to be i.i.d. from a distribution whose mean
p and covariance 3 we wish to estimate, but some of the data points are drawn from
another unknown and arbitrary distribution. The estimates of u and 3 will be denoted
as t and C, respectively. The particular estimate to which it corresponds will be made
clear from the context.

An M-estimate (¢, C) of (u,X) is obtained as the solution to the system of equations

%Z vi(di)(zi —t) = 0;

% S va( ) — )~ 8)" = C,

where d? = d(z;, t; C)? = (x; —t)'C~*(x; —t) and v;(-) and vy(-) are weighting functions
that control the influence of points that are distant (with respect to C~') from t. If

v1(-) = v2(+) = 1, then ¢t and C are the sample mean and covariance. By taking v;(-)
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and vy (+) to be decreasing functions, we can reduce the effects of outliers based upon how
different (in terms of second order statistics) they are from the rest of the data.

An S-estimate (¢, C) of (u, X) is obtained as the solution to the optimization problem
over the set © = RP x PDS(p), where PDS(p) is the set of all positive definite symmetric

p X p matrices,

{ic]);

min
(t,C)ER? x PDS(p)

such that

n

% Z p(d;) = bo,

i=1

where p(-) is a monotonically increasing function and b, is an appropriately defined con-
stant. In the case of p(d) = d?, the optimization constraint says that the sum of the
squared Mahalanobis distances is constant, i.e. the likelihood is held constant under the
assumption of Gaussian data. Not too surprisingly, this is equivalent to least squares esti-
mation and results in the sample mean and covariance as its estimates. Now, in choosing
a p(-) which rises slower than quadratically, we can relax the weighting associated with
points distant from the center of the ellipsoid, lowering the influence of outliers.

The MCD estimate is very intuitive. It does not involve solving a system of nonlinear
equations nor a nonlinear optimization problem as above; but instead, it finds the subset
of h(n/2 < h < n) points that are most tightly clustered and bases its estimate on that
subset. In particular, out of all subsets of size h, it finds the one whose sample covariance
determinant is minimal, and takes the MCD estimate (¢, C) of (pu, X) as the sample mean
and covariance of this subset.

The remainder of this chapter is structured as follows. Section 2.1 provides back-
ground material on robust estimation in the univariate setting. Section 2.2 provides the
introduction to robust estimation of multivariate location and scatter generalizing famil-

iar concepts in the univariate case and discussing difficulties in the transition to higher
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dimensions. Section 2.3 discusses the M-estimates in the multivariate context. Sec-
tion 2.4 describes the S-estimates. Section 2.5 discusses the MCD estimate. The chapter
concludes with Section 2.6 which consists of a summary of the material and a closing

comment on the direction of robust estimation of multivariate location and covariance.

2.1 Univariate Robust Statistics

In this section, we provide a brief introduction to robust statistics in the univariate
setting. Naturally, such a vast field cannot be summarized in a section of a chapter, so
we only cover the concepts with which we will be directly interested in the multivariate
case. For further details see Hampel et al. (1986) and Huber (1981).

To start, we consider to what kind of model deviations we wish to be robust. For
this, we adopt the popular e-replacement model, which is also commonly called the Gross
Error Model (GEM). Under this model, i.i.d. points (zi, z3,...) € R are drawn from the

distribution
Gy(z) = (1 — €)Fy(z) + eH (z), (2.1)

where Fy(z) is a strict parametric model parameterized by 6 and H(z) is an arbitrary
distribution. The intuition behind this model is that (1 — €) of the sample arise from the
parametric model, but € of the sample have been replaced by points from an arbitrary
distribution.

The derived statistic should estimate the parameter #. A statistic based on a sam-
ple set of size n will be denoted by T, = T,(x1,...,2,), T, : R* —» R We will
only consider statistics which generalize to statistical functionals which are mappings
T(G) : domain(T') — R with the property that T(G,) = T,, — T(G), where G, is the
empirical distribution of the data. A desirable property of statistical functions is Fisher
consistency, i.e. T'(Fy) = 0 so that under the exact parametric distribution, the estimate

returns the correct parameter value. Note that this definition of Fisher consistency of
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. . . . . P
functionals encompasses the more common requirement in estimation theory that 7,, — 6

for z1,...,z, ~iid. Fj.

2.1.1 Influence Function

We follow the statistics literature in using the term efficiency to relate to having a small
variance. Note however that it does not have to do with achieving the Cramer-Rao lower
bound. A fundamental concept in measuring robustness and efficiency of a statistical

functional T is its influence function (IF). The IF of T at a distribution G is given by
— Ay)—T
IF(3: T, G) = lim L = )G +tA:) = T(G)

t—0 t

, (2.2)

for those  where the limit exists, where A, represents point measure of 1 at x. The IF can
be interpreted as a directional derivative of T' in the space of distributions. So intuitively,
an estimate 7" with a “nice” smooth IF(z; T, G) should be robust as slight changes to the
underlying distribution result in slight changes to the estimate. By applying a von Mises
expansion, which resembles a Taylor expansion for functionals, of 7" at a GG,, “near” G,

we get
T, =T(G) = T(G)+ / IF(2;T, G) d(Gn — G)() + remainder

T. = T(G)+ /IF(J;;T, G) dG,(z) + remainder

Vn(T, — T(G)) = % ZIF(II%'; T, G) + remainder,
i=1

where the second line follows because [ IF(z;T,G) d(G) = 0 as a property of von Mises
functionals. Now, if the “remainder” is negligible, which it is for many statistics, then
by the Central Limit Theorem, the error asymptotically becomes a zero mean Gaussian
with the variance determined by the IF, i.e. v/n(T, — T(G)) — N(0, AV(T, G)), where

AV(T,G) = / IF(z; T, G)* dG(x) (2.3)

is the asymptotic variance. Of course, the above derivation is not precise, but it is meant

to help provide insight to the IF and a rigorous derivation can be found in Fernholz (1983).
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2.1.2 Robustness Measures

Equation (2.3) illustrates the importance of the IF in characterizing the efficiency of an
estimate, however it has equally important role in characterizing robustness. Recall the
IF’s interpretation as a directional derivative in the space of distributions. Thus it char-
acterizes the sensitivity of the statistic to slight deviations from the model distribution.

This motivates the definition the gross error sensitivity (GES) for T" at Fy as
v* = sup [IF(z; T, Fy)]. (2.4)

The GES thus measures the worst influence an infinitesimally small fraction of contam-
ination can have on the estimate, i.e. it is an upper bound for the standardized bias
induced by the contaminated distribution (what we are calling bias here is not a bias
in the standard sense of the word, but a bias attributed to a change in the underlying
distribution). For this reason, we say that an estimate 7" at Fy is B-robust if v* is finite,
where the B stands for bias. An estimate is said to be most B-robust if it achieves the
minimal GES over all Fisher consistent estimates. As is frequently the case in nature, ro-
bustness and efficiency are conflicting goals. Thus, robust statistics will frequently search
for optimally B-robust estimates which minimize asymptotic variance given a bound on
the GES.

From its nature as a derivative, the IF (and thus GES) is only a local characterization
of robustness in a small neighborhood of the model distribution Fy. To provide a global

measure of robustness, the concept of the breakdown point was developed. The finite-

sample replacement breakdown point € of an estimate 7, at the sample (z1,...,x,) is
defined as
* : m
€, = min {— max sup |[T,(z1,...,2n) — Tnlz1, ..., 2,)| = oo} , (2.5)
n 21 5--9tm Y1yeensYm

where (z1, ..., 2,) is obtained by replacing the m data points z;1, . .., Z;, with arbitrary

values y1, ..., yn. What this definition says is that the breakdown points is the smallest
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possible fraction of points which must be corrupted to take the estimate across all bounds.
Thus, a non-robust estimate, in the sense of breakdown point, has € = 1/n. Note that
there is another prevalent definition of the finite-sample breakdown point in the literature,

particularly in the univariate setting for which

. m
€n — Imax —
n

The difference between the two is minor in that € is the smallest fraction of replace-

Wseenim yy,.oym

max sup |[T,(z1,...,2,)| < oo}.

ments which can cause the estimate to become unbounded; €, is the largest fraction of
replacements that the estimate can tolerate while still guaranteed to be bounded. Thus,
their relation is €, = € + 1/n. For the remainder of this chapter, we will only consider
the initial definition given in equation (2.5); however, in reading other papers on this
subject, it is important to differentiate between the two. Even though the definition in
equation (2.5) uses (z1,...,Z,), the breakdown point almost never depends on the points
for interesting estimates. There also exists a definition of breakdown point based on dis-
tributions instead of points, but it is considerably more involved and conveys the same
idea as equation (2.5), see Huber (1981). This distribution breakdown point is denoted
as €' and for reasonable estimates €, — €.

The concept of gross error sensitivity measures the maximum effect that an infinitesi-
mal amount of point-mass contamination can have on a functional. A stronger robustness
concept is to measure the maximum effect or bias that any type of contamination can

have on a functional. Define the contamination neighborhood of F’
F.={G:G = (1—-¢€)F + eH; H any distribution},

for a given fraction of contamination ¢ (0 < € < 1). The mazimum contamination bias

function is defined to be

B(eT,F)= sup [T(G) ~ T(F)| (2.6)
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The maximum bias function is related to the breakdown point, which is a measure of
global robustness, as well as to the contamination sensitivity, which is a measure of local
robustness. The breakdown point of 7" at F over contamination neighborhood is defined

to be
e'(T, F) = inf{e > 0|B(¢, T, F') = oo}, (2.7)
and the contamination sensitivity is defined to be
~(T,F) = 11_1)18 sup B(e; T, F)/e. (2.8)

Under certain regularity conditions, the contamination sensitivity and the gross error
sensitivity are equal, see Hampel et al. (1986) for further discussion. In general, though,

it readily follows that
(T, F) = sup{limsup [T(G(e, z)) = T(F)|/e} = v*(T' F). (2.9)
T €E—

There are other common measures of robustness such as qualitative robustness, con-
tinuity of a statistical functional, local-shift sensitivity, and rejection point. These will

not be discussed further, but the interested reader should see Hampel et al. (1986).

2.1.3 M-Estimates for Location

Having introduced some basic concepts in robustness theory, we now illustrate them
with the well established M-estimate for univariate location. In addition to clarifying
the concepts introduced above, it may help establish intuition for its extension to the
multivariate setting in Section 2.3.

The popular maximum likelihood (ML) estimate chooses the statistic as the parameter

value # which maximizes the likelihood of the sample data, i.e.

T, = argmax { | [ f5(z:) p = argmax < Y " In (f;(x:))
0 . [ -
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where fy represents a member of a family of pdf’s parameterized by . Unfortunately, ML
estimation is frequently non-robust. In order to robustify that approach, Huber (1964)
considered generalizing the objective function to a function p(z,0) with derivative
Y(zx,0) = % and proposed to calculate

T, = argmax {Z p(x;, é)} (2.10)

0

as an estimate. Any solution of this will then solve
> (@i, Tn) = 0. (2.11)
i=1

Because for reasonable choices of p, a solution of equation (2.11) will solve equation (2.10),
a solution of either equation (2.10) or equation (2.11) is called an M-estimate, where the
M comes from “generalized Maximum likelihood”. Because it is frequently simpler to
work directly with 1, little use will be made of p and we will associate ¢ with the
M-estimate it defines.

Extending equation (2.11) to a statistical functional, we get that an M-estimate is a

solution of the equation

/ (2, T(G)) dG(z) = 0. (2.12)
Applying this to the contaminated distribution Gy, = (1 — t)F +tA, = F + t(A, — F),
differentiating with respect to ¢, and taking the limit ¢ — 0, we get
0 = /1/; (y, T(F +t[A; — F])) d(F +t[A; — F])(y)
0 = [v@TE) dd. - P+ 5T Guallen [ 5000l dF)
0 = /w (y, T(F)) dAg(y) +1F(2; T, F) %[w(y, 0)]r(r) dF (y)

Y (=, T(F))

IF (239, F) = IF(z; T, F) = — [ 21y, 0)lramdF (y)

(2.13)
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where the denominator is assumed nonzero. Thus, for an M-estimate, one can straight-
forwardly calculate the IF and its derived quantities such as asymptotic variance and
gross-error sensitivity from .

Hampel (1968) derives an optimal M-estimate. He considers that ¢ which minimizes
the asymptotic variance given a constraint on the GES. His result essentially states that
under certain regularity conditions on the set of allowable distributions, the minimum
variance M-estimate, subject to a bound on the GES, is that for which the v function
is taken to be a vertical shift and “clipping” of the maximum likelihood score function

s(z,0,) = Z[In(fs(z))]s.. More precisely, for 6, € © a convex set
THEOREM 2.1 Assume that
e s(z,0.) exists for all x;
o [s(z,0.) dFy, =0 (a regularity condition);
e the Fisher information J(Fy,) = [ s(x,0.)* dFy, satisfies 0 < J(Fy,) < oo.

Then for any b > 0,3 a € R such that

¥(z) = [s(z,0.) — al’, (2.14)

satisfies [ dFy, = 0 and d = [(y)s(y,0.) dFs.(y) > 0. This ¢ minimizes the
asymptotic variance

[ 4% (y) dFy, (y)

AV (), Fy,) = ’
(¥, Fo.) [f ¥(y)s(y,0.) dFp.(y)]

among all v satisfying

/ (y) dFs.(y) = 0

/ b()s(y, 0,) dFy. () # 0,
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and

¢(fc) b

sup <c=

J(y)s(y, 0.) Fp, (v) d’

where [-]°, = max{—b, min{-,b}} denotes clipping the function to the range [—b, b].
b

Thus, one can control the degrees of B-robustness (y* = b/d) by varying the clipping
level b. The shift a is necessary to maintain Fisher consistency, which for M-estimates

simplifies to

/ $(y.0.) dFy.(y) = 0, ¥ ..

Note that in the case of placing no bound on the GES, we get the ML estimate as
expected.

In the case of location estimation, we model Fy(z) = F(x — #). Under this model, it
is natural to only consider ¢ of the form ¥ (z,0) = ¢(z — 0) with [ 4 (z) dF (z) =0

for Fisher consistency. From equation (2.13), the IF can be written as

Y(z —T(G))
— [ (y—T(G)) dG(y)

which at the model distribution F' becomes

IF(z;9,G) =

¥(z)
IF (x5, F (

— [¥'(y) dF(y

where the denominator is again assumed to be nonzero. Thus, the IF for M-estimates of
location are proportional to v, so up to a scaling factor, we can specify the IF through
the definition of ¢. For a symmetric model distribution F', it is natural to choose a
function which is skew-symmetric, i.e. ¥(—z) = —(x). If ¢ is also monotonic, then

Hampel (1971) obtains the following results:

1. If ¥ is bounded then the resulting estimate is B-robust and has a breakdown point

of 1/2;
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2. If ¢ is not bounded then the resulting estimate is not B-robust and has a breakdown

point of 0.

The B-robustness can be seen from equation (2.4) and the fact that 1 is proportional to
the IF. The breakdown result can be seen by the following reasoning. If v is bounded
and monotonic then it must eventually approach a constant. Thus when a minority of
the data samples grow arbitrarily large, the effect of each corrupted point on the sum in
equation (2.11) is limited and is essentially the same as a much lower magnitude value,
thus limiting the effect it can have. This point can be more visually appreciated with
the example of an optimal M-estimate for location presented next.

For an example, we apply the optimality result in Theorem 2.1 to location estimation.
If F is the standard normal distribution, then the score function becomes s(x —6) = z—6

and because F'is symmetric a = 0. This results in the optimal v function
Yu(z —0,b) = [z -0, (2.15)

known as Huber’s 1 function. In the case of b — oo, we have ¥y — = and the estimate

becomes
0 = ZwH(xz Ty, OO) = Z(xz Tn)
=1 =1
1 n
Tn = — ZT;.
n 4

However, when we clip ¢ to [—b, b], we limit the effect of a sample distant from 7, to
be the same that of a sample at a distance b from 7;,, i.e. Huber’s ¢ function effectively
draws in points that are further than b from 7,,. Thus, arbitrarily large points can have
only a limited effect. This “drawing in” of points is why bounded monotonic M-estimates
have a breakdown point of 1/2. It should be pointed out that Huber’s ¢ function does
not correspond to an a-Winsorized mean or an a-trimmed mean both of which are not
in the class of M-estimates (these fall into a class called L-estimates which will not be

discussed here).
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Huber (1964) derives an optimal location M-estimate according to a different criterion
than Hampel, but arises at the same answer. Huber’s analysis was strictly for the case
of univariate location estimation. Difficulties are encountered in trying to generalize
it. Huber’s approach does not utilize the IF as he believes that its interpretation of
dealing with infinitesimally small contaminations is not consistent with the spirit of robust
statistics where model deviations are more than just infinitesimally small. Instead, he
considers a minimax condition on the variance over a neighborhood around the model

distribution. Using a symmetrized GEM (Gross Error Model) neighborhood
F={G | G=(1-¢)F + €eH, H symmetric},
he finds the saddle point (g, G) that satisfies
V(o G) < V(to,Go) < V(¥,Go), V¢ and G € F.

Under some regularity condition on the distribution and set of allowable distributions
he shows that vy = [s(x —0)]°,, where b is determined from ¢ and Gy. Thus, the solution
to Huber’s minimax problem has the same form as Hampel’s constrained minimization
problem. Li and Zamar (1991) extended Huber’s (1964) minimax result to the case
when the scale parameter is unknown and must be estimated along with the location

parameter.

2.2 Robust Estimation in the Multivariate Setting

Having presented an introduction covering location estimation in the univariate case,
we now proceed to the primary focus of this thesis which is the investigation of robust
estimates of multivariate location and scatter. Most of the discussion in this section
follows Lopuhaé and Rousseeuw (1991), with a few exceptions which will be noted.

For a set of points X,, = (x1,...,®,) with ; € RP, we wish to find robust estimates

t,(X,) € RP of the mean and C,(X,,) € PDS(p) (set of positive definite symmetric p X p
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matrices) of the covariance which describe the bulk of the data. The majority of the

points are modelled as i.i.d. from an elliptical distribution F}, 5, with density

fus(@) = 2] (& — )= (2 - p)) (2.16)

where ¢ : R, — R, is scaled so that a valid density is produced.
We will consider some estimates which satisfy the property of affine equivariance

which is defined as follows.

DEeFINITION 2.1 - Affine Equivariance — For any invertible p X p matriz A,v € RP,

and data set X,, € RP*"
e A location estimate t,, is affine equivariant if t,(AX, + v) = At,(X,) + v;
e A covariance estimate C,, is affine equivariant if Cp(AX, +v) = AC,(X,)AT,

where AX,, +v = (Az, +v,..., Az, +v), and AT is the transpose of A. We will also
at times mention translation and coordinate-wise scale equivariant estimates of location,

which are estimates that satisfy the weaker conditions,

t, (X, +v) =t,(X,) + v;

t,(DX,) = Dt,(X,),

for all diagonal p X p matrix D.
The definition of breakdown point in equation (2.5) is primarily suited for univariate
location estimation. Extending it to our broader context, the location breakdown point

is defined as

* : m
€ (tn, X)) = min {— max sup ||t,(X,) — t.(Zn)| = oo} (2.17)
Tl Boetmoyy,ay,
where as before Z,, = (21, ..., z,) is obtained by replacing the m data points @;1, . . . , Zin
with arbitrary values y,...,¥,,, and the interpretation is the same as for the scalar
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case. The breakdown point for covariance is quite similar except that we have to account
for the undesirable possibility of a singular covariance estimate (it is assumed that the
covariance of the uncontaminated source distribution is full rank). Thus, protecting
against eigenvalues approaching co and 0, the breakdown point for covariance estimates
is defined as

€ (Cp, X,) = min {T

n

max sup D(Cn(Xn),Cn(Zn)):oo}

il’""im Yi5-Ym

where D(A, B) = max{|Anaz(A) = Mnaz (B) | [ Amin (A) 71 = Ain (B) 1|} with A2 (A) and
Amin(A) denoting the largest and smallest eigenvalues of A. Thus, covariance estimates
are considered to be broken if they produce eigenvalues which are arbitrarily large or
close to 0.

In the univariate setting, the median and bounded M-estimates are examples of max-
imally robust with respect to the breakdown point affine equivariant estimates with

*

€, = [(n+1)/2]/n. A natural question is what happens to the breakdown point when
the data dimensionality is increased. Lopuhaéd and Rousseeuw (1991) addressed this is-
sue. Let [-] be the greatest integer function, they show that if ¢, is translation equivariant,
then

(tn, Xn) < w _ % : n odd,

*
€
" n

% + i I noeven.

Because affine equivariant estimates are a subclass of translation equivariant esti-
mates, the above inequality holds for them as well. This result fits with ones intuition
because any estimate which fits the majority of the data must fail if more than half of
the data points can be arbitrarily corrupted.

Unfortunately, the maximal breakdown point for an affine equivariant covariance
estimate is slightly lower than that for a location estimate. Davies (1987) proves that for
any affine equivariant covariance estimate C,,,

(Cna Xn) S [(TL -p + 1)/2] )

*
en
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Thus, covariance estimate have a slightly smaller maximal breakdown point than
location estimates. Lopuhad and Rousseeuw (1991) suggested that a possible reason for
this difference is that location estimate can only breakdown if the estimates can be made
arbitrarily large, while covariance estimates can breakdown for eigenvalues tending to
both 0 and oo.

In addition to the breakdown point, the other essential quantity that needs to be
extended to the multivariate scenario is the IF. First note that the parameter of the
distribution in our new setting is now the vector 8 = (pu,X) € ® = RP x PDS(p). The

extension of the IF is then straightforward and given by Lopuhaé (1989).

DEFINITION 2.2 — Influence Function — consider a statistical functional T(-) mapping
a set of distributions into the parameter space ® and G € dom(T). The IF of T at G is
defined as

IF(@: T, G) = lim LW =0G+ tAz) = T(G)

t—0 t

(2.18)

if the limit exists for all © € RP.

For affine equivariant estimates and elliptical distributions, it is only necessary to deter-
mine the IF under the spherically symmetric distribution Fp r as the IF for any other set

of valid parameters can be obtained by

IF(z;t, F,x) = AIF(A™ (z — p);t, For) (2.19)

IF(z;C,F,5) = AIF (A (z — p); C, For) A" (2.20)

where AAT = 3.
The formula for the asymptotic variance under some regularity conditions will gener-

alize to

AV(T;G) = / IF(z; T, G)IF (z; T, G) dG ().
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We consider the multivariate location model to illustrate the maximum bias of mul-
tivariate location. Let X = (Xy,...,X,) be a random vector with distribution Fj,(x) =
Fo(x — p), where Fp is symmetric around 0. To study the robustness property of the
multivariate location we will consider a contamination neighborhood of the target dis-
tribution. Given a fraction of contamination ¢ > 0, the corresponding contamination

neighborhood of F, is defined by
Ve(Fu) ={F =(1—¢€)F, + eF" : F* any distribution on RP}.

It is natural to require that an estimating functional T" have the Fisher consistency
property T'(F,) = p. In general, given F' € V,(F,,) we will have T'(F') # p. Then, we
define the asymptotic bias of T in F' by

b(T, F,p) = (T(F) — p) S (T(F) — w)'"*, (2.21)

where X, is an affine equivariant scatter functional.
The maximum asymptotic bias of an estimating functional T for fraction of contamina-
tion € is defined by
B(T,e,F,) = sup b(T,F,p). (2.22)
FeVe(Fu)
For the univariate case (p = 1), the maximum bias of a location estimate 7" at an arbitrary

distribution GGy reduces to

T(G) — T(Go)
o(Go)

B(Ta €, GO) = sup
HeVe(Go)

’

where o(+) is a dispersion functional.
If the functional T is equivariant, the maximum bias does not depend on u, and can
therefore be denoted by B(T, ¢, Fp).

He and Simpson (1992) introduced the contamination sensitivity of an estimate T as

O0B(T,e¢, F,)

T F p) =
(T, F, p) e
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Observe that y(T', F,,) = v(T, Fp) because of the invariance of the bias.

For small ¢, the maximum bias can be approximated by
B(T,¢,F,) ~ ey(T, F,). (2.23)

The contamination sensitivity v(T', F,) is closely related to Hampel’s (1971) gross error

sensitivity v*(T', F,). In fact it is easy to show that always
7(]”’lzl);2 7*(11-Fb)a

where

lim T((1-¢)F, +e€de) —T(F,)

e—0 €

v(T, F,) = sup

ceRP

J

and ¢, stands for a point mass contamination. Under very general regularity conditions
V(T Fp) = (T, Fp).

Huber (1964) proved that if Fp is a univariate symmetric distribution with unimodal
density fy and F, = Fy(z — p), then the maximum bias of the median estimating func-
tional T, is minimax among the affine equivariant estimates, i.e., if 7" is another affine

equivariant estimating functional, then

B(T,€, F,) > B(Tu, ¢, F,) = Fy! <ﬁ) = di(e, Fy), (2.24)
where d; stands for the maximum bias of the median i.e., the percentile-0.5 under con-
tamination at infinity.

He and Simpson (1993) obtained a lower bound for the maximum bias of equivariant
estimates. Using this result Adrover and Yohai (2002) prove that d; (e, Hy) (provided by
Theorem 2.1 of He and Simpson, 1993) is a lower bound for any equivariant multivariate
location estimate when the central model is elliptical. Croux et al. (1997) derived a similar

result when the covariance is known and the central model is multivariate normal.
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2.3 M-Estimates

In Section 2.1.3, we discussed the M-estimate for univariate location. Here we describe
M-estimates for multivariate location and covariance as presented by Maronna (1976).
The definition of the M-estimate 8 = (¢, C) of multivariate location and covariance
0 = (p,X) based on a set of points (zy,...,&,) ~ iid. F, 5 is the solution to the

equations

=t (2.25)

i=1
where v; and vy are weighting functions to be specified later, and, for ease of notation,
we define d(x,t;C) = [(x — t)'C ' (z — t)]'/2. It directly follows that this is an affine
equivariant estimate. To make the relation to the univariate definition in equation (2.11)

clear, we can write

vy (d(z, t;C)) (x — )
vy (d(,t;,C)) (z —t)(z —t)T — C.

U (z, (t,C)) = (2.26)

Then, equation (2.25) become

%Xn:xp (z,(£,C)) = 0. (2.27)

To facilitate understanding and comparisons with the univariate case, we define ;(s) =
sv;(s), for i =1, 2.

We consider an example to help establish intuition as to what the M-estimate is doing.
First, if we let v1(s) = v2(s?) = 1, then no down-weighting is performed and we obtain the
sample mean and covariance as our estimates. Now, if we take ¢ (s) = 12(s) = Yu (s, K),

v1(s) = Yu(s, K)/s
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and
va(s?) = Yu(s*, K?)/s?,

then this behaves like a multivariate extension of the optimal univariate location estimate
in the sense that at the solution (¢,,C,), points further than K from ¢, according to
Mahalanobis distance d (z,t,; C,,) are “pulled in” to behave as if they were at distance
K.

For all the results shown by Maronna (1976), the following four conditions are as-

sumed:
1. v1(s) and vq(s) are nonnegative, nonincreasing, and continuous functions for s > 0;
2. 1(s) and 12(s) are bounded with K; = supo{¢i(s)};
3. 1y(s?) is nondecreasing and is strictly increasing on the interval where ¥y < Kj;
4. There exists so such that 1,(s3) > p thus K, > p and that v;(s) > 0 for s < sq.

From this point forward, and generally in the literature, use of the term M-estimate
implies adherence to these four hypotheses. As an example, Huber’s Multivariate Pro-

posal (1964) satisfies the above conditions. Huber’s proposal is to take
Y1(s) = Yu(s, ki)
and
() = vu (s, k3) /B,
where 3 = IEg, ,[¢Yg(||]]% k3)], and thus K; = k; and K, = k3/.
Properties

With the above conditions on the M-estimate, Maronna proves several important prop-

erties about the M-estimate he defines.
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e For both a continuous distribution and an empirical distribution based on enough

data points, the existence of a solution is guaranteed.

e For a unimodal and symmetric distribution around some point there is a unique
solution, and under additional restrictions one can include empirical distributions,
but only in the univariate case. Maronna conjectures that it holds for p > 1, but

is not able to prove it. We are unaware of any result which proves his conjecture.

The problem of not having a uniqueness result for empirical distributions is somewhat
mitigated by a convergence result for M-estimates. If the distribution F}, 5, producing the
points (1, ..., x,) satisfies a probability measure hypothesis and the M-estimate satis-
fies the above four conditions, then that distribution has a unique M-estimate (¢, C.).
Furthermore, an M-estimate (¢,, C,,) based on (xy,...,x,) exists for each n sufficiently
large. Maronna shows convergence and asymptotic normality of these M-estimates under
general regularity conditions. Thus, even though we may not have unique solutions for
finite sample sizes, the estimates do converge to a unique solution.

Maronna also calculates the IF for the M-estimate, but only provides it for the location
estimate ¢, omitting the IF for the covariance due to its difficult expression. He shows

that the IF for location under a spherically symmetric distribution is
IF(x;t, Fo 1) = cui(||z]|)x (2.28)

for a specified constant ¢ which Maronna (1976) derives. This is reminiscent of the
univariate case where the IF is proportional to the ¢ function. Looking at equation (2.26),

one could make the definition

U(z, (t,C)) = U (z, (t,C)) _ v1 (d(z,t;C)) (x —t)
Thus defining vector mappings ¥, and W, instead of the scalar mappings ¥; and 1, that

Maronna uses. From this definition, we see that the IF for location is proportional to
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Uy (x) = v (d(z, t; C)) . Thus, we immediately can infer that the GES of the location
estimate is directly controlled by the bounding level applied to ¥;. Unfortunately, noth-
ing is said about the form of the IF of the covariance estimate except that its derivation
is similar too, but more laborious, than the one for location.

In addition to presenting the IF for location, Maronna also gives an upper bound on
the breakdown point of the M-estimate under the following model G, s = (1 — €)F, » +
€A, with |ly|| = oo. Note that this is not as general as the GEM in equation (2.1),
as Maronna models contaminations as point mass distributions at a point near infinity
in comparison to the arbitrary distribution in the GEM. The upper bound Maronna
gives for the asymptotic value of the breakdown point (Maronna refers the reader to his
thesis (1974) for the derivation) is

€ =min{e*(t, Fl x), €' (C, F»)} < min {i, 1— i} : (2.29)

K, K,
Thus, we see that not only does the clipping level K5 on v, affect the breakdown point
(recall that for univariate location estimation we have ¢ = 1/2 if ¢ is bounded and ¢* = 0
otherwise), but having either too large or too small a K5 will lead to low robustness with
respect to breakdown point. Note that if Ky > p, the bound on the breakdown point can

be written as

¢< L (2.30)
p+1
Thus, M-estimates necessarily have a low breakdown point in high-dimensional spaces.
Maronna presents several important theorems which supports practical use of his
multivariate M-estimate; however, nothing is said regarding Fisher consistency. He stated
that we will converge to a unique solution (¢, C) so long as the conditions have been met,
but this solution is not necessarily the parameter (u, ¥) of the underlying distribution.

Naturally, not all choices of v; and v, produce Fisher consistent estimates, but Maronna

does not present conditions that guarantee Fisher consistency.
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A second criticism is the lack of an optimal M-estimate. He presented the IF for
the location estimate and elsewhere derives the expression for the covariance estimate.
A natural question is to wonder if Hampel’s optimality Theorem 2.1 extends to the
multivariate M-estimates that Maronna has presented. This combined with a lack of
Fisher consistency prevents us from choosing the weighting functions v; and v, in a

principled manner.

2.4 S-Estimates

The M-estimate studied in the previous section is the natural generalization of the uni-
variate M-estimate to multivariate location and covariance. Several nice properties were
shown, but a significant deficiency is its low breakdown point in high dimensions. This
issued a search for multivariate estimates which possess a high breakdown that is inde-
pendent of the dimension. This and the following section discuss two of the more popular
estimates with this property that have emerged. This section focuses on the S-estimate
as described by Lopuhad (1989) and Davies (1987).

The S-estimate was originally introduced by Rousseeuw and Yohai (1984) in the con-
text of linear regression. They proposed the S-estimate as the solution of the optimization

problem

omin {o(e)}

such that

E SR

where by satisfies 0 < by < ag = sup{p}. In setting p(s) = s°, a least squares regression
is obtained. By bounding p, we limit the maximal effect that any point can have, thus
robustifying the least squares technique.

Davies (1987) and Lopuhad (1989) extend this regression estimate to the S-estimate

for multivariate location and covariance, although they do so in slightly different ways.
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We use Lopuhaa’s definition as it is a little simpler. Lopuhaa defines the S-estimate

6 = (t,C) as the solution to the optimization problem

i C 2.31
(t,C)G(gfl’l,nPDS(p)){‘ } ( )

such that
1 n
3" p(d(ws 1:0)) = by (2:32)
i=1

where by satisfies 0 < by < ap = sup{p}. The constant b, will effect the scaling of the
covariance estimate and should thus be chosen in accordance with the underlying model
distribution. In particular, if (21, ...,2,) are from an elliptical distribution F}, 5;, then
it is natural to choose by = IEg, ;[p (d(z;, p; £))] which is the limit of the average in
equations (2.31)—(2.32) if ¢ and C' are Fisher consistent. It is straightforward to show
that S-estimates are affine equivariant. Thus by can be selected without knowing (u, X)
(which of course we do not know) by choosing by = IEg,,[p(|[]])] utilizing only the
normalized parametric distribution.

Just as choosing p(s) = s? yields the least square solution for the regression problem,
it also produces the least square solution for the location-covariance problem. Choosing
by = p for appropriate scaling of the covariance matrix, the S-estimate produces the

sample mean and covariance as the unique solution (Griibel, 1988).

Properties

Lopuhad and Davies prove many of the same results such as existence, convergence, con-
sistency, and asymptotic normality but under different conditions. Davies applies weaker
constraints on the p function, but only considers elliptical distributions. Lopuhaa’s con-
straints on p are slightly more restrictive, but some of his results apply to more general
distributions. Because in most conceivable circumstances, one would apply these tech-
niques to a sample set which they believe to have arisen from an elliptical distribution,

we will present the properties from Davies.
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e Davies first demonstrates the existence of a unique solution of the S-functional at
the true distribution and that this solution is the correct value, i.e. it is Fisher
consistent. For an elliptical distribution with some conditions the S-functional has
the unique solution (¢.,C,) = (u,X). Although this should be expected of a
good estimate, recall that M-estimates were not shown to be Fisher consistent, but

instead, only that a unique solution existed for the M-functional.

e Davies then shows that for large enough sample sizes, equations (2.31)—(2.32) have

a solution.

e Furthermore, any sequence of these solutions will converge to the true parameter

values of the source distribution.

e Davies derives the asymptotic for the S-estimate and shows that it also has a

limiting normal distribution.

Lopuhaa derives the IF for the S-estimate for distributions more general than ellipti-

cal. For

o (d(z, tC)) (z — t)
o, (d(z,t;C)) (xz — t)(x — t)" — 3 (d(z,t;C)) C

U(x, (¢, C)) =

where 1(s) = 9(s)/s, 03(s) = ¥(s)/s — p(s) + by, and Ap(p, X) = Ep[V (z, (1, X))], Ar
has a nonsingular derivative A at (¢(F), C(F)).
Then the IF exists and is

IF(z; S, F) = =A™V (z, [t(F), C(F)]). (2.33)

Now if F' = Fy 1 is the spherical distribution and p satisfies some conditions then, the IF

for the associated location S-estimate is

IF(x;t, For) = c1/;(||:v||)? = cty(z||)x (2.34)
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for a constant ¢ given by Lopuhaid. As expected, this expression is parallel that of
equation (2.28) for M-estimates.

Thus far, we have one significant advantage of S-estimates over M-estimates, i.e. con-
sistency. However, Davies demonstrates an even more significant attribute of S-estimates,
which is the ability to achieve a high breakdown point independent of dimension defined

as,

[nbo/ao] + 1‘

¢, = min{e; (¢, Fuz), ¢ (C, Fuz)} = (2.35)
n
Two simple, but important corollaries follow here.
COROLLARY 2.1
€ = lim €, = by/ay. (2.36)
n—o
COROLLARY 2.2 Setting by/ag = 1/2 — (p+1)/2n yields
[n—p+1]
=2 2.37
G=—2 (237)

which is the upper-bound for the breakdown point of affine equivariant estimates, which
is proved in Davies (1987).

The S-estimate is a significant improvement on the M-estimate in two ways. First,
with an appropriate choice of p, it can achieve the maximal breakdown point which is
asymptotically 1/2 regardless of dimension. This contrasts with the M-estimates increas-
ing susceptibility to outliers as dimensionality increases. Second, Fisher consistency is
proven for S-estimates along with a stronger convergence proof. For elliptical distribu-
tions, M-estimates are shown to converge in probability to a unique solution though not
necessarily the underlying parameters, whereas S-estimates are shown to converge almost

surely to the underlying parameters.
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A significant drawback of the S-estimate is that there is no optimality theorem on

how to choose the function p. Lopuhad uses as an example Tukey’s Biweight function

s2 _ st s
pr(s,co) =4 2 2% tog sl <o
% if |s| > ¢,

but there is no justification for its selection, other than it resembles a smooth clipped
parabola, thus approximating robust least-squares estimation. Using Tukey’s Biweight
function in the S-estimate and Huber’s proposed M-estimate, Lopuhad performs sim-
ulations comparison of the two. The general trend is that at the model distribution,
the M-estimate achieves a lower error variance, but when the model distribution does
not match the actual distribution, the S-estimate performs better. These simulations
must be cautiously interpreted however because there may be better choices of weighting

functions which could result in a different conclusion.

2.5 MCD Estimate

In this section, we will discuss the third of the three classes of estimates surveyed, the
MCD estimate. We mostly follow Butler et al. (1993). The previous two estimates are
rather abstract in that the M-estimate is the solution of a system of nonlinear equations,
and the S-estimate is the solution of a nonlinear optimization problem. The MCD tech-
nique presented here is much more intuitive. Given 0.5 < a < 1, the MCD estimate can
be described as follows. Consider all subsets of {x1,...,z,} of size h = [an|, where [z]
denotes the greatest integer smaller than or equal to z. For each of these sets, compute
their sample mean and covariance. Then, the MCD estimate (¢,, C},) is the sample mean
and covariance from the set whose sample covariance has the minimum determinant.
As intuition would lead to believe, the MCD corresponds to finding the ellipsoid which
covers the most dense cluster of A points and then taking a weighted sample mean and

covariance where the weighting is the indicator function (divided by A for normalization)
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of the ellipsoid. Inherent in this is an assumption of unimodality due to the clustering.
For the rest of the material presented in this section, we assume that the underlying
distribution F, 5 is unimodal and elliptical. Thus, we can assume it has a density of the

form

fus(@) =5 (@ - W = (@ - w) (2:38)

with ¢ : Ry — R, being a decreasing function appropriate scaled so that the density is
valid. Furthermore, because the MCD is affine equivariant (which follows from its use
of the sample mean and covariance), we can assume the parameters of the underlying

distribution are g =0 and ¥ = [.

Properties

Although the MCD has an intuitively simple interpretation, there are not many results
on its properties. The existence of a solution for sample sets is obvious as it takes a
minimal covariance from a finite set of solutions. This solution can be seen to be unique
(with probability 1) but only if the underlying distribution is continuous. Butler et al.
show the existence and uniqueness of a solution under the model distribution. As one
would expect, the solution is the sphere centered at the origin in accordance with the
underlying distribution (p, ¥) = (0, I'). For further details see Butler et al. (1993).

Butler et al. also studied the convergence of the MCD estimates. He found that the
MCD estimate of location converges to the true value, but the covariance estimate does
not. Like the M-estimate and S-estimate, the MCD location estimate is asymptotically
normal with asymptotic covariance matrix ¢X for some constant ¢. The constant c¢ is
given by Butler et al. (1993).

The breakdown point of the MCD estimate has not been mentioned in Butler’s article,

but due to the straightforwardness of its definition, it is readily apparent that if n > p+1
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then
—-1-« (2.39)
n—h+1 h—p

¢-(C) = min { , } — min{l — , a}. (2.40)

n n

The breakdown point of the location estimate follows from that if A of the original points
remain, then the location estimate will still be finite, but if fewer than A points remain,
then the estimate can become unbounded. The same reasoning applies for keeping the
maximal covariance eigenvalue bounded. However, we must also consider the other di-
rection of breakdown where the minimum eigenvalue approach zero. Here, we only need
to replace h — p points to force an eigenvalue to zero. In particular, we find the p densest
sample of points whose convex hull contains no other data points. Then we replace any
h — p of the other points with points lying at the center of this convex hull, which is
contained within a hyperplane by definition. Now, the most dense cluster of h points is
the cluster of points in this convex hull and the covariance estimate has a zero eigenvalue.

Note that, one can choose « so that they can get an asymptotic breakdown point of
€* = 1/2. However, it is clear that by choosing a smaller « yielding a larger €*, one is
utilizing fewer points in the sample statistics and thus will have a higher error variance
on the estimates. Choosing h as small as possible, i.e. h = [(n+1)/2], yields the maximal

location breakdown point,

(n+1)/2]

€ (t) = (2.41)

Similarly, choosing A = [(n+p+1)/2] yields the maximal covariance breakdown point,

n—p+1)/2].

e [

n

(2.42)

Thus, the MCD can achieve the maximal location and covariance breakdown points,
but not at the same time. This is not really a hindrance since the difference is minuscule

and both breakdown points asymptotically approach 1/2.
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The computational complexity is a major issue regarding the MCD. To find an exact
solution requires searching the entire space of all possible groupings of A out of n data
samples. Thus, the computational burden grows combinatorially with the sample size.
However, there are fast approximations to the MCD, the most prevalent of which is
proposed by Rousseeuw and Van Driessen (1999) and briefly described in the next section.
The algorithm is an approximation to the MCD and produces only a locally optimal
solution. An ellipse £ is considered locally optimal if the determinant of its sample
covariance cannot be decreased by switching one point in £ with a point not in &£.

The development and availability of fast algorithms Hawkins (1994); Rousseeuw and
Van Driessen (1999) for computing the minimum covariance determinant (MCD) has
brought renewed interest to this estimate. Asymptotic properties were given in Bulter
et al. (1993), but the asymptotic variance of the MCD scatter part remained unknown.
In the particular case of one dimension the influence function of the MCD scale was
computed by Croux and Rousseeuw (1992a). Croux and Haesbroeck (1999) worked out
the influence function of the MCD scatter matrix estimate in arbitrary dimensions, and
used it to evaluate the asymptotic efficiency of this estimate. It follows that the MCD
scale estimate has a bounded influence function, which is re-descending to zero for the
off-diagonal elements, but not for the on-diagonal elements. It is not sufficient to consider
only breakdown point and efficiency of robust estimates, but maxbias curves should be
computed. This has been done for the MCD estimate in the univariate case by Croux
and Haesbroeck (1999), but the multivariate case seems to be rather hard to handle.

The MCD is straightforward to compute and can be approximated with a fairly fast

algorithm as described in the next section.

FAST-MCD Algorithm

We now give a brief overview of the FAST-MCD algorithm proposed by Rousseeuw and
Van Driessen (1999). As in the previous section, we will let A denote the size of the

subsets to examine. The basis for their algorithm is the following theorem.
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THEOREM 2.2 Let Hy be a subset of {1,...,n} of size h with associated sample statistics

1

tt = = ; 2.4
1€Hq
1

C. = - (z; — 1) (z; — t1)T. (2.44)
1€H1

If|CL| >0 then define the distances d, (i) =d(x;, t.; C}). Now, define the set H, to be those
points with the h smallest distances di(i), i-e. {d1(i) | i € Hy} ={(d1)1, (d1)2,---,(d1)n}
where (dy); < (dy)s < ... < (dy), are the ordered distances. Now, define t2 and C? as

in equations (2.43)—(2.44) but with Hs in place of Hy. Then,
IChl <|Chl. (2.45)

The construction of H, from H; is called the C-step where C stands for covariance.
Thus, recursively defining sets H; by repeatedly taking the points which minimize the
Mahalanobis distance based on the previous iteration leads to a local minimum (the
determinant of C", is a local minimum if it cannot be decreased by switching one point in
H; with a point not in H;) of the covariance determinant. Using this intuitive principle,

the FAST-MCD algorithm can be described as follows:

1. Initialize Hy by randomly selecting p+ 1 points. Compute the sample mean ¢° and
covariance CY for Hy. Construct the set H; as in Theorem 2.2, i.e. choose the h

points which minimize the Mahalanobis distance with respect to t and C?.
2. Perform k C-steps (Rousseeuw and Van Driessen recommend k& = 2 C-step).

3. Perform steps 1 and 2 many times and take the ! best solutions H! which have
the smallest covariance determinant (Rousseeuw and Van Driessen recommend [ =
10). For each of these “survivors” repeatedly perform the C-step until convergence

(which is guaranteed by Theorem 2.2 and boundedness of the determinant).

4. Take as your solution, the H' which has the minimum covariance determinant.
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For larger sample sets, Rousseeuw and Van Driessen recommend partitioning the data
set into several groups and running the FAST-MCD on each of them, then taking the
m best estimates from each group and running the FAST-MCD on the entire data set
initialized with each of the m solutions from each group and taking the minimum result

as the solution.

2.6 Conclusions

The focus of this chapter is primarily on three techniques: the M-estimate, S-estimate
and MCD. The first estimate discussed is the M-estimate, which is a generalization of
the well known M-estimate for univariate location. The M-estimate is defined by two
weighting functions v; and v, which control the influence of outliers on the location and
covariance estimates. The M-estimate is then the solution of a system of equations of
the weighted sample moments. Maronna (1976) shows several important properties of
the M-estimate under certain conditions on the weighting functions and distribution. In
particular, existence, uniqueness and convergence are shown; although, the convergence is
not necessarily to the true underlying parameters as conditions for Fisher consistency are
not shown. Another notable characteristic of the M-estimate is its low breakdown point
which decreases with increasing dimensionality of the data. Furthermore, the conditions
on the weighting functions seem to imply an inherent assumption of unimodality on the
underlying distribution.

The second estimate surveyed is the S-estimate, which originated in the context of lin-
ear regression, but is extended to multivariate location and covariance estimation. This
estimate obtains its solution via an optimization problem which minimizes the determi-
nant of the covariance estimate subject to a cost constraint which can be interpreted as
the sum of weighted Mahalanobis distances of the samples under the covariance and loca-
tion estimates. Robustness is endowed to this estimate by limiting the maximal cost that

a single data sample can contribute and thus limiting its influence on the estimate. Of
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the three estimates, this perhaps has the most properties shown about it. These include
existence, uniqueness, Fisher consistency and convergence of estimates to the true pa-
rameter values. Furthermore, S-estimates are shown to be maximally robust with respect
to the breakdown point. S-estimates also satisfy the form of M-estimates, but violate the
constraints on the weighting functions and are thus not considered M-estimates.

The MCD estimate is based on the intuition that for unimodal elliptical symmetric
distributions, the most reliable points on which to base the estimate are those which are
closely clustered. The MCD estimate finds the subset of data points which has the small-
est sample covariance and takes as its estimates, the sample mean and covariance from
this set. Unlike the M-estimate and S-estimate, there are no weighting/cost functions to
choose here, only the cluster size parameter .

All three of these estimates asymptotically converge to limiting values with a Gaussian
distribution. Furthermore, the variance on the “error” goes down as 1/n. Note that there
are other well known estimates which actually have a slower decay on the variance, e.g.
the asymptotic variance of the minimum volume ellipsoid (MVE) estimate goes down as

n~?/3 and does not converge in distribution to a Gaussian.
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Chapter 3

Multivariate Contamination Models

3.1 Classical Contamination Model

Statisticians use contamination or mixture models to study the performance of robust al-
ternatives to classical statistical procedures when these procedures are applied to messy
data sets that contain outliers. Most studies on robustness in statistics are centered
around a concept of contamination introduced by Tukey (1960). The best known and
most broadly used contamination model is the so called e-contamination neighborhood in-
troduced by Tukey (1962) and extended by Huber (1964). These models can be thought
of as “testing grounds” where statistical procedures are tested and continuously im-
proved. The contamination model was originally introduced to handle one-dimensional
data. Assume that, given a sample X1,..., X,,, the majority of the data follows the nom-
inal distribution Hy while a small fraction ¢ follows an arbitrary distribution H. This
contamination model, which we will call classical contamination model, can be written

as

H(z) = (1 —€)Hy(z) + eH(x), 0<e< % (3.1)

For example Hy may be a normal distribution with mean p and standard deviation o,
ie., Hy = N(u,0), and H an arbitrary distribution. Robustness in the sense of the
Princeton’s Group (Tukey, Huber, Hampel et al., etc.) addresses the estimation of the
dominant component H, and clearly, for this component to be dominant, the amount of

contamination € must be less than one half.
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The classical contamination model (3.1) has been adopted for multivariate data sets
as well (see for example Rocke and Woodruff, 1996), although it is not necessarily ap-
propriate in that context. Given a sample X {,..., X,, where X; e RP, i =1,...,n, the
majority of the data follows the nominal distribution Hy while a small fraction € follows
an arbitrary distribution H. Then, the classical multivariate contamination model can
be written as

H(z) = (1- O Hy(@) + cH(x), 0<e< % (3.2)

For example Hy may be a multivariate normal distribution with mean g and scatter
matrix ¥, i.e., Hy = N(u,X), and H an arbitrary distribution. Under this model a
fraction (1 — €) of the cases on average are distributed according to Hy and are therefore
the majority or “core” data, while a fraction e of the cases are from H and generate
outliers that deviate from the core behavior of the data. Hence, in this model each data
point is either “100 % perfect” coming from Hy or “100 % spoiled” coming from H.

An alternative representation of the classical multivariate contamination model (3.2)

can be written as
X=01-bY+0bZ, (3.3)
where Y, Z, b are independent with

YNHO

Z ~ H

b ~ BINOMIAL(L,e).
This can be shown as follows.

P(X<z) = P(1-bY +bZ < z)
= P(Z<=z)Pb=1)+P(Y <2)P(b=0)

= H(x)e+ Ho(x)(1 —€) = H(x).
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The classical multivariate contamination model (3.2) is a model of “independent mix-
ture of two independent populations”, for example a “normal population” and an “ab-
normal outliers generating population”. Unfortunately this model does not adequately
represent reality for many multivariate data sets that arise in practice. It may often
happen in applications that outliers occur in each of the variables independently of the
other variables or in special dependency patterns other than the complete dependency
pattern which, we will see, the classical multivariate contamination model enforces. In
addition, the classical multivariate contamination model (3.3) does not allow the possi-
bility of dependency among the uncontaminated vector, Y, the contamination indicator,
b, and the contamination vector, Z.

Now we present some real data examples from the literature that illustrate the need

for a more general and flexible multivariate contamination model.

3.2 Real Data Examples

ExaMPLE 3.1 Hertzsprung-Russell Diagram of the Star Cluster CYG OB1

Consider the Hertzsprung-Russell data set (see Rousseeuw and Leroy, 1987). This two-
dimensional data set consists of 47 stars in the direction of Cygnus. The first variable
is the effective temperature at the surface of the star and the second variable is its light
intensity. The scatterplot of the logarithm of the light intensity versus the logarithm of
the temperature is shown in Figure 3.1. We can see from the plot that the data have two
groups of points, the majority which seems to follow a steep band and the four stars in
the upper left corner. These groups are well known in astronomy. The majority of the
points are said to lie on the main sequence and astronomers explain the four points with

indices 11, 20, 30 and 34 as giant stars.

ExaMPLE 3.2 Body and Brain Weights

Consider the brain and body weight of 28 animals as published in Rousseeuw and
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Figure 3.1: Hertzsprung-Russell Diagram of the Star Cluster CYG OBI.
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Figure 3.2: Body and Brain Weight Data Set.

Leroy (1987, page 57). This sample was taken from larger data set in Weisberg (1985).

Figure 3.2 contains a scatter plot of the logarithm of the brain weight versus the logarithm
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Figure 3.3: Gesell Adaptive Score versus Age at First Word.

of the body weight. The scatter plot shows that the majority of the data follow a clear
pattern, except the three observations in the lower right region. These three observations

correspond to dinosaurs, each of which possessed a small brain with a heavy body.

ExAMPLE 3.3 Gesell Adaptive Score

This data set was first reported by Mickey et al. (1967) and widely cited in the statistical
literature. We obtained the data set from Rousseeuw and Leroy (1987). The study was
conducted on 21 children, giving their age (in months) at first spoken word and a score
which is a measure of the development of the child. The Gesell adaptive assessment is
a standard procedure for direct observation of a child’s growth and development. The
Gesell assessment is conducted by a trained examiner who makes discriminating obser-
vations of a child’s behavior and then evaluates these observations by comparison with
normal behavior patterns. A normal behavior pattern is a criterion of maturity which has
been defined by systematic studies of the average healthy course of child development.

The scatterplot of Gesell adaptive score versus age at first word is shown in Figure 3.3.
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Figure 3.4: Advertising Yield versus Spending.

Case 19 does not follow the general pattern of the remaining data points. Mickey et
al. (1967) also decided that this observation is an outlier, by mean of a sequential ap-
proach to detect outliers via stepwise regression. Since the value of the score is subjective,
this outlier could be explained due to a possible error in the observed Gesell adaptive

score given to the child.

ExampLE 3.4 TV Ad Yields

Consider the TV Ad Yields data of 21 advertisements published in the Wall Street Jour-
nal, March 1, 1984 (available at http://lib.stat.cmu.edu/DASL/Datafiles/tvadsdat.html).
The advertisements were selected by an annual survey conducted by Video Board Tests,
Inc., a New York ad-testing company, based on interviews with 20,000 adults who were
asked to name the most outstanding TV commercial they had seen, noticed and liked.
The retained impressions were based on a survey of 4,000 adults in which regular prod-
uct users were asked to cite a commercial they had seen for that product category in

the past week. Figure 3.4 contains a scatterplot of the retention versus the expenditure,
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Figure 3.5: Scatterplot of Cigarette Consumption versus Lung Cancer.

which is the TV advertising budget, 1983 ($ Millions). The scatterplot shows that the
majority of the data follows an increasing pattern, except the three observations with
indices 7, 10 and 13 (McDonald’s, Ford and ATT/BELL). These outliers are likely due
to an unsuccessful advertising campaign, and therefore the retention figures are lower
than expected for the large amount of expenditure. Specifically, the point with index 10

appears to have a low retention for an extremely large value of expenditure.

ExAMPLE 3.5 Smoking and Cancer

Researchers wanted to examine the effect of smoking on cancer development. Data for
43 states and the District of Columbia were collected on per capita numbers of cigarettes
smoked (sold) in 1960 together with death rates per thousand population from various
forms of cancer, see Fraumeni (1968). Scatterplots of the cigarette consumption versus
the lung cancer and the leukemia death rates are shown in Figures 3.5 — 3.6, respectively.
From the scatterplots we can see that Nevada (NE) and the District of Columbia are

outliers in the distribution of cigarette consumption (sale) per capita. The ready expla-
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Figure 3.6: Scatterplot of Cigarette Consumption versus Leukemia Death Rates.

nation for the outliers is that cigarette sales are swelled by tourism (Nevada) and tourism

and commuting workers (District of Columbia).

ExAMPLE 3.6 Air Pollution and Mortality

Researchers at General Motors collected data on 60 United States Standard Metropoli-
tan Statistical Areas (SMSAs) in a study of whether air pollution contributes to mortal-
ity. The variable of main interest is age adjusted mortality and is labelled “Mortality”.
The data include variables measuring demographic characteristics of the cities, variables
measuring climate characteristics and variables recording the pollution potential of three
different air pollutants. These properties were collected from a variety of sources and
they are available at http://lib.stat.cmu.edu/DASL/Datafiles/SMSA.html. Figure 3.7
shows all pairwise scatterplots of the variables; mortality, median education, population
density, percentage of non-whites, annual rainfall (inches) and logarithm of the Nitrous
Oxide (NOx). Clearly these data have several multidimensional outliers that show up as

a cluster in several of the scatterplots.
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Figure 3.7: Air Pollution and Mortality Data Set.

ExAMPLE 3.7 Salinity

Consider the salinity data set (see Ruppert and Carroll, 1980). These data consist of
measurements of water salinity (i.e. its salt concentration) and river discharge taken
from North Carolina’s Pamlico Sound. Figure 3.8 shows all pairwise scatterplots of the
variables; water salinity, salinity lagged by two weeks, the trend which is the number of
biweekly periods elapsed since the beginning of the spring season and the volume of river
discharge into the Sound. Carroll and Ruppert (1985) described the physical background

of the data. The scatterplots of the salinity lagged, the trend and water salinity versus
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Figure 3.8: Salinity Data Set.

the volume of river discharge each show two points that do not follow the pattern of the
remaining data. Carroll and Ruppert (1985) indicate that these outliers are cases 5 and

16 which correspond to periods of very heavy discharge.

ExamMpPLE 3.8 Wages and Hours

The data (available at http://lib.stat.cmu.edu/DASL/Datafiles/wagesdat.html) are from
a national sample of 6000 households with a male head and earnings of less than $15,000
annually in 1966. Thirty-nine demographic subgroups were formed for analysis of the
relation between average hours worked during the year and average hourly wages ($) and
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Figure 3.9: Wages and Hours Data Set.

other variables. The study was undertaken in the context of proposals for a guaranteed
annual wage (negative income tax). At issue was the response of labor supply (hours
worked) to increasing income and effective hourly wages. Figure 3.9 shows all pairwise
scatterplots of the average hours, average wages (rate), average family asset holdings and
average age of the respondent. Clearly these data have several multidimensional outliers.
In particular, the scatterplots of the average hours, the average wages and the average
asset versus the age each show outliers in the left and right of the plots. It appears that

the age variable has a certain range and any age outside this range shows as an outlier.
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Discussion

The Tukey-Huber contamination model (3.2) seems appropriate for the data in Exam-
ples 3.1 and 3.2. In the case of Example 3.1 we can assume that there are two subpopu-
lations of stars (the main sequence and the giant stars) and that the given measurements
correspond to either one of these two subpopulations with probabilities (1 — €) and e,
where € represents the proportion of giant stars. Hence, we can consider these data as
coming from an independent mixture of two independent populations, as required by
the classical multivariate contamination model (3.2). In the case of Example 3.2 there
are also two subpopulations (regular animals and dinosaurs) and the given measurements
correspond to each one of these two subpopulations with probabilities € and (1 — €). Since
we do not know the criterion used to include animals in the data set, the interpretation
of € is less clear, in this case.

It seems difficult, however, to justify the use of the independent mixture model (3.2)
for the remaining examples.

In Example 3.3, it would be hard to imagine the existence of a subpopulation of
children from which the outlying Case 19 has been drawn. A more likely scenario is that
the Gessel adaptive score for this child has been erroneously assigned or recorded. A point
to notice here is that one of the two variables (namely, Gessel adaptive score) appears
to have a larger probability of gross errors and unusual values than the other variable
(namely, age at first spoken word). If the contaminating distribution were to retain
the value for the variable age at first spoken word and only contaminate the variable
Gessel adaptive score, then the assumption of independence would be violated. A serious
limitation of the classical multivariate contamination model (3.2) is the requirement that
each data point is either 100% perfect or 100% spoiled.

Model (3.2) is also restrictive in that it fails to allow for cases where the probability
of occurrence of discordant values and gross errors in some of the variables depend on the

values of other variables. For instance, in Example 3.4, the generally increasing pattern
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observed for the majority of the data ceases to apply for cases 7, 10 and 13 (McDonald’s,
Ford and ATT/BELL). Case 10 has a suspiciously low retention value and may be a gross
error. The main point in this example is that the outliers were likely to be produced
by “problems” affecting the variable retention when the variable expenditure assumes
extreme values. Example 3.7 and Example 3.8 are other examples that represent this
situation (extreme values of one of the variables may cause the occurrence of outliers or
gross errors in other variables). In Example 3.7, it is known that the outliers, cases 5 and
16, correspond to periods of very high discharge. These extreme values of the variable
discharge may have affected the values of the other variables. For instance, the variable
salinity for cases 5 and 16 has high values compared to the general decreasing pattern
as shown in the plot in Figure 3.8. In Example 3.8, each plot in Figure 3.9 involving the
variable age has two unusually extreme values. These values may have caused outliers
in some of the other variables, due to the fact that the general pattern does not apply
when age is too high or low.

The assumption of independent mixture of two independent populations would also
be inappropriate in Example 3.5 where the variables were collected from independent
sources (agencies) and the outliers are likely to be due to special circumstances regarding
cigarette sales in the District of Columbia and Nevada. A similar situation (measurements

from independent sources) arises in Example 3.6.

3.3 New Contamination Model

The given examples highlight the need for a more flexible contamination model. Very
often, the p-dimensional observation vector collects measurements from different sources,
each being inclined to have its own statistical errors. There are also situations where
there is a strong dependency between the contaminated and uncontaminated entries and
between the uncontaminated entries and their contamination indicator. For example,

extreme values of one or more of the variables may increase the likelihood of outliers or
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gross errors in other variables.

Suppose that Y € RP has an elliptical distribution Hy with center p and scatter matrix
3, for instance Hy = N(u,X). We consider situations when sometimes Y cannot be
perfectly measured and the actual observations can be represented by the contamination

model:

X = (I — B)Y + BZ, (3.4)

where [ is a p X p identity matrix, Z is an arbitrary random vector and

B, 0 ... 0
p=| 0 P 0 1= Diag(B1, By, . . ., Bp) (3.5)
0 0 ... B,
is such that each B; (j = 1,...,p) is a Bernoulli random variable with

That is, €; represents the probability that the j-th entry of X is contaminated. No-
tice that in this model the contamination indicator matriz, B, is allowed to depend on
the uncontaminated vector, Y, therefore, ¢; = E{P(B; =1|Y)}. Moreover, the con-
tamination vector, Z, can depend on the contamination indicator matrix, B, and the
uncontaminated vector, Y. Thus, the contamination model (3.4) can be expressed in the

following hierarchical way.
Y, B|lY, Z|B)Y.

Notice that different values of ¢; and different dependence structures of the diagonal
elements of the contamination indicator matrix, B, generate different contamination
patterns. This will be further discussed in Section 3.4 of this chapter. To gain some

insight into the contamination model (3.4) we will consider some special situations.
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1. Tukey-Huber contamination model. If Y ,B and Z are independent, and
the diagonal matrix B of Bernoulli random variables has the special completely

dependent structure

P(Bi=B,=...=B,)) =1, (3.7)

then the contamination model generating X reduces to the Tukey-Huber multi-
variate mixture distribution (3.2). In this case the contamination model represents
independent mixture of two independent populations, the normal population and
the abnormal population. The Hertzsprung-Russell data set and the body and

brain weights data set are examples of this situation.

2. Independent-contamination model. In this case Y, B and Z are independent.
That is the probability of contamination for the different entries of X does not
depend on the uncontaminated vector, Y. Also, the contamination vector, Z,
does not depend on which entries are being contaminated and their values. This

situation can be expressed as,

3. B and Z are independent of Y. In this case the probability of contamination
for the different entries of X and the contamination vector, Z, are independent
of the uncontaminated vector, Y. But, the contamination vector, Z, depends on

which entries are being contaminated. This situation can be expressed as,
Y, B, Z|B.
4. B and Y are independent. In this case the probability of contamination for the
different entries of X is independent of the uncontaminated vector, Y. But, the

contamination vector, Z, depends on which entries are being contaminated and

their values. This situation can be expressed as,

Y, B, Z|B)Y.
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5. Y and Z are independent. In this case the contamination vector, Z, is inde-
pendent of the uncontaminated vector, Y. But, the probability of contamination
for the different entries of X depends on the uncontaminated vector, Y. Also, the
contamination vector, Z, depends on which entries are being contaminated. This

situation can be expressed as,
Y, B|Y, Z|B.

Equivariance Considerations

The classical contamination model (3.2) is translation-scale equivariant and affine equiv-
ariant. On the other hand, the proposed contamination model (3.4) is translation-scale
equivariant but not affine equivariant. To show that the contamination model is not

affine equivariant, suppose that the random vector X follows the contamination model
X=(I-BY +BZ,
and A is an invertible (p x p) matrix. Let

V = AX=A(I-B)Y + ABZ

#+ (I — B)AY + BAZ,

unless AB = BA (e.g. A is diagonal).

The lack of affine equivariance of the contamination model (3.4) is a bit surprising
given that the uncontaminated vector, Y, exhibits this property. However, this lack of
affine equivariance is consistent with the fact that some affine transformations of the
observable data, X, may considerably worsen the overall quality of the resulting data.
For instance, if By,..., B, are independent with P(B; = 1) = ¢;, then (1 — ¢;)100% of
the measurements X,,...,X,; (j =1,...,p) in each coordinate (variable) are expected
to be “good”, but only [(1 —€)(1 — €)...(1 —€,)]100% of linear combinations a; X;; +

a2 Xio+...+a,X;, (i = 1,...,n), of all the coordinates, can be expected to be “good”. We
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X, Xy X3 | Xi+Xo+ X3
0.891 | -0.482 | 10.000 10.409
0.902 | -0.769 | -1.722 -1.589
1.246 | -0.110 | 1.667 2.803
0.025 | -1.198 | -0.117 -1.290
-0.861 | 10.000 | 0.167 9.306
-0.215 | -1.464 | -1.265 -2.945
-1.157 | -0.294 | -0.527 -1.979
-0.149 | -1.598 | 0.910 -0.838
10.000 | -1.091 | -0.740 8.169
-0.671 | -0.007 | 0.884 0.206

Table 3.1: A Numerical Example of Increased Percentage of Contamination in a Linear
Combination of Variables.

illustrate this phenomenon for a small data set with dimension p = 3 in Table 3.1. The
table exhibits the values of each coordinate and the linear combination of the coordinates.
The coordinates are separately and independently 10% contaminated. However, we can
see that the linear combination of the coordinates are 30% contaminated. In particular
notice that in the contamination model (3.4), where ¢ =€ = ... =€, = ¢, (1 —¢€) no
longer represents the fraction of “good” data vectors (cases). Most of the observations,
Xiq,..., X, X; €RP (i=1,...,n) can be contaminated and this is often the case when
the dimension, p, is large.

Assuming that By, ..., B, from the contamination model (3.4) are independent with
constant €, = ... = ¢, = €, we generate another simple model of some practical interest.
This model represents situations when a certain proportion of outliers occurs indepen-
dently on each variable. For example, this could be the case if several measurements are

performed on the same individuals or items by several laboratories (calibration model).
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In the next section, we present the different correlation structures that the components
of the contamination indicator matrix B (3.5) may have in the contamination model (3.4).
Dependence structures that can be covered are general dependence, with both positive

and negative dependence.

3.4 Dependence Structures in the Contamination
Indicator Matrix

To study the different dependency patterns of the components of B, we consider the
bivariate Bernoulli distribution of B = Diag(B;, By) where P(B; =1) = P(By=1) =€

as shown in Table 3.2. From the table we have that the expected value of B; (j =1, 2)

B,
0 1
0]1—2e+6|e—06|1—¢€
By
1 €e—90 1) €
1—c¢ € 1

Table 3.2: Bivariate Distribution of B; and B,.

is € with variance €(1 — €). The expected value of BB, is § with covariance § — € and

. —e2 . .
correlation 6‘(51—;), in which

2

_ 5 —
C <97 <1, as 0<d<e
1—€e  €e(l—¢)

We consider three special cases of the dependence structures of the diagonal elements
of B. Firstly, the independent case described in Table 3.3. The joint distribution of B;
and B, in this case is given by P(B; = 1,B, = 1) = P(B; = 1)P(By = 1) = €. Secondly,
the perfect correlation case described in Table 3.4, which is the classical contamination
model where P(B; = By) = 1. The joint distribution of B; and Bs in this case is given

by P(B; =1,B, =1) = P(B; =1) = e. Lastly, the perfect rejection case presented in
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0 1
0l (1—e)(1—¢€) |e(l—€)|1—c¢
B,
1 e(1—¢) € €
1—€ € 1

Table 3.3: Bivariate Distribution of B; and Bs, Independent Case.

B,

Table 3.4: Bivariate Distribution of B; and Bs,, Perfect Correlation.

By

0 1

0[1—-2¢]|€e]1—c¢€

1 € 0 €

1—€¢ | € 1

Table 3.5: Bivariate Distribution of By and B,, Perfect Rejection.

Table 3.5 is an example of negative dependence. The conditional distribution is given by
P(By = 1|B; = 1) = 0, which implies that the joint distribution of B; and By in this
case is given by P(B; =1, By = 1) = 0 and the conditional distribution P(By = 1|B; =
0) = =. The three cases presented differ mainly in J, the expected value of BB, (see
Table 3.2). In the case of independence § = €2, in the perfect correlation case § = ¢ and

in the perfect rejection case § = 0.
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Notice that we only consider bivariate cases in Tables 3.3 — 3.5 and situations where
P(B; = 1) = P(By = 1) = e. On the other hand, the more general multivariate distri-
bution of a Bernoulli vector (B4, ..., B,) with P(B; = by,...,B, =b,) = P(b1,...,bp),
bj = 1or 0 for j = 1,...,p has too many parameters, namely (27 — 1) parameters.
Joe (1997) has an effective proposal for drastically reducing the number of parameters
and still attaining a wide range of correlations structures. Joe (1997) proposed the ex-
changeable mixture model as a reasonable choice for some applications. The exchangeable
mixture model is constructed as follows. Conditional on a random parameter 6 the vari-
ables By, ..., B, are ii.d. Bernoulli(f). Therefore, the unconditional joint density for

B, ..., B, is given by
1
P(by,...,b)=P(B,=by,...,B,=b,) = / 0 (1 — )P *dG(9), (3.8)
0

where k = Z?Zl b;j, and G(6) is the some specified distribution for # with support on
[0, 1].

Joe (1997) indicates that the exchangeable mixture model only includes non-negative
dependence structures. For some cases, the functional form but not the mixture repre-
sentation of the exchangeable mixture model can be extended to include negative de-
pendence. This feature will help to deal with the negative dependence of the perfect
rejection structure in the contamination model (3.4).

Note, for the rest of the thesis we mainly consider situations in which By, ..., B, are
i.i.d. Binomial(1, €).

The family of distribution functions H generated by the contamination model (3.4)
will be denoted by H. Notice that H constitutes a contamination neighborhood for the
central elliptical distribution Hy. To gain further insight into the family 4, in the next
section we consider some dependence situations among the contamination vector, Z, the

contamination indicator matrix, B, and the uncontaminated vector, Y.
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3.5 Dependence Structures in the Contamination
Model

In this section we consider different kinds of dependence structures, other than the de-
pendence of the components of the contamination indicator matrix B (3.5). We illustrate

the three dependence situations 2, 3 and 4 discussed in Section 3.3.

3.5.1 Independent-Contamination Model

We consider the independent-contamination model where the probability of contamina-
tion for the different entries of X does not depend on the uncontaminated vector, Y.
Also, the contamination vector, Z, does not depend on which entries are being contami-
nated and their values. Let Y, Z and B be independent. Then the model can be written
as follows.

X =(-B)Y +BZ, (3.9)

where for example Z = pu + N(u,X) and p € RP. Suppose that F' and G are the
distribution functions of Y and Z, respectively. Then, for the case p = 2 the distribution

function H of X can be written as,
H(zy,23) = €00 F (21, 22) + €10G1(21) F2(22) + €01 F1 (1) Ga(22) + €11G (1, 22),
where €;; = P(B;; = k, Bjs = j) for k,j = 0,1. More generally, we write

H(l‘l, e ,.’L'p) = P(le = O,Big = 0, e aBi(p—l) = O,Bip = 0)F(3§1,$2, .. .,Ip_1,1?p)

+P(Bi1=1,Bj=0,...,Bi;p-1)=0, Bjp =0)G(x1) F (22, ..., Tp_1, Tp)

+P(Bii=1,Bp=1,...,Bjp-1)=1, Byp=0)G (71,7, ...,7,-1)F (7))
+P(BZ1 = ]_, Big = 1, ceey B’i(p—l) = 1aBip = ].)G(.l’l,xz, ce ,CUpfl,.Z'p).
For simplicity we have omitted the subscripts indicating the corresponding marginal

distributions of F' and G. For instance, G(z;) stands for G;(z;), G(z;,x;) stands for
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Gij(z;,xj), etc. Note that this model will be mainly used throughout the rest of the

thesis.

3.5.2 Contamination Vector as a Function of Contamination
Indicator Matrix

We consider the dependence situation where the contamination vector, Z, depends on

which entries are being contaminated. The probability of contamination for the different

entries of X and the contamination vector, Z, are independent of the uncontaminated

vector, Y. Let Y and B be independent and given B, let Y and Z be independent.

Then the model can be written as follows.
X =(I - B)Y + BZ(B),

where for example Y ~ N(0,7) and Z ~ N(u(B),X). For simplicity, let p = 2 and B

be a bivariate Bernoulli random variable with P(B; = 1) = P(By; = 1) = ¢, as shown in

Table 3.2, and X = LT with —1 < 7 < 1. For different values of B; and B, we
7 1
define p(B) as follows.
1 0 k1
© = p = ,
0 1 ko
wl|! = ]:cl
1 ko

where k1, ko, 151, ko are arbitrary constants.

Therefore, when B; =1, B, = 0, X can be expressed as

x=% )| ~ N o) r
Y, 0
When B; =0,B; =1, X can be expressed as
X = h ~ N 0 i
Zy ko
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When B; = B, =1, X can be expressed as

75 R

Zo ko

X = b))

I

3.5.3 Contamination Vector as a Function of Contamination
Indicator matrix and Uncontaminated Vector

We consider the dependence situation where the contamination vector, Z, depends on
which entries are being contaminated and their values. The probability of contamination
for the different entries of X is independent of the uncontaminated vector, Y. Let
W ~ N(0,1), Y ~ N(0,I) and B be independent. Then the model can be written as

follows.
X =(I-B)Y + Byg(Y,B,W).

For simplicity, let p = 2 and B be a bivariate Bernoulli random variable with P(B; =
1) = P(By = 1) =€, as shown in Table 3.2 . For different values of B; and B, we define
Z =g(Y,B,W) as follows.

For B; =1 and B, = 0, Z can be written as

7 — Z1 _ ,7_Y'2_+_V1_7_2W + kl
Z2 }/2 k2
This implies that the distribution of Z is bivariate normal with mean K = F and
ko
covariance X = L , where k1 and k; € R, and —1 < 7 < 1. Notice that 7 is the
T 1

correlation coeflicient between the contaminated coordinates and the uncontaminated
coordinates in the effective cases.

For B =0 and By, =1, Z can be written as
7 — Zy _ Y N k1
ZQ ’Tle + V 1-— T2W k'g
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This implies that the distribution of Z is bivariate normal with mean K = and
ko
1
covariance ¥ = T
T 1
For B; = By, =1, Z can be written as
7 = Zl — le + I;Zl
ZQ ’Tle + vV 1— T2W k'g
This implies that the distribution of Z is bivariate normal with mean K= ]fl and
ko
. 1 7 = =
covariance X = , where ki and ks € R
7 1
When B; =1, B, = 0, X can be expressed as
X — A _ 7Y + V1 — 2W " k1 ,
Y, Y, 0
which implies that X has a bivariate normal distribution with mean K = ka and
0
covariance X = L
7 1
When B; =0, B; =1, X can be expressed as
[ v _ v; o)
Z2 ’7'Yv1+\/1—7'2W k‘z
which implies that X has a bivariate normal distribution with mean K = 0 and
ka
covariance X = L
7 1
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When B; = B, =1, X can be expressed as

x_| 24| _ Yy LR |
% Y+ VI= W ks
which implies that X has a bivariate normal distribution with mean K= ]fl and
ko
covariance X = L
7 1

A more concise way to express the bivariate distribution of X is in terms of densities.
Suppose that £ = k; = ko and k= k~1 = k~2. Let
fx(z1,22) = Z h(z1, z2[t, 5)p(i, j)-
4,j=0,1

For different values of B; and B,, we have the following density functions:

hor,22]1,0) = ¢(‘”\;1’“_;) g0l = bl = b

h(z1,22[0,1) = ¢ (xg\;lk_%m) \/11_—72¢(9U1) = ¢ (z1, 79 — k);

To — T

V1—r712

) s (es) = o (on,

h(x1,72[0,0) = ¢< Vio 2

¢(331 - if) = ¢T(331 - /~€,3’72 - if)a

Ty — 2k — T2 1
h(z1,22[1,1) = ¢( - 1)

V1—12 V1—r7?
where ¢(+) is the standard normal density function, and ¢ (-, -) denotes the joint density

function of the bivariate normal with means equal to zero, variances equal to one and

correlation equal to 7.
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3.6 Robust Estimation of Multivariate Location
and Scatter: Problems and Motivation

Regarding the processing of large data sets, “traditional” affine equivariant high break-
down point robust multivariate location and scatter estimates have two main shortcom-

ings:
e Computational complexity.

e Possible lack of robustness under the contamination model (3.4).

All known affine equivariant high breakdown point estimates are solutions to a highly
non-convex optimization problem and as such pose a serious computational challenge.
The main challenge is to find good initial estimates from which one searches for a nearest
optimum in hopes that it produces a global optimum. The initial estimates are invari-
ably obtained by using some form of repeated random sub-sampling of N, cases of the
original data set, with the number of samples N; determined in order to achieve a high
breakdown point with high probability, e.g., with probability .99 or .999 (see for example
Rousseeuw and Leroy, 1987). It happens that achieving this latter condition results in
computational algorithms that have exponential complexity of order 27 in terms of the
dimension p of the data set. This rules out the use of such estimates for many data
mining applications where one has in excess of 200 — 300 variables. In addition, the
robust covariance matrix based on projections has a computational complexity n? in the
number of observations if implemented in a naive manner. Empirical evidence indicates
that a clever implementation can reduce this to approximately n * log(n). Since many
data mining applications involve hundreds of thousands if not millions of rows (cases),
the current projection estimates are not feasible for large data sets.

In order to deal with such severe scalability limitations, Rousseeuw and Van Driesen
(1999) proposed a “Fast MCD” (FMCD) method that is much more effective than naive

subsampling for minimizing the objective function of the MCD. The FMCD seems capable
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Number of Variables 2 5 | 15120 | 25| 50 | 100

% Rows Spoiled (all variables) 1023 | 54|64 72]92( 99

% Rows Spoiled (pairwise variables) | 10 [ 13 [ 16 | 17 | 18 | 19 | 21

Table 3.6: Percentage of Rows with at Least One Contaminated Entry when each
Variable Independently 5% Contaminated (¢ = .05) in the Independent-
Contamination Model.

of yielding “good” solutions without requiring huge values of Ny. But FMCD still requires
substantial running times for large p, and it no longer retains a high breakdown point
with high probability when n is large.

We consider the possible lack of robustness of the traditional robust estimates under
the contamination model (3.4) to be a more serious problem than their computational
complexity. Traditional robust estimates have a high breakdown point for all p under
the classical contamination model (3.2); in fact, if conveniently tuned, these estimates
may attain the maximum breakdown point (BP = 1/2) for affine equivariant estimates
(Davies, 1987). However, we will show that the traditional affine equivariant robust
estimates may not satisfy the robust properties of high breakdown point under the con-
tamination model (3.4).

The possible lack of robustness of affine equivariant estimates can be hinted from the
simple probability calculations shown in Table 3.6. For small fraction of contamination
in each variable ¢ = .05, consider the independent-contamination model (3.9) where
By, B, ..., B, are i.i.d. Binomial(1, ¢).

Given the dimension of the data set p, the second row of Table 3.6 exhibits the
percentage of cases (rows) with at least one contaminated entry considering all variables
(columns). The third row of this table exhibits the percentage of cases (rows) with
at least one contaminated entry considering all pairs of variables one pair at the time.
This probability has been numerically calculated with the details given in the chapter

appendix.
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We can see from Table 3.6 that when we consider all the variables the percentage
of contaminated cases increases dramatically for large number of variables. Traditional
affine equivariant robust estimates were not designed to cope with these situations, since
they work globally with all the variables and require that the majority of the data (more
than half) be uncontaminated. On the other hand, if we consider two variables at the
time the percentage of contaminated cases is not high even for large number of variables.

In the following two chapters we offer a solution to the problems described above.
We focus on considering the fewest possible dimensions of the vector we observe. We
propose a coordinate-wise location estimate and a pairwise scatter estimate. Thus the
proposed schemes do not involve all the coordinates of the vector, but rather use one
dimension at the time for the location estimate and two dimensions at the time for the
scatter estimate. In this way, we lessen the computational burden and attain the high
breakdown point property under the contamination model (3.4). Using the smallest
possible dimensions minimizes the fraction of contaminated cases which are used at each
step in the computation of the estimates as suggested by the probability calculations in
Table 3.6.

The proposed estimates are not affine equivariant, but this often is an unnecessary
property in large data sets such as data mining applications. Also, this is not a disad-
vantage of the estimates since there are many practical situations where there exists a
natural representation for the data (e.g. the form in which they have been measured)
except perhaps for a shift and/or some unit changes and in which affine equivariance

may not be necessarily a desirable property.

3.7 Chapter Appendix

We wish to calculate the maximum proportion of contaminated rows that may occur un-

der the independent-contamination model (3.9) when we consider all the p pairs of

72



columns in a p-dimensional data set. Let By; (k=1,...,n,j =1,...,p) be independent

Bernoulli random variables with P (By; = 1) = €. Let
n
Sz'j = ZmaX{BM,BM}, Z,j = 1,...,p.
k=1
Then we are interested in studying

1
pn=1E {— maxSij} . (3.10)

n i<j

To investigate the behavior of p,, we generated 1000 random matrices of the form

Agi1 Agpriz - Agap
A = Akt Akz -+ Agp ’ k=1,...,1000,
Agnt Agnz - Aknp

where the Ay;;’s are independent Bernoulli random variables with P (Ag; = 1) = ¢, for
allk=1,...,1000,/=1,...,nand j =1,...,p. The value of p, (3.10) is then estimated
by

| 1000 L
1000 (nilfjx n Z max { Ay, Aklj}> .
k=1 =1
Our results for the case ¢ = 0.05, n = 1000 and p = 2,5, 15, 20,25, 50, 100 are pre-

sented in Table 3.6. Similar results were obtained for other values of n.
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Chapter 4

Robust Estimation of Multivariate
Scatter

4.1 Classical Scatter Estimate

Suppose that X,..., X, where X; € R, 1 =1,...,n, are independent and identically
distributed according to a multivariate distribution with mean g and covariance matrix
3. The classical and best known estimate of the covariance matrix 3 is the method of
moment estimate (MME) which is defined as follows.

Svme = EZ(X,-—ﬂ) (Xi— i), (4.1)

=

where i = %Z?:l X ;. Note that estimation of the correlation matrix R can always
be derived from the relation R = DXD, where D = Diag (1//0,;, ..., 1/\/Epp) and
o11,---,0p, are the diagonal elements of the covariance matrix X.

The breakdown point is an important feature of the reliability of an estimate, as it
indicates, roughly speaking, the smallest proportions of arbitrary values (outliers) that
bring the estimate out of the boundaries of the parameter space. The definition of the
breakdown point for the covariance matrix estimates is given in Section 2.2 of Chapter 2.
Unfortunately, the breakdown point of the method of moment estimate (4.1) is 1/n,
which indicates very poor resistance to outliers.

In the last three decades, many attempts to overcome the poor resistance properties of

the classical sample dispersion matrix (i.e. covariance and correlation matrices) have been
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made. The robust proposals can be classified in two main categories: robust pairwise
estimation and robust global estimation of the dispersion matrix. The first one has
the advantage of being able to deal with missing values in the data set, but is not
affine equivariant and often does not provide a positive definite matrix directly. The
second category usually ensures affine equivariance and positive definiteness, but is less
appropriate to deal with missing data. In addition, the main drawback remains the
computational feasibility of such methods for high dimensional data sets. At this point,
it seems appropriate to revisit old proposals for estimating scatter based on using only
two variables at a time.

The discussion above motivates the construction of robust dispersion matrices by
using pairwise robust correlation (or covariance) coefficients as basic building blocks.
Several such methods have been around for many years, but they have been mostly
ignored because: (a) of the lack of affine equivariance, and (b) that the resulting dis-
persion matrix built up from the pairwise estimates lacks positive definiteness. We are
motivated to re-examine the pairwise approach because: (1) the lack of affine equivari-
ance is not necessarily important for large data sets such as in data mining applications,
and (2) there exist good methods for obtaining positive definiteness, such as Maronna
and Zamar (2002), and Rousseeuw and Molenberghs (1993) who proposed three meth-
ods; respectively, the shrinking method, the eigenvalue method and the scaling method.
When the covariance itself is the quantity of interest, one should transform it to a positive
definite matrix using one of these methods; while if some particular entries in the matrix
are the values of interest, then the estimated values should provide a good estimation of
the real values. The simplest pairwise methods are based on pairwise robust correlation
or covariance estimates such as: (i) classical rank based methods, such as the Spearman’s
p and Kendall’s 7 (see for example Abdullah, 1990); (ii) classical correlations applied af-
ter coordinate-wise outlier insensitive transformations such as the quadrant correlation
and 1-D “Huberized” data (see Huber, 1981, page 204); and (iii) bivariate outlier resis-

tant methods such the method proposed by Gnanadesikan and Kettenring (1972) and
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studied by Devlin, Gnanadesikan and Kettenring (1981). The pairwise approach is ap-
pealing in that one can achieve high breakdown point on a pairwise basis that results in
a high breakdown point for the overall covariance or correlation matrix, and at the same
time reduces the computational complexity in the data dimension p from exponential
to quadratic (from 2?7 to p?). This greatly increases the range of large data sets prob-
lems to which robust covariance and correlation estimates can be applied, e.g., 200 — 300
variables becomes quite feasible.

In this chapter, we will concentrate on estimates in the class (ii) of pairwise robust

estimates originally introduced by Huber (1981).

4.2 Simple Class of Pairwise Robust Scatter
Estimate

The method we are proposing to estimate the scatter matrix draws on work done by
Huber (1981). The work remains largely uninvestigated due to the fact that it is not
an affine equivariant estimate. We focus on the estimation of correlation matrices, since
estimation of covariance matrices can be derived in the same way. Huber defines robust
correlation coefficient estimates as follows.

Suppose X 1,..., X, is a multivariate sample where X; € RP, ¢ = 1,...,n. Let
s; (j = 1,...,p) be some robust scale estimates and let ¢; (j = 1,...,p) be location

M-estimates defined by the following equation:

anw (Lj _t") =0
i=1 53

where ¢(x) is an appropriate score function. The following two cases are of primary
interest:
e Huber Function
Ye(x) = min{max {—c,z},c},

where ¢ € R, is a user-chosen constant.
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e Sign Function
¥(x) = SGN(z),

where SGN(z) has the values +1 for z > 0, -1 for z < 0, and 0 for z = 0.

The robust correlation coefficient estimate 7, is now defined as the Pearson correla-

tion coefficient computed on the transformed data Y;; = ¢ ((Xi; — t;) /s;), s =1,...,k;

j:17"'7p?

- Zz 1
ok = 21 2
\/ Zz IY;]n Zi:IYVik

Notice that Y} =Y}, = 0 by definition of t; and .

To save computing time and still gain robustness, we can use another robust location
estimate ¢; = median{X;;} and therefore the robust correlation coefficient estimate has
the following form:

S v (PR L A
NS )“zz (Ve Vi)

When 1 is the Huber function, we call this the Huberized correlation coefficient, and

(4.2)

when 1 is the sign function the estimate is the so-called quadrant correlation (QC)
coefficient, which is the Huberized correlation coefficient with tuning constant ¢ = 0,
since lim v, (z) = SGN(x).
c—0
In the case of n observations of a p-dimensional random vector, we use the estimate
7, to estimate every correlation between X; and X, (j,k =1,...,p) to get the (4, k)
entry of the correlation matrix R. The pairwise Huberized correlation matrix estimate

can, therefore, be defined as R = (735)41...p-

4.3 Performance of Pairwise Huberized Scatter
Estimate

In this section we report the results of a Monte Carlo study on the performance of the

pairwise Huberized covariance matrix estimates in the contamination model (3.4). We
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considered sample sizes n = 10p where p is the number of variables taking values 10, 30

and 50. The data followed the independent-contamination model:

X =(I-B)Y +BZ,

where Y, B and Z are independent and the diagonal elements of B, By, ..., B, are i.i.d.

Binomial(1, €).

In view of the lack of equivariance of the pairwise Huberized covariance matrix es-

timates their behavior may depend on the covariance structure; hence we generated

correlated data as follows: Generate Y; as p-variate normals N,(0,X) for i = 1,...,n,

and Z; as N,(pg,dI) for some py = (uo, - - -, flo)p; where 6 = 0.1. Generate By, ..., B,

as i.i.d. Binomial(1,¢).

The covariance matrix 3 generated in our simulation study was obtained as follows:

1.

Using the condition number, which is defined as the square root of the largest eigen-

values divided by the smallest eigenvalues CN = %, we generated multivariate
P
normal data with mean vector 0 and covariance matrix, ¥, = Diag(Ay,...,A,) as

follows:

e Set the largest eigenvalue A; = 1 and the smallest eigenvalue \, = ﬁ with

equally spaced eigenvalues in between.

o Generate X, as p-variate normals N,(0,3X,) for ¢ = 1,..., N = 100, 000.

. Using random orthogonal matrix, the correlation structure of the data set X, where

X = X4,..., Xy, is decided at random by rotating the data set using a method
proposed by Fang and Zhang (1990), which we describe briefly as follows:

e Consider the n x p matrix X;

o Generate a random matrix Y as Npx,(0, Ipxp);

e Let U = Y(Y'Y)"Y/2. Thus U has a uniform distribution over the Stiefel

manifold, the set consisting of all orthogonal random matrices;
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e Rotate the matrix X, X, = XU which has a different correlation matrix.
3. The covariance matrix ¥ = Cov(X,).

The pairwise Huberized covariance matrix estimate 3 was obtained from the Huber-
ized correlation coefficient estimates using the median as the location estimate and the
median absolute deviation (MAD) as the scale estimate. We compared the estimated

covariance 3 with the true covariance X using the following two metrics:

1. Euclidean distance or the straight line distance between the coordinates of ¥ and

f], which is given by

R 1 P P ,
dz,8) = | ——— &1 — 0432,
&%) =\ b+ 1) P Z' vl
=1 j=1
where ;5,05 (4,7 =1,...,p) are elements of $ and ¥, respectively.

2. Another choice for the metric is to use the determinant of the covariance matrix 3,
which is the generalized variance. The generalized variance converts the information
on all the variances and covariances into a single number. Generalized variance also
has interpretations in the p-space scatterplot representation of the data. The most
intuitive interpretation concerns the spread of the scatter about the mean vector.
The metric of the determinants of & and ¥ called etgenvalue distance is defined as

follows. 1/p

d(E,fl) = |log (detZ)

det3
I? 5\}/1)
= |[log [ =1
HRPH

1< i

= |, 2 185,

P A

1 p

- X [10g (%) — Tog(A,)]

I

where 5\1 and \; (1 =1,...,p) are eigenvalues of 3 and 3, respectively.
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Figure 4.1: Performance of Pairwise Huberized Covariance Estimates using Eigenvalue
Metric, for Data Sets with Size of Contamination pg = 100 and p = 10.

We ran 1,000 Monte Carlo simulations from the above distributions with CN =
1,10, 20, 50 and 100 and size of contamination g = 5,10 and 100. The samples were the
same for all estimates and for each combinations n, p, € and ¢, where c is the tuning con-
stant of the Huber score function. We considered ¢ = 0,.01,.02,...,.10 with ¢ = 0,1,1.25
and 1.5. For all values of ¢, the results for the pairwise Huberized covariance estimates
indicated (tables not shown here) that the eigenvalue distances increased with increasing
values of the condition number; however, the Euclidean distances were not affected. The
size of the contamination did not affect the results either. Figures 4.1 — 4.3 illustrate the
varying degrees of change in the eigenvalue distances for various values of the condition

number, CN = 1, 10 and 100 when the size of the contamination is large, oy = 100.
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Figure 4.2: Performance of Pairwise Huberized Covariance Estimates using Eigenvalue
Metric, for Data Sets with Size of Contamination pg = 100 and p = 30.

For p = 10, 30 and 50 respectively, each figure plots the eigenvalue distance against
the fraction of contamination ¢, for ¢ = 0,1 and 1.5.

From the plots, we can see that for CN = 1,10 and 100, the eigenvalue distance
between the estimated covariance and the true covariance decreases as the dimension of
the data increases. In addition, for all data dimensions the effect of the different values of
the tuning constant c is minimal as the fraction of contamination e increases. Moreover,
when CN = 1 the performance of the pairwise Huberized covariance estimates were not
affected with the value of the tuning constant c.

The performance of the Fast MCD (FMCD) covariance estimates were also monitored.
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Figure 4.3: Performance of Pairwise Huberized Covariance Estimates using Eigenvalue
Metric, for Data Sets with Size of Contamination pg = 100 and p = 50.

We used the same sampling situations with CN = 1 since the Fast MCD covariance
estimates are affine equivariant. The performance of the Fast MCD covariance estimates
for the size of contamination, o = 5,10 and 100 is shown in Figure 4.4. The figure
displays plots of the eigenvalue distance versus the fraction of contamination e, for p =
10,20 and 30. From the plots, we can see that in general, the Fast MCD estimates perform
poorly for large contamination sizes and that their performance worsen considerably as
the dimension p increases.

We also considered comparing the performance of the pairwise Huberized covariance

estimates with the performance of the Fast MCD covariance estimates using eigenvalue
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Figure 4.4: Performance of Fast MCD Covariance Estimates using Eigenvalue Metric, for
Data Sets with Sizes of Contamination po = 5,10, 100 and p = 10, 20, 30.

and the Euclidean distances. We generated 1,000 data sets from the above distributions
with CN =1, gy = 5,10 and 100, and ¢ = .05, .10, .15, .20, .25 and .30. We used ¢ = 0
for the Huber score function, which is the quadrant correlation (QC) coefficient.

The performance results of the pairwise Huberized covariance estimates and the Fast
MCD covariance estimates are displayed in Tables 4.1, 4.2 and 4.3 for p = 10, 20 and 30,

respectively.
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Small

Medium

Large

Pairwise FMCD

Pairwise FMCD

Pairwise FMCD

d1 d2 dl d2

d1 d2 d1 d2

d1 d2 d1 d2

0.05
0.10
0.15
0.20
0.25

0.30

0.073 0.022 0.192 0.023

0.200 0.034 0.268 0.103

0.379 0.056 0.639 0.168

0.588 0.092 0.908 0.254

0.856 0.159 1.128 0.337

1.194 0.295 1.287 0.386

0.072 0.022 0.207 0.030

0.192 0.031 0.641 0.368

0.375 0.054 1311 0.633

0.599 0.099 1.775 1.147

0.841 0.151 2.118 1.204

1.162 0.252 2.323 1.523

0.063 0.021 0.276 2.036

0.194 0.035 2.274 35.684

0.366 0.057 3.787 73.045

0.581 0.099 4.887 116.669

0.848 0.156 5.681 137.926

1.166 0.221 6.075 155.076

d1: Eigenvalue Distance ; d2: Euclidean Distance

Small: g = 5; Medium: po = 10; Large: po = 100

Table 4.1: Performance of Pairwise Huberized (¢ = 0) and Fast MCD Covariance Esti-
mates for Data Sets with p = 10.

Small Medium Large
Pairwise FMCD Pairwise FMCD Pairwise FMCD
Eps | dl d2 dl d2 dl d2 d1 d2 dl d2 d1l d2
0.05 [ 0.070 0.008 0.132 0.021 | 0.065 0.009 0.463 0.081 | 0.0567 0.008 1.812 10.475
0.10 | 0.215 0.016 0.610 0.067 [ 0.211 0.015 1.359 0.286 | 0.205 0.015 35.573 00
0.15] 0.392 0.026 0.947 0.108 [ 0.389 0.028 1.914 0.487 | 0.379 0.027 166.804 00
0.20 | 0.598 0.044 1.179 0.150 | 0.606 0.046 2.264 0.590 | 0.594 0.044 00 00
0.25 [ 0.856 0.072 1.355 0.177 | 0.853 0.073 2.511 0.791 | 0.857 0.083 00 00
0.30 [ 1.170 0.123 1.486 0.219 | 1.177 0.121 2.695 0.838 | 1.184 0.093 00 00

d1: Eigenvalue Distance ; d2: Euclidean Distance

Small: pg = 5; Medium: pg = 10; Large: po = 100

Table 4.2: Performance of Pairwise Huberized (¢ = 0) and Fast MCD Covariance Esti-
mates for Data Sets with p = 20.
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Small Medium Large
Pairwise FMCD Pairwise FMCD Pairwise FMCD
Eps d1 d2 d1 d2 d1 d2 d1 d2 d1 d2 d1 d2
0.05 | 0.063 0.0056 0.267 0.018 [ 0.065 0.006 0.834 0.106 | 0.068 0.005 10.926 oo
0.10 | 0.212 0.010 0.730 0.049 | 0.211 0.010 1.347 0.186 | 0.211 0.018 88.570 ¢
0.15 | 0.384 0.018 1.042 0.077 | 0.388 0.020 1.640 0.273 | 0.390 0.019 251.030 oo
0.20 | 0.589 0.032 1.263 0.105 | 0.595 0.031 2.150 0.501 [ 0.600 0.029 00 00
0.25 | 0.849 0.047 1.425 0.127 | 0.855 0.052 2.935 1.259 | 0.857 0.049 00 00
0.30 | 1.166 0.082 1.544 0.148 | 1.178 0.085 4.067 4.330 | 1.176 0.082 00 00

d1: Eigenvalue Distance ; d2: Euclidean Distance

Small: pg = 5; Medium: uo = 10; Large: po = 100

Table 4.3: Performance of Pairwise Huberized (¢ = 0) and Fast MCD Covariance Esti-
mates for Data Sets with p = 30.

We can see that, in general, for both metrics the Fast MCD covariance estimates perform

poorly for large contamination sizes and that their performance worsen considerably as

the dimension p increases. However, the performance of the pairwise Huberized covari-

ance estimates were not affected as the dimension p and the size of contamination g

increase. The performance of the two estimates becomes dramatically different for large

p as the fraction of contamination e increases.
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4.4 Asymptotic Properties of Huberized
Correlation Coefficients

The objective of this section is to show that under certain regularity conditions the

Huberized correlation coefficient estimates are consistent and asymptotically normal.

4.4.1 Consistency of Huberized Correlation Coefficients

The next theorem shows that under certain regularity conditions, if the location and the
scale are consistent estimates, then the Huberized correlation coefficient estimates are

also consistent.

THEOREM 4.1 - Consistency of Huberized Correlation Coefficients
Let (X1,Y1),...,(Xn, Yn) be a random sample from a bivariate distribution. Let jix and
[y be location estimates, and 6x and Gy be scale estimates. Let 1) : R — R satisfy the

following:
P.1 p(—u) = —1p(u), u > 0;
P.2 1(u) is non-decreasing and uli)ngo Y(u) > 0;
P.3 1 1s continuously differentiable;

P4 i, ' and ¢'(u)u are bounded.

Then if,
ﬂX — Ux (a.s.)
ﬂy — Uy (a.s.)
6’X — OXx (0,.8.)
&Y — Oy (0,.5.)

as n — oo, then 7 — r almost surely as n — oo where
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Cov (

= e J(Y;sv»'

The relation between r and p = Corr(X,Y’) will be studied in Section 4.5.

4.4.2 Asymptotic Normality of Huberized Correlation
Coefficients
Having shown the consistency of the Huberized correlation coefficient estimates, we turn
our attention to their asymptotic distribution. We will focus on the MM-location esti-
mates, an important special case of robust location estimates, which is defined below.
We need some definitions and assumptions that will be used in the statement of

Theorem 4.2 and its proof.
Assume that ¢ : R — R satisfies P.1 — P.4 from Theorem 4.1. Moreover, we will

assume that the real function y : R — R, satisfies the following:

A1 x(0) =0, x(—u) = x(u), v > 0 and sup x(u) = 1;
u€ER
A.2 x(u) is non-decreasing in u > 0;

A.3 x is continuously differentiable;

A4 x, X', X'(u)u are bounded.

We now define the S-scale family of estimates (Rousseeuw and Yohai, 1984).
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DEFINITION 4.1 - S-scale estimates — Let X1,..., X, be a random sample and 0 <

b <1/2. The S-scale G, is defined as

on =gl

where s,(t) is given by

1 < (XZ- - t)
- ) x = b (4.3)
n 1221 Sn(t)
Naturally associated with this family are the S-location estimates.
DEFINITION 4.2 — S-location estimates — Let X4,..., X, be a random sample, and
for each t € R let s,(t) be as in (4.3). The S-location estimate fi, is
[y, = inf .
fin = arg inf s,(1)
In analogy with Yohai (1987) we will refer to the M-location estimates calculated with

an S-scale as MM-estimates.

DEFINITION 4.3 — MM-location estimates — Let X1,..., X,, be a random sample and

0n be an S-scale estimate. The solution fi, of
T (F) =0
15 called the MM-location estimate of X1,...,X,.

The following theorem states the asymptotic normality of the Huberized correlation

coefficient estimates under certain regularity conditions.

THEOREM 4.2 - Asymptotic Normality of Huberized Correlation Coefficients -
Let (X1,Y1), .., (Xn, Ya) be a random sample of independent and identically distributed
random vectors with elliptically symmetric distribution. We consider the Huberized cor-

relation coefficient estimate defined as follows.

Ly llﬂ(xz ux)w(Yi&—fY)
Yl ()] [zt (%52
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where fix and iy are MM-location estimates, 6x and 6y are S-scale estimates. Then,

\/ﬁ(f — ’I‘) —d N(O, AV),

as n — oo, where

o PeCe)e(R))
o () o ()

The variance of the limiting distribution of \/n(f — r) can be expressed as

2 2 2
011 0922 U 033 U u u U
AV=—+(1/4)——+ (1/4)—— — ——) — —) +(1/2 ——

vw (1/ )112 vw (1/ )w2 vw 012(1)2111) Jlg(w%) (1/ )0231)211)2’

where

o1 = Var

g2 = Cov

{
{
= anfo(V
{
{
{

099 = Var

<
o = oo (5) v (5
(=)

033 — VG/]" 7/}2

and
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To simplify the notation, define

o (50 (5}

where pux, py are locations and ox, oy are scales of X and Y, respectively. Then the

asymptotic variance can be written as follows.

AV = Con — 1 +(1/4) Co4 ; G ch
Co2C20 Co2 Cp2C20
2 2
C40 — Cyp C13 C11

1/4 — — —_—

+(1/4) Z ot (€13 — c11€02) 2,0
C11 i
_(031 - 011020) 5 + (1/2) (CQQ — CozCzo)ﬁ. (45)
C0C02 Co2C20

The proofs of Theorems 4.1 and 4.2 are relatively straightforward and given in Sec-

tions 4.9.1 and 4.9.2 of the chapter appendix.

Estimating the Variance of the Huberized Correlation
Coefficients

To estimate the asymptotic variance (4.5) of the Huberized correlation coefficient esti-
mate, replace c¢;; by ¢;; which is defined as follows.

by =30 <M> v <M> ,
n & o Oy

X

where [ix and [iy are MM-location estimates and 6x and 6y are S-scale estimates of X
and Y, respectively.

We provide a C source called within Splus. The program computes the Huberized
correlation coefficient estimate 7 (4.4) and its standard error SE(7). The latter is cal-
culated from the asymptotic variance of the estimate (4.5). Below we give the skeleton
of the program for computing the robust estimate. The input is a data set containing n

2-D points of the form (X;,Y;) and the tuning constant of the Huber score function c.
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1. For each variable X and Y, do:

(a) Compute the MM-location estimates and S-scale estimates to get fix, fly, 0x

and a'y.

(b) For i =1 to n, do: 9, (%) and 1, (M)

oy

[\

. Compute the Huberized correlation coefficient estimate

C11 — C10C01

\/(620 - é%o)(ém - égl)

r =

AV

n "

w

. Compute the standard error SE(7) =

4. Return the Huberized correlation coefficient estimate and its standard error: (7, SE(7)).

The score function used to define the Huberized correlation coefficient estimate is not
continuously differentiable. Since Theorem 4.2 requires this property, it is uncertain that
the asymptotic variance formula (4.5) can be used to estimate the standard error of the
Huberized correlation coefficient estimate. However we will show here, by means of the
following numerical experiment, that the formula (4.5) can still be used.

To evaluate the accuracy of the estimated standard error of the Huberized correlation
coefficient estimates, SE(7), we conducted a Monte Carlo experiment which consists of
the following: Generate 5000 Monte Carlo samples of size n from a bivariate normal

1L p

distribution with mean vector 0 and covariance matrix X = . Compute 7; and

p 1
SE(#;) for each sample (i = 1,...,5000), using the above computer program. Compute

the empirical approximation to the standard deviation; SD(71, ..., 75000) = SD(7), and
the mean of the standard errors; mean(SE(7),. .., SE(75000)) = SE. To give some mea-
sure of variability of the standard errors, compute the standard deviation of the standard
errors; SD(SE(71), . .., SE(75000))-

The experiment was carried out for different sample sizes, n = 20, 30, 50 and 100 and

with different correlation coefficients, p = 0,.1,.25,.50,.75,.90 and .99. The results are
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n =20 n =30 n = 50 n = 100

p |sD@) SE SD(#) SE SD(#) SE SD(#) SE

0.00 | 0.228 0.211 (0.021) | 0.187 0.176 (0.013) [ 0.141 0.139 (0.007) [ 0.099 0.099 (0.003

0.10 | 0.224 0.210 (0.023) | 0.185 0.175 (0.014) [ 0.143 0.138 (0.008) [ 0.100 0.098 (0.004

0.25 | 0.220 0.202 (0.028) | 0.177 0.168 (0.018) | 0.139 0.132 (0.011) | 0.097 0.095 (0.005

0.75 | 0.140 0.115 (0.044) | 0.106 0.094 (0.029) | 0.083 0.073 (0.018) | 0.057 0.052 (0.009

0.90 | 0.076 0.056 (0.031) | 0.057 0.046 (0.020) [ 0.042 0.035 (0.012) [ 0.029 0.025 (0.006

(0.021) (0.013) (0.007) (0.003)
(0.023) (0.014) (0.008) (0.004)
(0.028) (0.018) (0.011) (0.005)
0.50 | 0.194 0.174 (0.040) | 0.155 0.143 (0.027) | 0.121 0.113 (0.016) | 0.083 0.080 (0.008)
(0.044) (0.029) (0.018) (0.009)
(0.031) (0.020) (0.012) (0.006)
(0.005) (0.003) (0.002) (0.001)

0.99 | 0.010 0.007 (0.005) | 0.007 0.005 (0.003) | 0.005 0.004 (0.002) [ 0.003 0.003 (0.001

Table 4.4: Evaluation of the Asymptotic Standard Errors of the Huberized Correlation
Coeflicient Estimates with ¢ = 1.00.

displayed in Tables 4.4 — 4.6 for the tuning constant of the Huber score function ¢ = 1,1.25
and 1.50, respectively. For each sample size, n, the first column contains the Monte
Carlo standard deviation of the Huberized correlation coefficient estimates. The second
column contains the mean of the standard errors of the Huberized correlation coefficient
estimates and the corresponding Monte Carlo standard deviation within parentheses.
From the tables, we can see that the mean standard errors, SE, approximate the empirical
standard error of the estimates, SD(7), closely. In particular, for large sample sizes and
high correlations the difference between them is small and they have small standard
deviation. Tables for different values of ¢ are fairly similar, indicating that there is not

much loss of efficiency by using relatively small value of ¢ such as ¢ = 1.
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n =20 n =30 n = 50 n = 100

p |SD@#) SE SD(#) SE SD(#) SE SD(#) SE

0.00 | 0.228 0.209 (0.025) | 0.184 0.175 (0.016) | 0.144 0.138 (0.009) | 0.101 0.099 (0.004

0.10 [ 0.230 0.208 (0.027) | 0.183 0.174 (0.016) | 0.143 0.137 (0.010) | 0.097 0.098 (0.005

0.25 | 0.219 0.199 (0.033) | 0.178 0.166 (0.021) | 0.136 0.131 (0.012) [ 0.095 0.094 (0.006

0.75] 0.126 0.106 (0.042) | 0.102 0.087 (0.027) [ 0.074 0.068 (0.017) [ 0.053 0.048 (0.009

(0.025) (0.016) (0.009) (0.004)
(0.027) (0.016) (0.010) (0.005)
(0.033) (0.021) (0.012) (0.006)
0.50 | 0.191 0.167 (0.042) | 0.153 0.139 (0.029) | 0.117 0.109 (0.017) | 0.080 0.078 (0.009)
(0.042) (0.027) (0.017) (0.009)
0.90 | 0.064 0.050 (0.026) | 0.049 0.041 (0.017) | 0.036 0.031 (0.010) [ 0.025 0.022 (0.005)
(0.004) | 0.006 0.005 (0.003) | 0.004 0.003 (0.001) [ 0.003 0.002 (0.001)

0.99 | 0.009 0.006 (0.004

Table 4.5: Evaluation of the Asymptotic Standard Errors of the Huberized Correlation
Coefficient Estimates with ¢ = 1.25.

n =20 n =30 n =50 n = 100

p | SD@#) SE SD(#) SE SD(#) SE SD(#) SE

0.00 | 0.229 0.207 (0.029) | 0.18 0.174 (0.019) | 0.143 0.137 (0.011) | 0.102 0.099 (0.005

0.10 | 0.228 0.206 (0.030) | 0.182 0.173 (0.019) | 0.141 0.136 (0.011) | 0.101 0.098 (0.006

0.25] 0.218 0.196 (0.035) | 0.178 0.164 (0.023) | 0.134 0.130 (0.014) | 0.097 0.093 (0.007

0.75] 0.123 0.101 (0.040) | 0.096 0.084 (0.028) | 0.071 0.065 (0.016) | 0.049 0.046 (0.008

0.90 | 0.059 0.046 (0.024) | 0.045 0.038 (0.016) | 0.034 0.029 (0.009) | 0.023 0.021 (0.005

0.99 | 0.007 0.005 (0.003) | 0.006 0.004 (0.002) | 0.004 0.003 (0.001) | 0.003 0.002 (0.001

(0.029) (0.019) (0.011) (0.005)
(0.030) (0.019) (0.011) (0-006)
(0.035) (0.023) (0.014) (0.007)
0.50 | 0.185 0.162 (0.043) | 0.146 0.135 (0.029) | 0.113 0.106 (0.018) | 0.079 0.076 (0.009)
(0.040) (0.028) (0.016) (0.008)
(0.024) (0.016) (0.009) (0.005)
(0.003) (0.002) (0.001) (0.001)

Table 4.6: Evaluation of the Asymptotic Standard Errors of the Huberized Correlation
Coefficient Estimates with ¢ = 1.50.
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4.5 Bias in Quadrant and Huberized Correlation
Coefficients

In this section, we discuss the bias that the quadrant and the Huberized correlation
coefficient estimates may have due to the fraction of contamination in the data and
because of the structure of the estimates. Therefore, we need to distinguish between two
kinds of bias in the quadrant and the Huberized correlation coefficient estimates.

For simplicity and without loss of generality, we will restrict our attention to the case
p = 2. Since in this case there are only two variables involved there is not much loss in

using the classical contamination neighborhood,
H(p) = {H CH=(1—-¢ Hy+ eﬁf} , (4.6)
where p is the true correlation coefficient of the two variables under the nominal dis-

tribution Hy, p(Hy). For example Hy = N (0,X), where ¥ = Loy and H is an

p 1
arbitrary and unspecified distribution.

Let Xq,...,X,, and Y4,...,Y, be i.i.d. H and H,, respectively, where X; and
Y, €R? i=1,...,n. Using the consistency result in Theorem 4.1, then
P X1, Xo,...,X,) — r(H) a.s.
’F(Yl,YQ,...,Yn) — T(H()) a.s.
as n — 0o.
Because of the fraction of contamination included in H, r(H) will typically be asymptot-
ically biased. The asymptotic bias of r(H) with H € H(p), where H.(p) is the family
distribution of H generated by (4.6), can be written as
b(r, H) = |r(H) — r(Ho)|,
and the corresponding maximum asymptotic bias over H,(p) can be expressed as

B,()= sup |r(H) - r(Ho).
HeHe(p)
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The other bias is the intrinsic bias that occurs at the nominal model Hy because of
the structure of the estimate, which requires transforming the data. This transformed
data has a slightly different correlation than the correlation of the original data, so
r(Ho) # p(Hp). Thus, we define the maximum “overall bias” (OB) of the correlation
coefficient r(H) as follows:

OB = sup |r(H)— p(Ho)l-
HeHe(p)
To make this idea clear, we re-write the maximum overall bias as follows:
OB = sup |[r(H)—r(Hy) +r(Hy) — p(Hp)l|- (4.7)
HeHe(p)

Hence, we can see that the overall bias (4.7) is composed of two different biases:

e Asymptotic bias, |r(H)—r(Hp)|, occurs due to the fraction of contamination in the

data set.

e Intrinsic bias, |r(Hy) — p(Ho)|, happens because of the data transformation, “Hu-

berizing” the data.

It is well known that because of the data transformation, the nature of the data will
change. Specifically, when X and Y are jointly normal with correlation p, the limiting
value r of 7 satisfies |r| < |p|, with strict inequality, except in the trivial cases |p| = 0, 1.

The next theorem states this result.

THEOREM 4.3 Let X,Y be jointly normal, with marginals N(0,1), with IE{XY} = p.
Suppose that f and g are measurable functions such that IE{f(X)?} and IE{g(Y)?} are

finite. Then, the correlation of f(X) and g(Y) is less than or equal to p in absolute value.

The folklore traces this result back to Kolmogorov, although we could not find published
proof. Therefore, we give the proof of this theorem in Section 4.9.3 of the chapter

appendix.
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To verify Theorem 4.3 via empirical evidence, we conducted a Monte Carlo simulations
using Huber score function with different values of the tuning constant c¢. A random
sample of size n = 100,000 was generated from a bivariate normal distribution with

L p

mean vector 0 and covariance matrix X = . Using the Huber score function

p 1
for a specific value of the tuning constant ¢, the data were transformed (Huberized data).

Then, the correlation coefficient of the transformed data is calculated from the following

formula:
BB
VE{{2(X)} E{42(Y)}

We compared the correlation coefficient of the transformed data r with the correlation

(4.8)

coefficient p of the generated data for different values of the tuning constant c. We show
the differences between the two correlations in Figures 4.5 and 4.6, which display plots of
the correlation coeflicient of the transformed data r versus the correlation coefficient p for
different values of the tuning constant c. We see that the intrinsic bias decreases for larger
values of the tuning constant ¢ and becomes considerably smaller for ¢ > 1. We also see
that for moderate positive correlation coefficients (.5 < p < .7) the magnitude of under
estimation is larger. On the other hand, for moderate negative correlation coefficients
(—.7 < p < —.5) the magnitude of over estimation is larger.

To correct the intrinsic bias under the assumption of a Gaussian model we can use

an appropriate non-decreasing transformation function,

7= g.(r). (4.9)

Specifically, for the quadrant correlation (QC) coefficient Huber (1981) suggested the

following transformation:

goc(r) =sin ((n/2) 7). (4.10)

For general cases such as Huber score function with tuning constant ¢ > 0, we suggest

that g.(r) can be obtained by numerical means. Using the Monte Carlo simulations, we
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Figure 4.5: Intrinsic Bias of Huberized Correlation Coefficient Estimates.

calculated r using formula (4.8) and denoted by r = r(p, ¢). Therefore, numerical tables
can be obtained for different values of ¢ and correlation coefficients, p. Each table allows
us to read the value of p, denoted by p = g.(r), given r and c¢. However, if the value of r
is not in the numerical tables then we can use interpolation to get g.(r).

The pairwise Huberized correlation matrix estimate R = () is a positive

Jik=1,...p
definite matrix. This is because it is constructed from the Pearson correlation coefficient
estimates 7 (4.2) of the outlier-free transformed data. However, when the correlation
coefficient estimates are corrected for the intrinsic bias, the corrected correlation matrix

estimate R = (Tjk) is not positive definite. Fortunately, we have seen that for

Jik=1,....p
large values of the tuning constant c, e.g., ¢ = 1.00 or so, the intrinsic bias is very
small (less than .05) and, therefore, 7;; =~ 7,;. In such cases we recommend using 7 to

preserve positive definiteness. On the other hand, when the bias correction is needed,
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Figure 4.6: Intrinsic Bias of Huberized Correlation Coefficient Estimates.

there are intuitively appealing methods for adjusting the positive definiteness of the
resulting scatter matrix. One such method is introduced by Maronna and Zamar (2002)

which we will discuss in the next section.

4.6 Positive Definite Pairwise Robust Scatter
Estimates

In this section, we describe a general method to obtain positive definite robust scatter
estimates. The method was introduced by Maronna and Zamar (2002) for any pairwise
robust scatter estimate. They applied their method to the bivariate outlier resistant
estimate obtained by Gnanadesikan and Kettenring (1972) and Devlin, Gnanadesikan
and Kettenring (1981). However, we will show that when applying this method to the

quadrant correlation coefficient estimate we will obtain a pairwise robust scatter estimate
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which is computationally more feasible.

We now briefly describe Maronna and Zamar’s (2002) method for correction of positive
definiteness. Recall that if X is the covariance matrix of the p-dimensional random vector
X, then

o?(a'X) = a'Xa, (4.11)

for all a € R? and o denotes the standard deviation. Let

P
=) Aaaj,
j=1
where A\; < \p < ... < 5\,, are eigenvalues of 3 and a; (j=1,...,p) are the corresponding

eigenvectors. One notices that, when 3 is the sample covariance, the j\j’s are the variances
of the projected data on the direction of the corresponding eigenvectors. To solve the
negative etgenvalues problem they proposed to replace the eigenvalues by the square of

a robust scale estimate of the corresponding principle components in formula (4.11).
5\j:62(a;~X1,a;-X2,...,a;-Xn), j=1,2,...,p.

Furthermore, Maronna and Zamar (2002) show that the estimate can still be improved
upon by means of a re-weighting step. Hence, the final output is weighted mean and
covariance matrix with weights based on the Mahalanobis distances:

~ Ail ~
Let W be a weight function and define f,,, ﬁw as the weighted mean and covariance

matrix, where each X;, i = 1,...,n has weight W; = W (d;), that is,
N E?:l Wi X, f] _ Zz’nzl WZ(Xl - ﬂw)(XZ - /:”w)l_

l‘l'w - n ) w n
Zi:l Wi 21:1 Wi
They used the simplest W which is the “hard rejection”, with W (d) = I(d < dy) and
_ X?)(/B)med(dla ] dn)
X3(-5) ’

where XZ (B) is the B-quantile of the chi-square distribution with p degrees of freedom.

do
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4.6.1 Preliminary Estimation of Scatter Matrix

We have already seen that the general method can be applied to any robust estimate
of the scatter matrix. Since we are interested in comparing the computational perfor-
mance of various estimates of the scatter matrix, we will discuss two such estimates the
Gnanadesikan and Kettenring (GK) and the quadrant correlation (QC).

The Gnanadesikan and Kettenring estimate is based on the following identity:
1
Cov(X,Y) = 1 [0 (X +Y) -0’ (X —-Y)],

where X and Y are random variables and o is the standard deviation. Gnanadesikan
and Kettenring (1972) proposed to define a robust covariance matrix by using a robust
scale as o; they used a trimmed standard deviation. The resulting matrix is symmetric,
but not necessarily positive definite and is not affine equivariant. Genton and Ma (1999)
calculated its influence function and asymptotic efficiency.

Maronna and Zamar (2002) suggested the 7-scale introduced by Yohai and Zamar (1988),
which is a truncated standard deviation, and a weighted mean to be the robust scale and

location respectively. Define the functions:

T\ 2

2
wite) = (1= (2)°) 10el <0 ) = minie, )
c
Let X = X4,..., X, be a univariate sample; and put

G0 = MAD(X) = med (|X — med(X)|); W; = W, (M) |

00
where I(-) is the indicator function and “med” denotes the median. Now, the weighted

mean and the 7-scale estimates are defined as follows:

X S XiWi o 08 (Xi—M(X))
X)==5——; 0(X)"=— | —— ) -
p(X) ST (xX)? = ;p o

To combine robustness and efficiency, Maronna and Zamar (2002) set ¢; = 4.5 and

c2 = 3. Ma and Genton (2001) advocated the use of the scale estimate @), proposed
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by Croux and Rousseeuw (1992b) and Rousseeuw and Croux (1993), but Maronna and
Zamar prefer 7-scale estimate for reasons of speed.

It is well known that robust estimates suffer from lack of computational efficiency.
Thus, we propose that better computational speed can be attained by using the quadrant
correlation estimate in place of GK in Maronna and Zamar (2002) method for estimating
scatter matrix.

The quadrant correlation is the sample correlation coefficient of the signs of the differ-
ences between the data and their respective medians. Let X,..., X, be a multivariate
sample where X; € RP,4 = 1,...,n with medians M, (j = 1,...,p). The quadrant

correlation coefficient estimate is defined as follows:

p Z?:l SGN(Xil - Ml)SGN(Xz’k - Mk)
Ik = ,
n

where [,k =1,...,p.
The quadrant correlation coefficient estimate can be corrected for the intrinsic bias as

follows:

- . T .
P = SIn (§plk) .

Let MAD(X;;) and MAD(X;;) be the scale estimates of X;; and Xz, respectively. Then

the covariance estimate can be defined as:
e = MAD(X;)MAD(X ) pukc-
From the 6y, the initial robust covariance matrix estimate is formed:
3y = {6 }ik=1,...p-

The final positive definite robust covariance matrix is formed by applying Maronna and
Zamar’s (2002) method for correction of positive definiteness followed by the final re-

weighting step.
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4.6.2 Computational Complexity and Computing Times

The resulting robust dispersion matrix has different computation complexity for different
robust methods. The pairwise approach is appealing in that it reduces the computational
complexity in the data dimension p from exponential to quadratic (from 2° to p?). The

computational complexity of some robust methods are presented below.

e Stahel-Donoho (SD) estimate with naive implementation has computation complex-
ity O(2P) - O(n?); whereas, with better implementation the Stahel-Donoho estimate

has computation complexity O(2F) - O(n - log(n)).

e MCD estimate has computation complexity O(2?)-O(n); whereas, the FAST MCD
estimate has the same computation complexity with a much better constant for

O(n).
e The robust pairwise scatter estimate has computation complexity O(p?) - O(n).

We compared the computing times of the pairwise covariance matrix estimates ob-
tained using the quadrant correlation (QC) estimate and the GK estimate (with 7-scale
robust estimate). The Maronna and Zamar (2002) method is applied to correct for pos-
itive definiteness of the resulting covariance matrix estimates with the final re-weighting
step. Both programs for the two estimates were written in C and called within Splus
for Unix. Moreover, we made the programs available as a built-in Splus command in
the recently released Splus, namely Splus 6 for Windows and Splus 6.1 for Unix. The

command lines for the estimates (using robust library) are the following:

e The Gnanadesikan-Kettenring estimate (with 7-scale robust estimate);

covRob(stack.dat, estim = “pairwisegk”);

e The quadrant correlation (QC) estimate; covRob(stack.dat, estim = “pairwiseqc”).

We carried out some timing experiments for a range of sample size n and dimension

p. We ran the experiments on Splus (version 6.0, Sun0S 5.6). To make the calculation
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Figure 4.7: Scalability of Dimensions for the Covariance Estimates obtained using QC
and GK for n = Hp.

of the median run faster, we did not use the built-in Splus command “median”, which
employs sorting; but a selection algorithm (the procedure “select” in Section 8.5 of Press
et al., 1992), which is linear in n.

We generated standard normal random samples with different values of n and p. The
computing times of the covariance estimates obtained using QC and GK for different data
dimensions with sample sizes n = 5p is shown in Figure 4.7. The figure displays plots
of the computing time (time in seconds) versus the data dimension, p. We can see that
QC requires less computing time than GK. Also, the computing times of GK and QC
tend to increase quadratically as p increases. However, QC has a smaller constant for the
quadratic polynomial in p. The computing times of the covariance estimates obtained
using QC and GK for different sample sizes with data dimension p = 50 is shown in
Figure 4.8. The figure displays plots of the computing time (time in seconds) versus the
sample size, n. We can see that QC is much faster than GK. Also, the computing times
of GK and QC tend to increase linearly as n increases. However, QC has a smaller slope.
Hence, from Figures 4.7 and 4.8 we can conclude that the computing time growth of the
pairwise scatter estimates is linear in n and quadratic in p, which confirms the above
complexity claim.
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Figure 4.8: Scalability of Sample Sizes for the Covariance Estimates obtained using QC
and GK for p = 50.

We compared the computing times of the pairwise covariance estimates obtained using
QC and GK (with 7-scale robust estimate) with the Fast MCD (FMCD) covariance
estimates. The computing times of the covariance estimates obtained using QC, GK
and FMCD for different sample sizes with dimensions p = 10,30 and 50 are shown in
Figure 4.9, which displays plots of the computing time (time in seconds) versus the sample
size, n. We can see that for higher dimensions, FMCD requires a much larger amount
of computing times than QC and GK. The computing times of the covariance estimates
obtained using QC, GK and FMCD for larger sample sizes are shown in Figure 4.10,
which displays plots of the computing time (time in seconds) versus the sample size,
n. We can see that for larger sample sizes, QC still requires less computing times than
GK and FMCD. On the other hand, for higher dimensions, GK requires a much larger
amount of computing times than QC and FMCD. We also notice that, for larger sample
sizes, FMCD requires less amount of computing times. The reason that FMCD requires
less computing times for a larger sample size is when n is larger than a certain ng (the
default is 6000) the FMCD algorithm applies an ingenious splitting procedure to reduce

the number of evaluations.
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We also ran the timing experiments for contaminated data. The contaminated sam-
ples were p-variate normal e-contaminated distribution, with p taking the values 10, 30
and 50. Generate X; as p-variate normals N, (0, I) fori = 1,...,n—m, where m = [nel; [-]
denotes the integer part, and as N, (g, 0°I) for i > n—m. We chose p, = (100,...,100),,
0 = 0.1 and € = 0.20. The computing times of the covariance estimates obtained using
QC, GK and FMCD for different sample sizes with dimensions p = 10,30 and 50 are
shown in Figure 4.11. The computing times of the covariance estimates obtained using
QC, GK and FMCD for larger sample sizes are shown in Figure 4.12. The figures display
plots of the computing time (time in seconds) versus the sample size, n. From the plots,
we can see that the three estimates have similar timing behavior compared to the clean

data timing situations.
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Figure 4.9: CPU Time of the Covariance Estimates obtained using FMCD, QC and GK
for Clean Data.
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Figure 4.11: CPU Time of the Covariance Estimates obtained using FMCD, QC and GK
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4.7 Maximum Bias of Quadrant and Huberized
Correlation Coefficients

In this section, we study the maximum asymptotic bias (maxbias) of the quadrant and
Huberized correlation coefficient estimates in the contamination neighborhoods. We are
also interested in comparing their maxbias with the maxbias of the affine equivariant
estimates such as the Fast MCD and the Stahel-Donoho.

For simplicity and without loss of generality, we assume that the number of variables
p = 2. Hence, it is appropriate to use the classical contamination neighborhood (4.6) as
a good approximation.

The rest of this section is organized as follows. Section 4.7.1 studies the maxbias of
the quadrant and Huberized correlation coefficient estimates when the location and scale
parameters are known. Section 4.7.2 considers the maxbias of the quadrant correlation
coefficient estimate with unknown location and scale parameters. Section 4.7.3 deals with
numerical computation of the maxbias of the Huberized correlation coefficient estimates
when the location and scale parameters are unknown. Finally, Section 4.7.4 compares
the maxbias of the Huberized correlation coefficient estimates with the maxbias of the

Fast MCD and the Stahel-Donoho correlation coeflicient estimates.

4.7.1 Maxbias of Quadrant and Huberized Correlation
Coefficients with Known Locations and Scales

The following theorem shows the maxbias of the quadrant and Huberized correlation

coefficient estimates when the location and scale parameters are known.

THEOREM 4.4 - Worst Case Bias - The mazimum asymptotic bias B (€) under the

classical contamination neighborhood (4.6) of size €, sup |r(H) — p| is given by:

HeHe(p)
r(Ho) — B r(Ho) + B
maX{gc(ilJrﬁ )—p‘,gc<71+ﬁ )—p‘}, (4.12)
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where B = [¢/(1 — €)] [¢? (o0) /IE{Y* (Z)}] with Z ~ N (0,1), and let g.(-) be defined as
in (4.9).

Sketch of the Proof:

Assume without loss of generality that ¢ (00) = 1. Let A = Eg, {¢(X)¥(Y)}, B =
Ep, {¢*(X)}, a = Ez {¢*(X)}, b=Ez {¢*(Y)}, and

B Ex {¢(X)p()}
r(H) = )
VE# {92(X)} Ep {¢2(Y)}
By the Cauchy-Schwarz inequality

(1—€)A+ eVab
VA —€¢)B+eay/(1—€)B+eb
Differentiating the right hand side with respect to a and using the Cauchy-Schwarz

r(H) <

inequality again we can verify that this derivative is non-negative for all a < b. Therefore,

letting (¢/ (1 — €)) /b = (B and noticing that r(Hy) = A/B we can write

< UEgAre (oghe L
The second inequality follows because
[(1—€e)A+eb]/[(1—€)B +eb]
is increasing in b. An analogous reasoning gives
r(i) > ") =8 (4.14)

- 14p
Huber (1981) states inequalities (4.13) and (4.14) without providing a proof. The result
follows now because the function p = g. (r) is non-decreasing. We give a detailed proof

of Theorem 4.4 in Section 4.9.4 of the chapter appendix.

4.7.2 Maxbias of Quadrant Correlation Coefficient with
Unknown Locations and Scales

Before we derive the maxbias of the quadrant correlation coefficient estimates, when the

location and scale parameters are unknown, we need to state the following lemma.
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LEMMA 4.1 Suppose that the random vector (X,Y) has a bivariate normal distribution

. ) ) 1
Hy with mean vector 0 and covariance matriz X = P and let xg = 71 (2(11—5))'
p 1

For any a and b in the interval [—xg, zo| define:
g(a,b) = IEg, {SGN(X — a)SGN(Y —b)}.
Then the following are satisfied:
() 9(a,b) = g(b,a);

(b) max g(a,b) = g(—zo, —20);
|al,[b|<zo

(¢) min g(a,b) = g(—zo, +o).
|al,[b|<zo
Proof:
Assume without loss of generality that p > 0. Part (a) follows because (X,Y) ~ H, are
exchangeable:
g(a,b) = Eg, {SGN(X — a)SGN(Y —b)}
= IEg, {SGN(Y —a)SGN(X —b)} = g(b, a).
Because of (a), to show (b) and (c) we only need to consider the upper triangle {(a,b) :
Tog >b>a>—x}. Let
g(a,b) = Eg, {SGN(X —a)SGN(Y —b)}
= IEy, {Eg, {SGN(Y — )| X} SGN(X —a)},
where the conditional distribution of Y given X = z is normal with mean pz and variance

1 — p?. Now

Ex, {SGN(Y —b0)|[X =2} = P(Y >bX =2)—P (Y <b/X =2z)

_1_® b— px _ % b— px
1—p? 1—p?
ISP P
1—p?
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Then

g(a,b) = /Oo 1- 20 (%)] é(x)dz — /_ [1 — 20 (%)] (z)dz.

Fixing b and differentiating with respect to a we get

0 . b—pa \
%g(a, b) = 2 [2@ (7\/@) 1

The sign of this expression depends on the sign of b — pa. To investigate the sign of

b — pa, we break the domain of b into three intervals as follows:
Case I: —zg < b < —pzxy. For any a € [—xq,x9] we have b < —pzxy < pa < pxy and so

b— pa <0. So g(a,b) decreases with a in the given interval. Therefore,

max_g(a,b) = g(~z0,b).

—z9<a<zo

Case II: —pzy < b < pzg. For any a € [—xg, x|, if —z9 < a < b/p, then —pzy < pa < b
and so b — pa > 0. So g(a,b) increases with a € [—z¢,b/p]. And if b/p < a < ¢, then

b < pa < pxy and so b — pa < 0. So g(a,b) decreases with a € (b/p, xo]. Therefore,

max g(aa b) = g(b/p’ b)

—z0<a<zo

Case III: pzy < b < xg. For any a € [—xg, o], if 0 < a < g, then pa < a and so
b—pa>b—a>0. And if —z5 < a < 0, then —pa > 0 and so b — pa > 0. So g(a,b)

increases with @ in the given interval. Therefore,
%I()I;%)éwog(a, b) = g(zo,b).

For all —zy < b < —pxy we have g(—zo,b) = g(b, —x,), then by Case I
9(b, —m0) < g(—m0, —o)-

For all pxy < b < g we have g(xg,b) = g(b, o), then by Case III

g(b7 ZL'()) S 9(5170, CL'()) = g(_x()a —.’E()).
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For all —pzy < b < pzy then —xy < b/p < xy. We consider three cases:

Case 1: b/p < —pxy. In this case

g(b/p’ b) = g(b’ b/p)

< g(==z0,b/p) = (b/p, —x0) < g(—0, —70).

Case 2: —pzy < b/p < pxy. In this case

g(b/p,b) = g(b,b/p)

N IA IA
Q K =)
(= (=l (=l
~ ~ ~
s R~ s
< ) <
I =
R~ > s

N R ~
~— =

IN
)
=
~
e
ul\?
=
~
)
N
~

Let k be such that —pzy < b/pF~1 < pag, but not for b/p*. Eventually, b/pF < —pzy or

b/p* > pxo. Then g(b,b/p) < g(—wo, —z0) or g(b,b/p) < g(zo, zo).

Case 3: b/p > pxo. In this case

g(b/p,b) = g(b,b/p) < g(z0,b/p)
= g(b/p;x0) < g(o, T0). u

Now in the following theorem we derive the maxbias of the quadrant correlation

coefficient estimate.

THEOREM 4.5 — Maxbias of the Quadrant Correlation Coefficient - If (X,Y) is
distributed according to the classical contamination model H (4.6) where Hy = N(p, X).

Then the quadrant correlation coefficient roc(H) has the following properties:

(a) sup roc(H) = (1—€)g(~z0, ~20) + &
HeHe(p)

b) inf H)=(1- — — €.
(3) ,inf  rao(H) = (1 - g0, +30) - ¢
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Proof:
We assume without loss of generality that ux = uy = 0, ox = oy = 1 and oxy = p.
Therefore the bivariate random variable (X,Y") is distributed according to model (4.6)

with

Let Mx and My be the medians of X and Y under H, and let
TQc(H) = ]EH {SGN(X — MX)SGN(Y — My)}

be the quadrant correlation coefficient between X and Y under the contaminated distri-

bution H. Since |Mx| < z¢ and |My| < xg, where z; is as in Lemma 4.1. Then

rec(H) < (1—¢) max _ g(Mx, My) +e.

—ro<Mx,My <zo

By Lemma 4.1 (b) max g(Mx, My) = g(—xy, —xo), and therefore the right hand
—z0<Mx ,My <zo
side of (a) is upper bound for roc(H).

Now let H = (1 — €)Hp + €0(_o0,—o0), and notice that Mx(H) = My (H) = —z, and
roc(H) = (1 = €)gm,(—0, —20) + ¢,

proving (a).
The proof of part (b) follows along the same lines with H replaced by H = (1 — €)Hy +
€0(+00,+00), and noticing that My (H) = +=z¢ and Mx(H) = —xo, and

roc(H) = (1 — €)gu, (—xo, +z0) — €. m

4.7.3 Maxbias of Huberized Correlation Coefficients with
Unknown Locations and Scales

The derivation of the maxbias of the Huberized correlation coefficient estimates when
the location and scale parameters are unknown is not tractable. Therefore, we decided

to derive the maxbias using numerical computations which we describe below.
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Let X and Y be two random variables jointly distributed under the point mass con-

tamination model:
H(wo,yo) = (1 — G)HO + 65(w07y0), (415)
where 0(5,,4,) is @ point mass distribution at (o, yo) and

HB=N|"] (1"

0 p 1
Let the median, M, be the robust location estimate and the median absolute devia-
tion (MAD), S, be the robust scale estimate. To obtain the median and the MAD of

X, consider the univariate point mass contamination model which can be expressed as

follows:
Fo () = (1 —€)®(x) + €y (), (4.16)

where ®(-) denotes the standard normal cumulative distribution function and

Then the distribution function of X can be written as

Py (z) = (1—¢€)®(x) x < Zg

(1—€e)®(z)+€ > o

Let ¢ = ®! (2(1—1_6)>, then the median of X, My, can be expressed as

My — Zg |zo| < €
¢ SGN(zo) |zo| > c.

To see this, first notice that to cover the case of discontinuous distributions like (4.16),

b

the definition of median is extended as follows:

N

My =sup {t tF(t) <
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We will restrict attention to the case xy > 0. The case of negative xy can be dealt
with similarly. Let 0 < 2y < ¢ for all z < zy, Fi(z) = (1 — €)@(z) < (1 — €)P(zp) <
(1—€)®(c) = 3. On the other hand, for all z > zg, Fy,(x) > Fyo(z0) = (1 —€)®(z0) +€ >
(1—€)®(0)+€ = 1+£ > 1. Therefore, Mx = z,. Finally, for o > ¢since (1—¢)®(c) = 3
and Fy (c) = (1 —€)¢(c) > 0, the median is equal to c.

Now to compute MAD of X, Sy = med|X — Mx|/®"(3/4). We have to solve for u

the following equation:
P, (| X — Mx|<u)=1/2,
which can be expressed as
F,,(Mx +u) — Fpy(Mx —u) =1/2. (4.17)
For the case |zy| < ¢, where Mx = xy. Substitute Mx in equation (4.17), we get
Foo(xo +u) — Fpp(xo — u) = 1/2,
where

Foo(xo+u) = (1—€P(xo+u)+e, To +u > X

Fp(mo—u) = (1—€)®(xo—u), xo —u < I

which implies that

D(zg+u) — P(xog —u) = Of__;. (4.18)

Using Newton-Raphson method to solve for u in equation (4.18), we get Sx = u/®1(3/4).
For the case |xy| > ¢, where Mx = ¢ SGN(zg). Let b = ¢ SGN(zy) and substitute Mx in

equation (4.17), we get

Foy(b+u) — Fyy(b—u) = 1/2, (4.19)
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where

/

1—¢€)®(b b
Foy(btu) = 4 17920+ s

((1—€e)®(b+u)+e b+u> .

e

Fwo(b_u):<(1_€)@(b_u) b—u<x0

(1 —€)P(b—u)+e b—u>x.

Using Newton-Raphson method to solve for u in equation (4.19), we get Sx = u/®~'(3/4).
Similarly, we obtain median of Y, My, and MAD of Y, Sy.
The Huberized correlation coefficient under the point mass contamination model (4.15)

is defined as follows:

B () v ()P () J R (5) )

r(Hao,0) = ’
\/[E¢2 (25 ) - (g (%))2] []EW (1520 ) - (g2 (%))2}

where the numerator can be written as

ren{s (5o (50 oo (1) ¢ (*5")
- [ ome (552 oo (2522)] o - o (522)

+ ey <7y0 ;Myﬂ .

The first factor of the denominator can be written as

1= om (S5) o (252)

oo (552 e (252
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and the second factor of the denominator can be written as

(1 — €)E g, 0? (%) + e? <M)
Y

oo (152 e (552

To obtain the maxbias of the Huberized correlation coefficient estimates, we con-
structed a grid of point mass distributions located at (o, o) with zo and yo between -10
and 10 with increments of 0.01. We used numerical integration, namely the trapezoidal
method to, compute the Huberized correlation coefficient r(H 4, 4,)), at each point of the
grid.

For different correlation coefficients p = 0.1,0.5 and 0.9, the maximum and the mini-
mum values of the Huberized correlation coefficients in the grid for each tuning constant
c=0,.25,.50,1.00,1.25,1.50,2.0 and fraction of contamination ¢ = 0.01, 0.05, 0.10, 0.15,
0.20 are shown in Tables 4.7, 4.10 and 4.13. Labels C and U in the tables stand for
“Corrected” values, which are corrected for the intrinsic bias using formula (4.10) for
the quadrant correlation coefficients (¢ = 0) and the numerical tables for ¢ > 0, and
“Uncorrected” values which are not corrected for the intrinsic bias. Then, the maxbias
is defined as follows.

max {| max (r(Hg o)) = pls | min ((Hiag o)) — p|} .

(z0,90) (z0,y0)

For each p, Tables 4.8, 4.11 and 4.14 exhibit the maxbiases of the corrected quadrant
and Huberized correlation coefficients, given € and c. Tables 4.9, 4.12 and 4.15 display
the maxbiases of the uncorrected quadrant and Huberized correlation coefficients for each
€ and c. Figures 4.13, 4.14 and 4.15 display part of the results in graphical form.

These pictures show at a glance that some of the maxbiases of the corrected quadrant
and Huberized correlation coefficients are larger than the maxbiases of the uncorrected

quadrant and Huberized correlation coefficients. An explanation for this is that the worst
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Figure 4.13: Maxbias Comparison of Corrected and Uncorrected Quadrant and Huber-
ized Correlation Coefficient Estimates, p = 0.10.

contamination bias causes the estimate to become negative and correction for the intrin-
sic bias makes the estimate even more negative. Therefore, when p > 0 but the estimate
of p is negative the maxbias of the corrected quadrant and Huberized correlation coeffi-
cients is larger than the maxbias of the uncorrected quadrant and Huberized correlation
coefficients. We notice that this phenomenon is more obvious for p = 0.1 than for p = 0.5
and 0.9, since for low positive correlations it is more likely that the estimated correlation
coefficients will be negative.

The results show that for a fixed value of € the maxbiases of the corrected Huberized

correlation coefficients increase as the values of ¢ increase, and therefore the corrected
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Figure 4.14: Maxbias Comparison of Corrected and Uncorrected Quadrant and Huber-
ized Correlation Coefficient Estimates, p = 0.50.

quadrant correlation coefficient has the least maxbias. This implies that the contami-
nation bias is an increasing function of ¢, since the maxbias of the corrected Huberized
correlation coefficient will contain only the contamination bias. For different correlation
coefficients p = .1,.5 and .9 and € = 0.20, Figure 4.16 displays plots of the maxbiases of
the corrected Huberized correlation coefficients versus the tuning constant c.

The results also show that when ¢ = 0.01 and 0.05 the maxbiases of the uncorrected
quadrant correlation coefficients are larger than the maxbiases of the uncorrected Hu-
berized correlation coefficients with ¢ = 1. An explanation for this occurrence is that for

small fractions of contamination the overriding bias in the Huberized correlation coeffi-
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Figure 4.15: Maxbias Comparison of Corrected and Uncorrected Quadrant and Huber-
ized Correlation Coefficient Estimates, p = 0.90.

cients is the intrinsic bias which is larger for the quadrant correlation coefficients than
for the Huberized correlation coefficients with ¢ = 1. Figures 4.5 and 4.6 show that the
intrinsic bias is a decreasing function of c.

Now we turn our attention to the choice of the tuning constant c¢ in the Huberized
correlation coefficients. One important consideration to guide the choice of the tuning
constant c is the maxbias over the contamination neighborhoods, which we would like to
make as small as possible.

It is important to notice that the intrinsic bias decreases as c increases, whereas

the contamination bias increases as c¢ increases. Therefore, in practice it is essential to
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Figure 4.16: Maxbias of Corrected Quadrant and Huberized Correlation Coefficient Es-
timates, € = 0.20.

choose the tuning constant ¢ to achieve a trade-off between the intrinsic bias and the
contamination bias.

The results above suggest that the corrected quadrant correlation coefficient (¢ = 0)
has the least maxbias. This implies that we should choose ¢ = 0 with correction for the
intrinsic bias and thus, as mentioned in Section 4.5, that we should correct the resulting
pairwise Huberized scatter matrix for positive definiteness. On the other hand, the results
show that the uncorrected Huberized correlation coefficient with ¢ = 1 has less maxbias
than the uncorrected quadrant correlation coefficient when ¢ < .05. We consider the

fraction of contamination € = .05 in each variable. Although this value of € might seem
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small, since each variable is contaminated at this rate, in fact, a large number of the
cases will be contaminated in the same way. Therefore, the value of ¢ = 1 is a good
choice since in this case the correction for the intrinsic bias is not needed and thus the
positive definiteness of the resulting pairwise Huberized scatter matrix will be preserved.
Figures 4.13, 4.14 and 4.15 show that the maxbiases of the corrected and the uncorrected
Huberized correlation coefficients with ¢ = 1 are fairly close.

When faced with the question of whether ¢ = 0 or ¢ = 1 is to be used, the user
may have to balance the following issues. Namely, the corrected quadrant correlation
coefficient will correct for the intrinsic bias but will yield a scatter matrix which is not
necessarily positive definite, while the uncorrected Huberized correlation coefficient with
¢ = 1 will provide no correction for the intrinsic bias but will lead to a positive definite
scatter matrix. From a computational point of view, the uncorrected Huberized correla-
tion coefficient with ¢ = 1 is also to be preferred, because it will be less computationally
intense. Also, as seen in Section 4.4.2, that for the choice of ¢ = 1 we do not lose much
efficiency compared to larger values of c.

Since computational feasibility of the estimate is our important concern, we will focus
only on the uncorrected Huberized correlation coefficient (with ¢ = 1) in the following

section.

4.7.4 Maxbias Comparison of the Correlation Coefficients for
Stahel-Donoho and FMCD to Huber

In this section, we compare the maxbias of the uncorrected Huberized correlation co-
efficient estimates (with ¢ = 1) with the maxbias of the Fast MCD (FMCD) and the
Stahel-Donoho (SD) correlation coefficient estimates.

We now briefly describe the Stahel-Donoho estimate (see Maronna and Yohai, 1995).
Essentially, it is an “outlyingness—weighted” mean and variance, which downweights any

point that is many robust standard deviations away from the sample in some univariate
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projection. The outlyingness measure, r, is based on the idea that if a point is a multi-
variate outlier then there must be some one-dimensional projection of the data for which
the point is a univariate outlier.

Suppose X = X4,..., X, is a multivariate sample where X; € R, 2 = 1,...,n.
The outlyingness r of each point X; is computed by finding the direction a; € A, where

A = {a € R| ||a|| = 1} such that;

X'a —med{X'al}™
r(X;) = sup | Xia — me {, ]na}J_l‘.
acA MAD{Xja}j

The Stahel-Donoho estimate of location and scatter is defined as

Y WiX,
=1

p=t—
> Wi
=1

and

with W; = W (r(X5;)).
We used the Splus built-in command in the robust library covRob(stack.dat, estim

= “donostah”), in which the weight W; is computed using the following function of

outlyingness;

W(T; C) = < aq + a9 (%)2 + as (%)4 +CL4 (E)G 08 < % S 1

where a; = —19.71879, ay = 82.30453, a3 = —105.45267 and a4 = 42.86694. The tuning
constant c is set to be the square-root of the 0.95 quantile of a chi-squared distribution

with p degrees of freedom.
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To compute the Fast MCD estimate we used the Splus built-in command in the
robust library covRob(stack.dat, estim = “MCD”). This implementation uses the Fast
MCD algorithm of Rousseeuw and Van Driessen (1999) to approximate the minimum
covariance determinant estimate. This algorithm relies on a method called the “C-step”
with which, given any approximation to the MCD, it is possible to compute another
approximation with a smaller determinant. The Fast MCD algorithm is discussed in
Chapter 2.

To obtain the maxbias of the SD and the FMCD correlation coefficient estimates, we
constructed a grid of point mass distributions located at (zo, yo) with zy and yo between
-2 and 2 with increments of 0.01. At each point of the grid, we generated a bivariate
data set from the point mass contamination model (4.15) of sample size n = 50, 000 for
the FMCD estimates and of sample size n = 5000 for the SD estimates. The sample size
is smaller for the SD estimates due to their computational burden.

For different correlation coefficients p = .1,.5 and .9, the maximum and the minimum
values of the FMCD and the SD correlation coefficient estimates, 7, in the grid for
e = 0.01,0.05, 0.10,0.15 and 0.20 are shown in Tables 4.16 and 4.18. Then, the maxbias

is defined as.

max{‘ T L T _p|}'
Tables 4.17 and 4.19 exhibit the maxbiases of the FMCD and the SD correlation coeffi-
cient estimates given € and p.

We can now compare the FMCD and the SD maxbiases with the maxbias results of the
uncorrected Huberized correlation coefficient estimates (with ¢ = 1) from Section 4.7.3.
Figure 4.17 shows the maxbiases for each of the estimates plotted versus the fraction of
contamination € for three different correlation coefficients, p = .10, .50 and .90.

From the plots in Figure 4.17, it is evident that for p = .10 the Huberized approach
has the smallest maxbiases for all values of e. The SD approach is better than the FMCD.

For p = .50 the maxbiases of the Huberized approach are almost equal to those of the
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Figure 4.17: Maxbias Comparison of Uncorrected Huberized Correlation Coefficient Es-
timates (¢ = 1) with SD, FMCD Correlation Coefficient Estimates.

SD approach up to € = .05. For larger values of ¢, the Huberized approach is better.
On the other hand, for p = .90 the SD approach performs the best, indicating that
for structured data the SD approach identifies the outliers very easily. The Huberized
approach, however, performs better than the FMCD.

Though the SD approach has the smallest maxbiases for p = .90, the Huberized
approach is a very close competitor. Moreover, the Huberized approach can be very

easily coded for computation and is much faster to implement.
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€ 0.01 0.05 0.10 0.15 0.20
¢ U C U C U C U C U C
0.00 Mmax 0.0734 0.11 | 0.1127 0.18 | 0.1662 0.26 | 0.2288 0.35 | 0.2974 0.45
min | 0.0529 0.08 | 0.0067 0.01 | -0.0550 -0.09 | -0.1260 -0.20 | -0.2037 -0.31
0.25 max 0.0821 0.11 | 0.1282 0.18 | 0.1914 0.26 | 0.2611 0.36 | 0.3395 0.46
min | 0.0588 0.08 | 0.0067 0.01 | -0.0653 -0.09 | -0.1463 -0.20 | -0.2375 -0.33
0.50 Mmax 0.0915 0.12 | 0.1453 0.18 | 0.2182 0.27 | 0.2981 0.37 | 0.3871  0.47
min | 0.0642 0.08 | 0.0032 0.01 | -0.0807 -0.10 | -0.1740 -0.22 | -0.2778 -0.35
1.00 max 0.1090 0.12 | 0.1834 0.20 | 0.2814 0.31 | 0.3837 0.42 | 0.4904 0.53
min | 0.0700 0.08 | -0.0170 -0.02 | -0.1325 -0.15 | -0.2551 -0.28 | -0.3828 -0.42
1.95 max 0.1170 0.13 | 0.2052 0.22 | 0.3180 0.34 | 0.4313 0.45 | 0.5443 0.57
min | 0.0696 0.08 | -0.0352 -0.04 | -0.1699 -0.18 | -0.3076 -0.33 | -0.4444 -0.47
150 max 0.1245 0.13 | 0.2291 0.24 | 03578 0.37 | 0.4811 0.49 | 0.5975 0.61
min | 0.0667 0.07 | -0.0592 -0.06 | -0.2146 -0.22 | -0.3656 -0.38 | -0.5076 -0.52
9.00 Max 0.1395 0.14 | 0.2843 0.29 | 0.4438 0.45 | 0.5793 0.58 | 0.6931 0.70
min | 0.0536 0.05 | -0.1231 -0.12 | -0.3174 -0.32 | -0.4844 -0.49 | -0.6239 -0.63

Table 4.7: Maximum and Minimum Values of Corrected and Uncorrected Quadrant and

Huberized Correlation Coefficient Estimates, p = 0.1.

128




€ 0.01 { 0.05 ] 0.10 | 0.15 | 0.20

¢=20.00 | 0.02 | 0.09 | 0.19 | 0.30 | 0.41

¢=0.25|0.02 | 0.09 [ 0.19 | 0.30 | 0.43

¢=0.50 | 0.02 | 0.09 [ 0.20 | 0.32 | 0.45

c=1.001]0.02 | 0.12 | 0.25 | 0.38 | 0.52

c¢=12510.03 014 ] 0.28 | 043 | 0.57

¢=1.50|0.03 | 0.16 | 0.32 | 0.48 | 0.62

¢=2.00|0.04 | 022|042 | 0.59 | 0.73

Table 4.8: Maximum Bias of Corrected Quadrant and Huberized Correlation Coefficient
Estimates, p = 0.1.

€ 0.01 | 0.05 | 0.10 | 0.15 | 0.20

¢=0.001] 0.05 | 0.09 | 0.16 | 0.23 | 0.30

¢=0.25|0.04 | 0.09 | 0.17 | 0.25 | 0.34

¢=0.50 | 0.04 | 0.10 | 0.18 | 0.27 | 0.38

¢=1.00 | 0.03 | 0.12 [ 0.23 | 0.36 | 0.48

c=12510.03 | 0.14 | 0.27 | 0.41 | 0.54

c=15010.03 | 0.16 | 0.31 | 0.47 | 0.61

¢=2.00|0.056 022|042 | 0.58 | 0.72

Table 4.9: Maximum Bias of Uncorrected Quadrant and Huberized Correlation Coefhi-
cient Estimates, p = 0.1.
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¢ 0.01 0.05 0.10 0.15 0.20
¢ U C U C U C U C U C
0.0p Max 0.3413 0.51 | 0.3697 0.55 | 0.4070 0.60 | 0.4505 0.65 | 0.4974 0.70
min | 0.3213 048 | 0.2633 040 | 0.1827 0.28 | 0.0898 0.14 [ -0.0171 -0.03
0.25 max 0.3813 0.51 | 0.4138 0.55 | 0.4570 0.60 | 0.5067 0.65 | 0.5622 0.71
min | 0.3580 0.48 | 0.2917 0.40 | 0.1977 0.27 | 0.0917 0.13 [ -0.0290 -0.04
0.50 Max 0.4188 0.51 | 0.4555 0.55 | 0.5045 0.60 | 0.5591 0.66 | 0.6190 0.72
min | 0.3915 0.48 | 0.3129 0.39 | 0.2029 0.25 | 0.0804 0.10 | -0.0571 -0.07
1.00 max 0.4719 0.51 | 0.5183 0.56 | 0.5786 0.62 | 0.6419 0.68 | 0.7070 0.74
min | 0.4329 0.47 | 03177 0.35 | 0.1635 0.18 | 0.0005 0.01 | -0.1704 -0.19
1.95 max 0.4886 0.51 | 0.5415 0.57 | 0.6084 0.63 | 0.6759 0.70 | 0.7426 0.76
min | 0.4412 0.46 | 0.3010 0.32 | 0.1195 0.13 | -0.0646 -0.07 | -0.2485 -0.26
150 max 0.5007 0.51 | 0.5616 0.58 | 0.6360 0.65 | 0.7075 0.72 | 0.7748 0.79
min | 0.4428 0.46 | 0.2731 0.28 | 0.0628 0.07 | -0.1398 -0.14 | -0.3317 -0.34
9.00 Max 0.5169 0.52 | 0.5988 0.60 | 0.6884 0.69 | 0.7650 0.77 | 0.8295 0.83
min | 0.4310 0.44 | 0.1913 0.19 | -0.0737 -0.07 | -0.2989 -0.30 | -0.4886 -0.49

Table 4.10: Maximum and Minimum Values of Corrected and Uncorrected Quadrant and
Huberized Correlation Coefficient Estimates, p = 0.5.
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€ 0.01 { 0.05 ] 0.10 | 0.15 | 0.20

¢=0.00] 0.02 | 0.10 | 0.22 | 0.36 | 0.53

¢=0.25|0.02 | 0.10 | 0.23 | 0.37 | 0.54

¢=20.50 | 0.02 | 0.11 | 0.25 | 0.40 | 0.57

¢=1.00 | 0.03 | 0.15 | 0.32 | 0.49 | 0.69

c=1251]0.04 | 0.18 | 0.37 | 0.57 | 0.76

¢=1.50|0.04 | 0.22 | 0.43 | 0.64 | 0.84

¢=2.00|0.06 | 0.31 [ 0.57 | 0.80 | 0.99

Table 4.11: Maximum Bias of Corrected Quadrant and Huberized Correlation Coefficient
Estimates, p = 0.5.

€ 0.01 | 0.05 | 0.10 | 0.15 | 0.20

¢=20.00 018 | 0.24 | 0.32 | 0.41 | 0.52

¢=0.25]0.12 | 0.21 | 0.30 | 0.41 | 0.53

¢=0.50 | 0.11 | 0.19 | 0.30 | 0.42 | 0.56

¢=1.00 | 0.07 | 0.18 | 0.34 | 0.50 | 0.67

¢=1.25|0.06 | 0.20 | 0.38 | 0.56 | 0.75

c=1501]0.06 | 0.23 | 0.44 | 0.64 | 0.83

¢=2.00 | 0.07 | 031 | 0.57 | 0.80 | 0.99

Table 4.12: Maximum Bias of Uncorrected Quadrant and Huberized Correlation Coeffi-
cient Estimates, p = 0.5.
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¢ 0.01 0.05 0.10 0.15 0.20
¢ U C U C U C U C U C
0.00 Mmax 0.7161 0.90 | 0.7290 0.91 | 0.7444 0.92 | 0.7626 0.93 | 0.7823 0.94
min | 0.6957 0.89 | 0.6166 0.82 | 0.4950 0.70 | 0.3484 0.52 | 0.1793 0.28
0.05 Max 0.7933 0.90 | 0.8067 0.91 | 0.8243 0.92 | 0.8437 0.93 | 0.8642 0.94
min | 0.7698 0.89 | 0.6790 0.82 | 0.5424 0.69 | 0.3817 0.51 | 0.1966  0.27
0.50 Mmax 0.8406 0.90 | 0.8532 0.91 | 0.8693 0.92 | 0.8866 0.93 | 0.9043 0.94
min | 0.8131 0.88 | 0.7068 0.80 | 0.5530 0.65 | 0.3790 0.46 | 0.1843 0.23
1.00 Mmax 0.8811 0.90 | 0.8928 0.91 | 0.9077 0.92 | 0.9228 094 | 09374 0.95
min | 0.8420 0.87 | 0.6909 0.73 | 0.4881 0.53 | 0.2744 0.30 | 0.0516 0.06
1.95 max 0.8900 0.90 | 0.9024 0.91 | 0.9176 0.93 | 0.9325 0.94 | 0.9467 0.95
min | 0.8427 0.86 | 0.6612 0.68 | 0.4267 0.45 | 0.1893 0.20 | -0.0471 -.05
1.50 Max 0.8958 0.90 | 0.9092 0.91 | 0.9252 0.93 | 0.9404 0.94 | 0.9541 0.96
min | 0.8380 0.85 | 0.6206 0.63 | 0.3516 0.36 | 0.0922 0.10 | -0.1524 -0.16
9,00 Max 0.9021 0.90 | 0.9190 0.92 | 0.9373 0.94 | 0.9529 0.95 | 0.9656 0.97
min | 0.8164 0.82 | 0.5121 0.52 | 0.1766 0.18 | -0.1103 -0.11 | -0.3508 -0.35

Table 4.13: Maximum and Minimum Values of Corrected and Uncorrected Quadrant and

Huberized Correlation Coefficient Estimates, p = 0.9.
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€ 0.01 { 0.05 ] 0.10 | 0.15 | 0.20

¢=0.00 | 0.01 | 0.08 | 0.20 | 0.38 | 0.62

c=0.251]0.01 | 0.08 | 0.21 | 0.39 | 0.63

¢=0.50 | 0.02 | 0.10 | 0.25 | 0.44 | 0.67

¢=1.00 | 0.03 | 0.17 [ 0.37 | 0.60 | 0.84

¢c=12510.04 | 0.22 | 0.45 | 0.70 | 0.95

¢=1.50 | 0.05 | 0.27 | 0.54 | 0.80 | 1.06

¢=2.00|0.08 038 (072]1.01] 1.25

Table 4.14: Maximum Bias of Corrected Quadrant and Huberized Correlation Coefficient
Estimates, p = 0.9.

€ 0.01 | 0.05 | 0.10 | 0.15 | 0.20

¢=20.00 | 0.20 | 0.28 | 0.41 | 0.55 | 0.72

¢=0.25]0.13 | 022 | 036 | 0.52 | 0.70

¢=0.50 | 0.09 | 0.19 | 0.35 | 0.52 | 0.72

¢=1.00 | 0.06 | 0.21 | 0.41 | 0.63 | 0.85

¢=1.25|0.06 | 0.24 | 0.47 | 0.71 | 0.95

c=1501]0.06 | 0.28 | 0.55 | 0.81 | 1.05

¢=2.00|0.08 1039 (072]1.01] 1.25

Table 4.15: Maximum Bias of Uncorrected Quadrant and Huberized Correlation Coeffi-
cient Estimates, p = 0.9.
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1Y 0.01 0.05 0.10 0.15 0.20
0.1p Mmax 0.2592 | 0.6343 | 0.8475 | 0.9345 | 0.9624
min | -0.0543 | -0.5019 | -0.7758 | -0.9112 | -0.9538

0.50 max 0.6169 | 0.8345 | 0.9351 | 0.9688 | 0.9792
min | 0.3626 | -0.0980 | -0.5181 | -0.7786 | -0.9104

0.9p Mmax 0.9278 | 0.9733 | 0.9889 | 0.9936 | 0.9958

min | 0.8653 | 0.6554 | 0.2923 [ -0.1038 | -0.4955

Table 4.16: Maximum and Minimum Values of Fast MCD Correlation Coeflicient Esti-
madtes.

€ 0.01 [ 0.05 | 0.10 | 0.15 | 0.20

p=0.101]0.16 | 0.60 | 0.68 | 1.01 | 1.05

p=20.501]0.24]060|1.021.28] 141

p=20.9010.03]024 (061 1.00 | 1.40

Table 4.17: Maximum Bias of Fast MCD Correlation Coeflicient Estimates for Different
Correlation Coeflicients, p.
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1Y ¢ 0.01 0.05 0.10 0.15 0.20
0.10 max 0.1778 | 0.3374 | 0.5066 | 0.6663 | 0.7588
min | 0.0182 | -0.1239 | -0.3304 | -0.5417 | -0.7132

0.50 max 0.5551 | 0.6512 | 0.7428 | 0.8185 | 0.8679
min | 0.4408 | 0.3018 | 0.0862 | -0.1633 | -0.4134

0.9p Mmax 0.9176 | 0.9343 | 0.9527 | 0.9642 | 0.9750
min | 0.8827 | 0.8403 | 0.7711 | 0.6372 | 0.4509

Estimates.

Table 4.18: Maximum and Minimum Values

of Stahel-Donoho Correlation Coeflicient

€

0.01 | 0.05

0.10

0.15 | 0.20

p=20.101]0.08 | 0.24 | 0.43 | 0.64 | 0.81

p=0.5010.06 [ 020 ] 0.41 | 0.66 | 0.91

0.02 1 0.06 | 0.13 | 0.27 | 0.45

p=0.90

Table 4.19: Maximum Bias of Stahel-Donoho Correlation Coefficient Estimates for Dif-
ferent Correlation Coeflicients, p.

135



4.8 Application Examples to Real Data

The goal of this section is to illustrate the implementation of the quadrant and Huberized
correlation coefficient estimates on three real data sets. For the first two data sets, we
implemented the quadrant correlation (QC) coefficient estimates version of the Maronna
and Zamar (2002), discussed in Section 4.6. These estimates are used to obtain the robust
covariance matrix estimate and outlier detection via robust Mahalanobis distances. The
robust Mahalanobis distance,
d(xi) = (x; = 4)'S ' (xi = 1)

is computed using the robust covariance matrix estimate, f], along with the coordinate-
wise median, f1, as the robust location estimate. In the above expression x; is the i-th
data vector of dimension p (the transpose of the i-th row of the data). To decide whether
or not a matrix row is an outlier, we used the 99-th percentile of the distribution of
the maximum of n independent chi-squared random variables with p degrees of freedom.

That is, we compare each d;(x;) with the value d = x%4(max) given by the equation:

P <max X; < d) = .99,

1<i<n

where X1,..., X, are i.i.d. x*(p).

4.8.1 Glass Data

The data set glass is a small 214 x 10 matrix consisting of 9 numeric variables and one
categorical variable. The 9 numeric variables are the percentages of various chemical
constituents of the glass. We obtained these data from the new Insightful Miner (I-
Miner) data mining product. We computed the QC based robust covariance matrix and
robust Mahalanobis distances for the sub-matrix consisting of the first five columns of
the above matrix.

Upon running the outlier detection computations with threshold point y%g(max) =

27.43, we found that approximately 34% of the data points are outliers while the remain-
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Figure 4.18: Histogram of the Robust Mahalanobis Distances for the Glass Data.

ing 66% of the data represents a central core. The histogram of the robust distances in
Figure 4.18 clearly shows a cluster of large distances around 200 to 350 which are much
larger than the x%4(max) with 5 degrees of freedom threshold of 27.43 used above.

A visualization of the data by means of all pairwise scatter plots in Figure 4.19
reveals an interesting aspect of the multivariate structure that is reasonably consistent
with these observations. One sees that the data appears to have a central core that is
roughly elliptical in the pairwise views, along with broadly scattered outliers and the
distinctive rod-like structure. The latter is due to the fact that 41 of the observations of
the Mg variable have value zero. This was evidently because the data values were not
recorded or were misplaced, and zero values were substituted for the missing values.

Inspection of the scatterplots in Figure 4.19 reveals that there are roughly an ad-
ditional 31 diffuse outliers well separated from the elliptical core. So what the outlier
detection algorithm with a x%g(max) threshold of 27.43 does is identify the diffuse out-

liers as well as the extreme outlying rod caused by the zero Mg’s. In other words, the
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Figure 4.19: Pairwise Plots for the Data Set Glass.

outlier detection algorithm is behaving quite as anticipated.

What the histogram is identifying with its bimodal character is the separation of the
pure rod outlier as the most extreme set of distances, distances that are well beyond
those of the diffuse outliers closer to central bulk of the data. If we use a threshold of 200
to set aside outliers we will set aside the pure rod as shown in Figure 4.20, and this is
not an unreasonable first step. In a second step we will find the remainder of the diffuse
outliers.

These observations suggest that one might well use robust covariance matrix based
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Figure 4.20: Histogram of the Robust Mahalanobis Distances using a Threshold of 200
for the Glass Data.

robust distances to iteratively cluster multivariate data by iterative removal of outlier
groups, monitored by histograms or density estimates of the robust distances, and sub-

sequent iteration on the sub-clusters. This possibility bears further investigation.

4.8.2 KDD-CUP-98 PVA Donations Data

This data set was used for the second International Knowledge Discovery and Data
Mining tools competition, which was held in conjunction with KDD-98 the fourth Inter-
national Conference on Knowledge Discovery and Data Mining. The competition task
was a regression problem where the goal is to estimate the return from a direct mailing
in order to maximize donation profits.

This data set, which we will refer to as the “PVA” data, represents a much more
substantial data mining challenge. The original KDD-CUP-98 PVA data set consists of

95,412 records (rows) and 481 variables (columns). For purposes of this example, we
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Figure 4.21: Histogram of the Robust Mahalanobis Distances for the PVA Data.

have used 16 of the numeric variables. We computed the QC based robust covariance
matrix and robust Mahalanobis distances for the sub-matrix. Upon running the outlier
detection computations with threshold point x%q(max) = 64.1, we found that 17,903
outliers rows, 44,284 non-outlier rows and 33,225 NA rows (missing data).

The histogram of the robust distances is shown in Figure 4.21 (in which we have
filtered out a few very extreme outlier distances for purposes of a more detailed display).
In Figure 4.22 we show the plot of ordered absolute differences between the classical and
robust correlation coefficients obtained from the robust correlation matrix. Figure 4.22
shows that while the vast majority of the absolute differences between the classical and
robust correlation coefficients are less than .05, a few differences are fairly large (three
are larger than .2 and ten are larger than .1).

In order to more fully test the capabilities of the robust outlier detection method, we
modified a subset of the PVA data as follows. We took a subset of 10,000 records from

the PVA data set. Then we added 1,000 rows — each identical to the second row except
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Figure 4.22: Differences between Classical and Robust Correlation Coefficients for the
PVA Data.

that the value for the variable “minramnt” was changed to 1 and the value of the variable
“avggift” was changed to 50. While this does not result in very extreme outliers, it does
result in outliers that are well detached from the bulk of the data. The results for this
modified data set, upon running the outlier detection computations, are 3618 outlier rows
and 7382 non-outlier rows. The histogram of the robust distances is shown in Figure 4.23
(in which we have filtered out a few very extreme outlier distances for purposes of a more
detailed display). Figure 4.24 shows the plot of ordered absolute differences between the
classical and robust correlation coefficients obtained from the robust correlation matrix.

In this case the outliers show up as a clear bump in the histogram bar located near
225. This suggests further investigation of the data by deleting all outliers with robust
distances greater than 175-200. The overall shape in Figure 4.24 is similar to that of
Figure 4.22, except now the largest difference is .5 rather than .35, and several more in

the .2-.3 range, reflecting the impact of the added outliers.
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Figure 4.23: Histogram of the Robust Mahalanobis Distances for the Modified PVA Data
with Outliers.
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Figure 4.24: Differences between Classical and Robust Correlation Coefficients for the
Modified PVA Data.
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4.8.3 Daily Pressure in Northern Hemisphere Data

In this example, two sets of data were considered for the analysis. We obtained these data
from Dr. Pandolfo (Department of Oceanography, University of British Columbia). The
first data set has the daily data of sea-level pressure (SLP) in boreal winter (December,
January and February) for 41 years (from December 1958 to February 1999) in Northern
Hemisphere from 20°N to 85°N partitioned with 2.5° x 2.5% grid lines. We have 27
(= 822 1 1) latitudinal grid lines and 145 (= 3¢ + 1) longitudinal grid lines. At each

2.5¢ 2.5¢
of the 3915 (= 145 x 27) grid points, the SLP values are available for each of the 3690

(=90 x 41) days. February 29 is not considered for the leap year. Thus, the number of
observations is n = 3690 and the number of variables is p = 3915 for the first data set.

The second set of the data has the daily pressure values at 500 hPa geopotential
heights in boreal winter for 40 years (from December 1958 to February 1998) for the
same grid points as above. The number of days in this case is 3600 (= 90 x 40). Thus,
the number of observation is n = 3600 and the number of variables is p = 3915 for
the second data set. Though 0° longitude and 360° longitude are the same line, they
are considered different to present the world on a flat page. This is why the number of
longitudinal grid lines is 145 (instead of 144).

The results we obtained are almost similar for the two different data sets (because the
data sets are similar in nature). Therefore, we discuss only the results for the sea-level
pressure data set.

To compare the classical covariance estimate with the robust pairwise Huberized
covariance estimate, we implemented principal component analysis using the classical
covariance estimate and the pairwise Huberized covariance estimate with ¢ = 1. We
calculated the proportion of total variance due to each principal component using both
estimates. The first 20 of these proportions are presented in the first and second columns
of Table 4.20. The values in the two columns are close which indicates that the data do

not contain outliers. This also indicates that the pairwise Huberized covariance estimate
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Clean Data 1% 3SD 1% 6SD 2% 3SD 2% 6SD
Classical Robust | Classical Robust | Classical Robust | Classical Robust | Classical Robust
10.440 10.045 10.045 10.011 9.613 10.011 9.691 9.978 8.925 9.978
8.227 8.369 7.920 8.340 7.584 8.340 7.641 8.308 7.047 8.308
7.329 7.289 7.047 7.263 6.746 7.263 6.790 7.232 6.253 7.232
6.957 7.060 6.704 7.036 6.422 7.036 6.454 7.010 5.946 7.010
5.654 5.720 5.446 5.697 5.216 5.697 5.256 5.677 4.844 5.677
5.312 5.319 5.109 5.299 4.892 5.299 4.931 5.280 4.547 5.280
4.506 4.358 4.341 4.342 4.160 4.342 4.179 4.324 3.853 4.324
3.591 3.555 3.463 3.544 3.318 3.544 3.339 3.531 3.080 3.531
3.484 3.363 3.353 3.351 3.211 3.351 3.234 3.340 2.982 3.340
2.6487 2.605 2.551 2.596 2.444 2.596 2.462 2.587 2.270 2.587
2.449 2.377 2.357 2.367 2.259 2.367 2.274 2.359 2.098 2.359
2.390 2.329 2.301 2.321 2.204 2.321 2.224 2.313 2.053 2.313
2.018 1.984 1.943 1.978 1.862 1.978 1.874 1.827 1.728 1.827
1.488 1.840 1.782 1.834 1.708 1.834 1.722 1.827 1.590 1.827
1.737 1.663 1.674 1.657 1.604 1.657 1.614 1.651 1.489 1.651
1.637 1.590 1.577 1.585 1.511 1.585 1.524 1.580 1.407 1.580
1.532 1.424 1.478 1.419 1.418 1.419 1.427 1.414 1.318 1.414
1.430 1.394 1.379 1.391 1.321 1.391 1.335 1.386 1.234 1.386
1.403 1.356 1.355 1.352 1.300 1.352 1.305 1.348 1.205 1.348
1.231 1.173 1.186 1.170 1.136 1.170 1.147 1.166 1.060 1.166

Table 4.20: First 20 Proportions of Variation for the Classical and the Pairwise Huberized
(with ¢ = 1) Covariance Estimates.

works as well as the classical estimate for clean data (data without outliers).

To investigate how the classical and the pairwise Huberized covariance estimates be-
have in a large data set with outliers, we decided to contaminate 10% of the variables
in the data set. We used four different levels of contamination. For each of these 10%
variables, first 1% and then 2% of the observations are selected randomly for contami-

nation, and they are replaced by randomly generated values from each of the following
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two distributions:
e N(max + 3SD, 0.55SD)
e N(max + 6SD, 0.55D)

where max is the maximum observation and SD is the standard deviation of the variables

being contaminated. Thus, the four levels of contamination can be described as follows:
e 1%, 35D
e 1%, 65D
e 2%, 35D
e 2%, 65D

Both the classical and the pairwise Huberized covariance estimates are used for each
of these contaminations and the results are presented in Table 4.20. From the table we
see that the proportions based on the classical covariance estimate change with increased
contamination. However, the proportions based on the pairwise Huberized covariance
estimate are hardly affected by contamination. To make the comparison more visible the
first six proportions for both clean and contaminated data are plotted in Figure 4.25 for
the classical covariance estimates and in Figure 4.26 for the pairwise Huberized covariance
estimates. The plots clearly indicate that the classical covariance estimate is very much
affected by outliers while the pairwise Huberized covariance estimate is more resistant to
the outliers. In the classical approach, if we increase the percentage of contamination we
get less favorable results. Also, if we use 6SD contamination instead of 3SD the results
further deteriorate. For the pairwise Huberized covariance estimates, if we increase the
percentage of contamination, the results get a little bit worse. However, if we use 6SD
contamination instead of 3SD we get the same results because of the definition of the

Huber function.
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Figure 4.25: Proportions of Variation for the Classical Covariance Estimates.

Huberized Covariance, ¢ = 1
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Figure 4.26: Proportions of Variation for the Pairwise Huberized (with ¢ = 1) Covariance
Estimates.
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For large data sets it is difficult or sometimes impossible to identify any outliers. In
such cases we can apply both the classical and the Huberized approach. If the results are
the same, we will understand that there are no outliers, and if the results are different
we should rely on the results of the Huberized approach because of the observations

presented above.

4.9 Chapter Appendix
4.9.1 Proof of Theorem 4.1

In this section, we prove Theorem 4.1 that shows under certain regularity conditions the

Huberized correlation coefficient estimates are consistent.

STEP I By applying the Taylor expansion for the function f(z,y) =

S|=

S (lef:c)

about the point (,uX,JX) we get

e (55) e ()
(uxn;Xux ;¢ ( T”X ) (4.20)

(6x —ox) —px \ [ Xi— jx
~ ndx ;¢< ox )( 5X)

for some (fix,0x) between (ux,ox) and (fix,dx).

STEP II We show that the second and the third terms on the right hand side of equa-

tion (4.20) tend to zero as n — oo. Since ¢ is bounded |¢'| < M, for some M > 0.

So
,UX—,UX Z¢ < ,UX)

and the right hand side tends to zero, since (fix — px) — 0 as n — oo. And for the third

<M‘7“X)

term, since ¢'(X)X is bounded |¢'(X)X| < M, for some M > 0. So
(UX—UX Zw Xi— ,MX Xi—ﬂx
nox 4= Ox Ox
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and the right hand side tends to zero, since (6x —ox) — 0 as n — oo.

STEP III Since the variables 1 (1—“’(> i=1,...,n, are i.i.d., then by the strong law

of large numbers

1 X; — X -
—§:¢<——ﬁ£)—+m{wc—4%>} a.s.
n i1 ox Ox

as n — oo. From the preceding steps
1« X; — I X —
—§:¢<—Tﬁ£>—»m{wc—4%>} a.s.
n i1 ox Ox

as n — oo.

STEP IV Let us assume that ¢; = +1. Then by writing the Taylor expansion for f(z,y)

=130 et (X’y_z> about the point (ux,ox) we get

2 (v (F52) e (FR)
_(ax jMX) zn:@w/ (@)

=1

_(6)(—0)()2”:6,1[}/ Xi—pbx\ (Xi— bx
TL&X i1 ! 5’)( 5’)(

for some (fix,5x) between (ux,o0x) and (fix,6x). Now apply the same method as in

Step II to show that the two terms on the right hand side of the above equality tend to

(o (55) o (552) —o

as n — 00. From here it is clear that

X; — X; —
Qp(#)_w(iﬂx)‘ﬁo
gx ox

Zero. So

as n — 0.
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STEP V Set

Then

1 < X — fix X —px\\’
(0 (F5) 0 (F5))

1=

555 2) ((552) o (552))

=1

Now we show that the second term on the right hand side in the above equality tends to

zero. In fact v is bounded, so || < M then

1 X, — X, - ?
2 () ()
n Ox Ox

i=1
Ox gx

and the right hand side tends to zero by Step IV. So % En: (¢ (M> -1 (M>>2

. ox ox
=1

tends to zero. On the other hand, each of the terms 1) <M) is bounded by M so their

IM &
< =)

i=1

ox

average is bounded by M that is |Z| < M. So
L (5520 )((552) -+ (552)
n Ox ox 0x

=1
’(ﬁ(XiA_ﬂX) ¢<Xi_'ux)‘
Ox Ox
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and by Step IV the right hand side tends to zero. So

(0 (55) =) (0 (F22) = (552)

tends to zero. But we already know that

() ) (o (5)) e

as n — oo. Then,

n N 2
%Z(qp (Xi(;ux> —Z) — Var (w <7X;MX)> a.s.
i=1 X X

as n — oQ.

STEP VI Similarly, we show that,

n ~ 2
Iy (¢ (”(;“Y) —W) S Var (¢ (Y;W))
=1 Y Y

as n — 0o, where

STEP VII We have




Now we show that the second term on the right hand side of the above equality tends to

1 - )f [Ly
2 (0 () e (55)
_1/J<Xi_MX)_¢(}/i_UY>>
gx Oy
AM (& Xi — fix Xi — px
: 7(;1/)( Ox )_1/]( ox )‘

o () (22 )

and the right hand side tends to zero. Now we show that the third term on the right

Zero

hand side of the above equality tends to zero.

2 © Xi — pux Y — py
;;@(TX )+e(M5) - @em)
<¢<Xij/:‘X)+¢(Y;A_,&Y>_¢<Xi_NX)_¢<Y;'_NY)>‘
Ox Oy ox Oy
8M [ Xi — fix Xi — px
= 7(Z¢< Ox )—¢< ox >‘

(y w) _¢(m«;yuy)‘>

and the right hand side tends to zero. Now we already know that

(o () e () o)
— Var (w (X;X"X) +4 (Y;YW)) as.
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as n — oo. Then,

as n — oQ.

STEP VIII Now we can write

(o (F52) -2) (o () - )
- L[S () o (55) ~em)

() -2 3 (o () )]

i=1

and from the preceding steps, the right hand side of the above equality tends almost

surely to

o (v (o (55 ) oo (7)) (o (5572 ) e (0 (5)
2 Ox Oy Ox Oy

as n — oo.

STEP IX Now the Huberized correlation coefficient estimate
i3 (0 (55) - 2) (v (5) - w)
FECCR) ) EC ) )

tends almost surely to

oo (52).0 ()

\/Var (1 (252) ) var (v (52)).

r =

as n — oQ.
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4.9.2 Proof of Theorem 4.2

Here we provide the proof of Theorem 4.2 that gives the asymptotic normality of the
Huberized correlation coefficient estimates.

It can be shown that

Ux — Ux a.s.
dy — uy a.s.
6x — Ox a.s.
oy — Oy a.s.
as n — oo.
For i =1,...,n, note that the estimates fix, fiy, fix, fly, 0x and oy satisfy:
1 X; — i
_Z¢ ( i Ux = 0
n gx

- X ~ = b7
n — Oy

where [ix and fiy are initial S-location estimates. Using Taylor expansion about the
points (ux,ox) and (uy,oy), we define the following:

w(M) _ ¢<M)—%w' (M) (x = px)

Ox ox 0x

1 Xi—u Xi_v A~
_V_,wI( _ MX) < _ MX) (UX_UX)a
X

gx ox g
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for some (fix,dx) between (ux,ox) and (fix,dx), and

Y; — i Y; — (Yi— iy,
w<AW)=¢( “Q—#w<vaWﬂm
Oy Oy Oy Oy

Lo (Yimiiv (Yi—iiv .
_v_wl< v MY> < u IU‘Y) (UY —Jy),
Oy gy oy

for some (fiy, oy ) between (uy,oy) and (fy, dy).

Therefore, = 7" | 1) ( L “X) P <M> can be written as

oy

1 < Xi — pux I (Xi—px\,.
5;@(7;0—@w037)W~w)

Lo (Yim iy (Yi—iiv .
_ v_w,< - w) ( - uy> (Uy_ay)} |
gy Oy gy

Using Serfling’s lemma (Serfling, 1980, page 253), it is easy to show that

L (X Y; —jiv\ (Yi— i
4 v2w< “X)w'( ) (M) a4 s
TLO'YZ,:1 gx Oy Oy

1 ¢ Xi — Y; — i
Cn = — Z¢< /LX> W( - MY) -0 a.s.
noy T Oy




and

pome () (55) (F52)

Moreover, all the other cross products are o(1/y/n). For example

]- - ! XZ_/j’X ~ ! Y;_,[ZY ~
6X6Y\/ﬁ;¢< P )(ux px) Y m (foy — py)

_ [ 1 f)ﬁ'(@)w'(“?””)]
noxoy Ox Oy

i=1

x [vn (fiy = py)] (fix — px) =0

as n — 0o. Therefore,

1 o X — fix Y — [y
Ei_zlw< Ox )1/]( Oy >

I Xi—px\ (Yi—wy\ (Yi—wy) .
S (55 () (5 e

_%Zw (Yz‘;Y,UY> W (Xi - ,UX) (Xi - MX) (Gx — ox),
i=1

Ox Ox

w_»

where means “asymptotically equivalent”. Hence,

1< X — fix Y — iy
ﬁ;w( ox >¢< Y )

Oy

is asymptotically equivalent to

Oy
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In addition,

/\/\

because

(i) nfe () -

Therefore,

(4.22)

0y — oy =
Y Y Zn ! i Yi—upy ’
i=1 X oy oy

and

> lx(XZ “X) —nb

6’X—JX = . (423)

i (52 (52)

Replacing (4.22) and (4.23) in (4.21) we get

156



S (55) o (552 (5] (5 (552) -+

S (T ) S (B )
n — Oy n.= Ox

where

and

Similar reasoning gives

2 () e (55) - () ) o9
i=1 = =




-~

(4.27)

.
0
—d N< 0 ;
(\ 0
as n — 0o, where

Y —
g11 = Var{q/;( Hy

J12 = COV{
o135 = COV{Q/J (Y_'LLY

(G
099 = Varq? (Y_MY>}§

o = oo (5 (52}




and
033 = Var{

To simplify the notation set
Y; — X; — [
U, = - Z ( MY) ( - Ux

Ly (Vi iy
= — _ :]E

Il o (X ix _ 2

wQ (X_:u‘X

Ox

From (4.27) and using the d-method (see Billingsley, 1986) we obtain

Vili=r) = Vi

o () (5

)

B (5
e

= \/ﬁ (g (Una Vn; Wn)

as n — 00, where

011 012
Y =
021 022
031 032
g (w0, ) = (
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and

((Gowguow \ [ e

Vo = Vow,v,w)=| 9/av)g(u,v,w) |=| —050/) @/ vow)

\ /0w swow) )\ 050w w/vim) )

4.9.3 Proof of Theorem 4.3

A famous result of It6 (1951), see Dksendal (1998) page 38, gives the following formula

for n times iterated It6 integrals:

n!/...(/(/dBul)dBu2)...dBun =t2h, (%) : (4.28)

0<u1 <. ..Lup<t

where B is a given Brownian motion and A, is the Hermite polynomial of degree n,

defined by

2 n 2
hn(z) = (—1)" exp <a:_) d exp (_a:_) ; n=20,1,2,....

2 ) dx™ 2

Thus the first Hermite polynomials are

ho(z) = 1,hi(x) =, ho(x) = 2* — 1, hs(x) = 2° — 3,

hia(z) = 2*—62%+3,hs(z) = 2° — 102% + 15z, . . ..

Then the normalized Hermite polynomials will be H,(z) = Sh,(z).
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Let X (t) and Y (¢) be two Brownian motions such that < X, Y >,= pt, where <X, Y >,
is the quadratic variation of X and Y. In principle, we can construct X (¢) and Y (¢) from a
couple of i.i.d. standard Brownian motions. Let By, By and B be i.i.d. standard Brownian

motions and define
X(t) = +/1-pBi(t) +/pB(2),
Y(t) = /1—pBy(t)+ /pB(t).
Then
E{X(®)Y(t)} = pt. (4.29)

Note that [, d < X,Y >,= [} pds = p = E{X(1)Y(1)} by (4.29). Taking successive

integrals, we construct the sequence {X,(¢)} by
Xi(t) =

Xo(t) = /OXl(s)dX(s)

Xpia(t) = /OXn(s)dX(s)

Similarly we construct the sequence {Y;,(t)} by

YVoa(t) = /0 ¥, (s)dY (s).
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Now applying (4.28) with ¢ = 1 for X (¢), we obtain
X)) = [ dX(6)=X() - X(0) = X(1) = m(X(1) = H(X(1)
X,(1) = /Ole(ul)dX(ul) - /01 (/0 dX(s)) dX (us)
= (X (D) = H(X (1)

X,(1) = /0 X (1)dX (uy)

= /01 (/Ou Xl(UQ)dX(UQ)) dX (u1)

= /01 (/Om (/Ou2 dX(u3)> dX(U2)> dX (uq) = %h?,(X(l)) = H3(X(1))

Xa(1) = /0Xn—l(ul)dX(ul)=%hn(X(l))=Hn(X(1))=Hn(X)-

Similarly, Y;,(1) = H,(Y (1)) = H,(Y). Hence the sequences of X,(1) and Y;,(1) are
Hermite polynomials.
Now we show that for every n, we have

pn tTL

{0V} =2

Using the definition of stochastic integral, we obtain for every n and m,
t t
E{X,()Vn(t)} = F { / X,y 1(s)dX (s) / le(s)dY(s)}
0 0
t t
- E< / X1 (5)dX (s), / Yo (5)dY (s) >
0 0
t
= ]E/ anl(S)Ym,I(S)d <X, Y>s
0
t
= [ B X6 (5)} s
0

- /0 E{X, 1(5)Vn_1(5)} ds.
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By induction, we see that if . = n, then we obtain

pn tn

E{X @Y1} =2,

while if m # n, then

[ B = o
/Ot]E{Xj(s)}ds ~ 0.
Now X1, Xs,... and Y3,Y5, ... are orthogonal in L? space. Thus
E{Xi(t)X;(t)} = 0,
E{X}t)} = t

Let X = X(1) and Y = Y(1), then we showed that the families H,(X) and H,,(Y) are

orthonormal with
IE {Hn(X)Hm(Y)} = 6mnpna
where

1 n=m

5mn

0 n#m.

Since the Hermite polynomials are complete, i.e. the functions f(X) and ¢(Y) with
E{f*(X)} < oo and IE{¢g?%(Y)} < oo, can be approximated by Hermite polynomials,

thus .
F(X) =) anHa(X),
fm=2%mm
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Without loss of generality, we assume that f(X) and g(Y’) have mean zero and variance

one. Consequently, ag = 0, by = 0 and then,

B{/(X)g()} = E{ianﬂn<x>ibmﬂm(zf>}

_ iianbmm{ﬂn(xmmm}

- iananE{Hn(X)Hn(Y)} (by orthogonality)
i

= ianbnp"
i

= pianbnp”‘l
"

< \p|§|an||bn| (1ol < 1)

< gl iag f:bgn (by Cauchy-Schwarz)

= I/OIIE?{TLJZ’I(X)}172_1’:3{92(1/)}1/2

= lol.

Since IE {f2(X)}/* =1 and E {g>(Y)}"/* = 1. m

4.9.4 Proof of Theorem 4.4

Let Hy and H be elliptically symmetric distributions in R? and assume that (X,Y) is

distributed according to the following model:

H=(1-¢Hy+eH.

Assume without loss of generality that the location and scale parameters of X and Y are

known, such that yuxy = py = 0 and ox = oy = 1. We will show that the correlation

coefficient r(H) of ¢(X) and 9(Y") satisfies:

(I =n)r(Ho) —n < r(H) < (1—mn)r(Ho) +mn,
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L — _€ . M
where I — T-¢ TEu {p2(X)}°

The Huberized correlation coefficient of X and Y is defined as follows:

Enp(X)y(Y)

= R (O’ (V)

(1 - EL (X)) + eEzp(X)P(Y) .
V(1= OB p?(X) + B 59°(X) /(1 — €)Eg,¢? (V) + Bz (V)

By the Cauchy-Schwarz inequality

3 (1= OEmb(XN)i(Y) + e/ Bz () F0°(Y) |
" V- Bt (X) + B2 (X) /(T — B, 02 (V) + B 02(Y)

By symmetry, the worst H must have the same marginals

(1 — Epp (X)p(Y) + g, *(X)
(1= 9B (X) + By, P2 (X)

Because

Emgy(X)p(Y)] < Eg?(X)

(1 = )Epp(X)y(Y) + e)p?(o0)
(1 — Emp*(X) + e?(c0)

IN

— 1?(00)
(1 —e€)r(Ho) + T v ()
_ $?(o0)
(1—¢)+ G]EHOW(X)

€ ¢200
T(H()) + Em

e P*(o0)
1+ 1-e EH0¢2(X)

Set

I S U .
1—-n l—e]EHolﬂQ(X)_
n = (1-nNA=A-nA

A

1+ A




Then

Analogously

Therefore

WST( )< 2=
1+ A 1+ A

Now the contamination bias:

’I'(Ho) —A _ T’(H()) —A—T(Ho) —AT'(H(])
Tra ) = 1+ A4
—A
= 1+—A(1 + 7(Ho)),
T‘(H()) + A . A
TaA r(Hp) = 1+—A(1 —r(Hp))-
Therefore
1%4(1 +r(Hy)) < r(H) — r(Hp) < HLAQ — r(Hp)).
So
A
Ir(H) — r(Hy)| < H——A(l + 7(Hy)) V r(Hp) > 0,
and
A
Ir(H) —r(Hy)| < 1+—A(1 —r(Hy)) V r(Hy) > 0.
In summary
A
r(H) —r(Ho)| < IJF—A(1 + |r(Ho)|)-
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Note that

1. The worst case bias corresponds to |r(Hp)| = 1:

Ir(H) — r(H,)| < 2%.

2. The smallest value of A is A =1 if (X)) = SGN(X), in other words the quadrant

correlation is asymptotically minimax with respect to bias:

€

|r(H) — r(Ho)| < (1 +|r(Ho)[)3 f; = (14 [r(Ho)l)e.

—€
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Chapter 5

Robust Estimation of Multivariate
Location

The preceding chapter dealt with the estimation of the scatter matrix. However, the same
idea of using fewer coordinates can also be applied to the estimation of the multivariate
location. In this chapter, we discuss coordinate-wise estimate of a multivariate location
which involves one dimensional data at a time. Particularly, we study the coordinate-wise
median. Some notions of robustness are considered, such as, the minimaxity properties

of the coordinate-wise median under the new contamination model (3.4).

5.1 Classical Multivariate Location Estimate

In this section, we consider the estimation of the “center” or location of a distribution in

RP. Suppose that we have a multivariate random sample

X = X4,..., X,
= (X117X127 PP ,le) gee ey (an,an, PR ,an) ;
so that the sample consists of n data points (rows) each of p dimensions (columns). A
multivariate location estimate can be described as a RP-valued function, T',,, defined for

each sample size n, mapping the set of data points into some point T, (X1,..., X,) =

T, (X), which is an approximation of the location of the distribution. A location estimate,
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T, is said to be translation and coordinate-wise scale equivariant if
T,(X +b) =T,(X) + Db,
for all constant vectors b € R?, where X +b ={X; +b,..., X, + b}, and
T,(XA) =T,(X)A,

for all diagonal p x p matrices A = Diag(ay,...,ap), where XA = {XA4,..., X, A}.

The most well-known estimate of multivariate location is the arithmetic mean
1 n
1=

which is basically the least squares estimate because it minimizes Y . || X; —T'||?, where
|| - || is the Euclidean norm. However, it is not necessary that such an estimate is useful
in all situations. It is well known that the arithmetic mean is not robust, because a
single “bad” outlier in the sample can take X arbitrarily far away. Using the definition
of the multivariate location breakdown point (2.17) in Section 2.2 of Chapter 2, we can
show that the multivariate arithmetic mean possesses a breakdown point of 1/n. We
often consider the limiting breakdown point as n — oco. Therefore we can say that the
multivariate mean has 0 breakdown point, see Rousseeuw and Leroy (1987).

It is obvious that no translation location equivariant estimate can have a breakdown
point larger than .50, because one could build a configuration of outliers which is just
a translation image of the “good” data points, making it impossible for the estimate to
choose. In univariate situations, this upper bound of .50 breakdown point can be attained,
for example, by the sample median. Therefore, several multivariate generalizations of
the median have been constructed, as well as some other proposals to achieve a certain

amount of robustness.

169



5.2 Robust Multivariate Location Estimates

Robust alternatives to the arithmetic mean for estimating locations have a history going
back at least to Laplace (see Stigler 1986, page 54). Fisher (1922) drew attention to the
inefficiency of the arithmetic mean as an estimate of location for some distributions be-
longing to the family of Pearson curves near the normal. Using his normal contamination
models, Tukey (1960) dramatically demonstrated how inefficient the mean can become
when contamination increases. The same paper also shows how alternative location es-
timates such as the median or trimmed means can achieve higher asymptotic efficiency
than the mean.

We distinguish between two classes of robust location estimates: those that are affine

equivariant and those that are not. We say that, T, is affine equivariant if and only if
T, XA+b)=T,(X)A+b,
for all nonsingular p X p matrices A and b € RP, where
XA+b={X,A+b,..., X, A+Db}.

Sometimes we do not consider equivariance with respect to all affine transformations,
but only for those that preserve Euclidean distances. An estimate is said to be orthogonal

equivariant if
T, XA+b)=T,(X)A+Db,
for all orthogonal p x p matrices A (i.e. A’ = A™!) and b € R?, where
XA+b={XA+b,..., X, A+Db}.
For instance, the Li-location estimate defined as

T, = argmin X,;—T|,
gmin > X ~ 7|

=1
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is orthogonal equivariant because it only depends on Euclidean distances. The L;-
estimate, also known as the spatial median or the mediancenter, is a generalization of
the univariate median and its breakdown point is .50. Even though it is not affine equiv-
ariant, the L;-estimate is clearly translation equivariant. Also, the foregoing minimum is
known to be unique, except for degenerate cases. For some background and properties,
refer to Small (1990); more recent results and references can also be found in Chaudhuri
(1996) or Chakraborty and Chaudhuri (1999).

Although the affine equivariance property seems a natural requirement for an esti-
mate, there are many practical situations in which it is not necessarily desirable from
our point of view. For instance, requiring affine equivariance may be too restrictive when
the data set is large and high-dimensional (e.g. data mining applications) or when there
is a natural representation of the data up to a shift and/or change of units (arising from
the form of measurement). We have seen that traditional affine equivariant estimates are
prohibitively expensive for large multivariate data sets. We also have shown numerically
that under the assumption of the new contamination model, affine equivariant estimates

break down.

5.3 Coordinate-wise Location Estimates

The simplest and the straightforward approach is to consider each variable separately and
simply calculate the robust location estimate for each of the individual variable. Indeed,
for each variable the points X, Xy;, ..., X,; can be considered as a one dimensional data
set with n points (for j = 1,...,p). Estimates of this type are called coordinate-wise,
in which one applies the one-dimensional robust location estimate to each coordinate
and combine the results into a p-dimensional estimate. This procedure inherits the
breakdown point of the original estimate; however, although it is not affine equivariant
it is translation-scale equivariant.

Note that, the multivariate arithmetic mean is an affine equivariant and can be com-
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puted coordinate-wise. However, this is an exception. Indeed, Donoho (1982, Proposi-
tion 4.6) shows that the only measurable location estimate that is both affine equivariant
and computable as a vector of one-dimensional location estimates is the arithmetic mean.

A simple way to obtain coordinate-wise location estimates that are translation-scale
equivariant with high breakdown point is to use a one-dimensional M-estimate to con-
struct its multivariate analogue coordinate-wise. Given the p-dimensional distribution
H, let H; be the corresponding i-th marginal distribution. The coordinate-wise location

M-estimate is defined as

T(H) = | , (5.1)

where T'(H;) is the corresponding M-estimate for the i-th marginal distribution H;. To
save computing time and still attain a high breakdown point, we consider the coordinate-

wise median which is defined as

med(H)

MED (H) = med‘(HQ) , (5.2)

med(H,)
with med(H;) = median(H;).

5.4 Bias-Robustness Properties of Coordinate-wise
Median

In this section, we focus on the bias-robustness of the coordinate-wise location estimates
in the context of the contamination model. We will consider contamination model of the

form:

X =(I-B)Y +BZ, (5.3)
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where Y, B and Z are independent, Y is multivariate normal with mean p and co-
variance matrix ¥, Z is an arbitrary random vector and the diagonal elements of B,
By, ..., B, are i.i.d. Binomial(1,e).

We will use the letters H, Hy and H to denote the joint distribution functions of X,
Y and Z. Also, we will denote by H, the set of all distribution functions for vectors (5.3)
which is called independent-contamination neighborhood of size e.

Let X1, Xo,..., X, (X; € RP) be ii.d. H. We will consider estimates that satisfy

the following property:
T,.(X,Xs,...,X,) — T(H) a.s. as n — oc.
In particular, let Y1,Y5,..., Y, (Y; € R?) be i.i.d. Hy. Then,
T,Y.,Y,,....Y,) — T(H) a.s. as n — oo.

Because of the contamination included in H, T(H) will typically be asymptotically
biased. The asymptotic bias of T(H) with H € H,. is defined as follows.

BTH) = |Diag(or,””, 007, /%) (T(H) = T(Hy)))|.
where ||-|| is an arbitrary norm in RP and if || - || is the Euclidean norm then,
p
WTH) = | S IT(H) ~ THOP fou, (5.4)
i=1

where o2 is the diagonal i-th element of the covariance matrix X.

Notice that the asymptotic bias (5.4) is translation and coordinate-wise scale invari-
ant. The corresponding maximum asymptotic bias (maxbias) over the contamination
neighborhood H, is defined as follows.

Br(e) = sup b(T,H). (5.5)

HeH,
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Since we will only consider translation-scale equivariant estimates, we can assume without
loss of generality that uy = o = ... = p, =0 and 017 = 099 = --- = 0p, = 1. Therefore,

the asymptotic bias of T(H) satisfies:

bo(T,H) = [[T(H)|| =

and the maxbias can be written as

Br(e) = sup [T(H)].

The following results highlight the good bias-robustness properties of the coordinate-wise
multivariate median estimate. The next theorem show that when Y in (5.3) has multi-
variate normal distribution with mean g and covariance matrix X =Diag(o7;, 03, - - -, 05,),

then the coordinate-wise median is the minimax-bias among translation-scale equivariant

multivariate location estimates.

THEOREM 5.1 - Independent Normal Distributions — The coordinate-wise median
MED (H) (see (5.2)) minimizes the mazimum asymptotic bias (5.5) at the independent-
contamination neighborhood He (0 < € < 1/2) centered at the multivariate normal distri-
bution with mean p and covariance matriz X = Diag(07,, 03y, - . .,05,) (in (5.3)) among
translation-scale equivariant multivariate location estimates.

The proof of Theorem 5.1 is given in Section 5.5.1 of the chapter appendix.

Notice that Theorem 5.1 holds regardless of the RP-norm used to define the asymptotic
bias. This generality is of practical importance because the choice of an appropriate norm
could depend on the given problem.

We also notice that the maximum bias depends on the correlation structure of the
“core” data. Therefore we should consider different correlation structures, in addition
to the independent case addressed by Theorem 5.1. Unfortunately we could not extend

Theorem 5.1 for correlated normal distributions in its complete generality. However, we

obtained the following result for the class of “marginally-consistent” estimates.
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Suppose that H is a p-dimensional distribution with the following property: for each

1 =1,2,...,pthe i-th one-dimensional marginal distribution of the H is symmetric about
;- Then

M1

Hp

THEOREM 5.2-General Normal Distributions—The coordinate-wise median MED (H)
(see (5.2)) minimizes the mazimum asymptotic bias (5.5) at the independent-contamination
neighborhood H, (0 < € < 1/2) centered at the multivariate normal distribution with mean
p and covariance matriz X (in (5.3)) among translation-scale equivariant, marginally-

consistent multivariate location estimates.

The proof of Theorem 5.2 is given in Section 5.5.2 of the chapter appendix.

5.5 Chapter Appendix
5.5.1 Proof of Theorem 5.1

We will use an approach similar to Huber’s (1964) proof of the minimaxity of the univari-
ate median. For simplicity of notation, we consider the case p = 2. A similar approach
can be followed for the cases p > 2.

Because of the translation-scale invariance of the maximum asymptotic bias (5.5) and
the location-scale equivariance of the coordinate-wise estimate, we can assume without
loss of generality that u; = o = 0 and 017 = 099 = 1.

Consider the independent-contamination neighborhood #,. (5.3) for Hy, with P(B; =
1) =€ ¢ =1,2. Let f be the joint density function of a distribution F € H.. Then f
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must be of the form:

f(@1,m2) = f(x1,22|B1 =0,By =0)P(B; =0,B; =0)
+f(l'1,$2|Bl = O,BQ = 1)P(B1 = O,BQ = 1)
+f(.'L'1,.fE2|B]_ = 1,B2 = O)P(Bl = ].,BQ = 0)

+f(z1,22|B1 =1, B, =1)P(B1 =1,B, = 1)

= (1=’ p(z1)p(22) + € (1 — €) p(z1)ha(x2)

+e(1 =€) hi(z1)p(x2) + Eha(z1, T2), (5.6)

where ¢ is the standard normal density and h(x1), hao(z2) and hg(z1,x9) are arbitrary

densities.

The quantity zo = ®~! (2(11_€)> corresponds to the maxbias of the univariate median

(see Huber, 1964) and will play a central role in our derivations below. Huber considered

the case of a single e-contaminated normal density

f(@) = (1 = €)p(z) + eh(z),

and the corresponding contamination neighborhood is denoted by F.. Huber constructed
two e-contaminated normal distributions F'y and F_, which are symmetric about z, and

—xg, respectively and which are translations of each other; that is
F_(z) = Fy(z + 2xy).

The densities for F, and F_ are defined respectively as follows.

fow) = {1799 TS (5.7)

(1 —€)p(x —2m9) = > o,

f(z) = (1—e)p(x+2z9) =< -—x (5.8)

(1 —€)p(x) x> —x.
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Therefore, for any translation equivariant location estimate, T, we have
T(Fy)—T(F.) = 2x,

which implies that there is not any translation equivariant functional that can have an
absolute bias smaller than zy at F, and F' simultaneously. In fact, for any translation

invariant functional

T(F) =T(E) < [TF)| + |T(F)

2z < |T(Fy)|+[T(F-)],

and so either |T'(F)| > x¢ or |T(F-)| > xo. Then T has larger maxbias than that of the
median. Therefore,

sup |T'(F)| > o.
FeF.

Huber’s result then follows because f, and f_ belong to the e-contamination neigh-

borhood of the standard normal density. To see that let

fr(@) = (A=¢plz)+ehi(x), [-(2) =1 = ep(z) + eh(2).

With

o) = D=0 ) S0 = (1= dele)
The claim follows then provided that:
1. hy(x) >0, h_(z) > 0;

2. [ hy(z)de = [° h_(z)dz = 1.

To see Part 1, notice that

0 T < Iy

fr(z) = (1= e)p(z) =
(1= &lp(x = 2x0) — ¢(z)] > o,
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€(1 —e)[p(z + 2x0) — @(x)] = < —x

f-(x) = (1 = e)p(z) = {

0 T > —xp.

This follows because of the inequalities:

p(x —2x0) —p(z) = 0
(x —220)* < 22
zo(xg—2z) < 0

ry <,

and

o(x 4+ 2x0) —p(x) > 0
(x +220)? < 27
zo(zo+2) < 0
Tg < —x
To see Part 2 holds, notice that
/0 1) = (1= detlde = 2 [ lple —2m) — p(o)lde
_ ! 1~ @(—z0) — 1+ B(ao)]
1—e€

A similar calculation shows that

I
=

(1/e) / T (@) — (1 - D) d
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Because F; and F_ are translations of each other and 7' is translation equivariant, then

we have

F () = Fy(z+2x)
T(F.(z)) = T(F,(z+2m))
T(F-(x) = T(F(z)) =2z

T(F.)—T(F.) = 2.

Now we turn our attention to the case p = 2. We define

9+ (21, 22) = fi(21) f4 (2),

and
9- (21, 22) = f-(21) f-(22).
With f, and f_ given by (5.7) and (5.8). We now proceed as follows:
1. Use the fact that fi(z) = (1 — €)p(x) + ehi(x) and f (z) = (1 — €¢)p(z) +
eh_(z) to show that g, (z1,22) and g_(z1,x9) are of the form (5.6) and therefore

the corresponding distribution functions G, and G_ belong to the independent-

contamination neighborhood H..
2. Show that g, (x1,22) and g_(z1,z2) are translations of each other.

For Part 1, we write

g (T1,22) = [fy(21)f1(72)
= [(1 = &p(z1) + ehy (21)] [(1 — €)p(x2) + €hy (z2)]
= (1—e%p(x1)p(x2) + (1 — €)ep(z1)hy(22)

(

+e(l — hy (21)p(wa) + €Dy (1) (22),
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and

g-(z1,22) = f-(21)f-(22)
= [(1—e)p(z1) + eh(21)][(1 - €)p(x2) + eh_(22)]
= (1 - 6)’p(21)p(@2) + (1 = e)ep(a1)h—(z2)

el — h (@) p(5) + h(21)h_(w2).

Hence ¢, (x1,22) and ¢g_(z1,x,) belong to the independent-contamination model (5.6).

For Part 2, notice that since
f-(z1) = fi(z1+ 230),
f-(z2) = [fi(z2+ 2m).

Then

9—(21,72) = g4 (21 + 220, T2 + 270).

Now, similar to Huber (1964) for all translation equivariant estimate T we have

T(G4) — T(G-) = 2 ( o ) ,

and so
IT(Gy) — T(G-)ll = v/(220)? + (2m0)? = V2(210).
Moreover,
V2(2z) = [IT(Gy) - T(G-)
< ITGEHI+ TG-S
and so

V2(220) < 2 sup || T(H)|| = 2Bx(e).
HeH,
This yields,
BT(G) 2 \/§I0. (59)
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On the other hand,

sup |[MED(H)|| = sup \/medf(H)—i-med%(H)
HeHe HeHe
< \/sup med®(H;) + sup med?(H,),
HeH, HeH.
where
MED (H) = med(H,)
med(Hs)

is the coordinate-wise median. Since H; and H, are the distribution functions for
(1 = B))X, + B X; and (1 — By)Xs + By X, with X; ~ N(0,1) and X, ~ N(0,1),
by Huber (1964)

sup IMED(H)|| < \/2% + 2% = V2. (5.10)

The result now follows from (5.9) and (5.10). |

5.5.2 Proof of Theorem 5.2

For simplicity of notation, we consider the case p = 2. A similar approach can be followed

for the case p > 2. We can assume without loss of generality that p = 0 and

s=(1 7] (5.11)
p 1
Let
x = [N )_(a-Bv | [ Bz
X, (1-B,)Ys B2,

where Y7 and Y, are jointly normal with mean 0 and covariance matrix 3 (5.11). In
addition, B = Diag (B, By), Y =(Y1,Y2)' and Z = (7, Z,)" are independent and the

variables Z; and Z, are independent with common density

ho(z) = 0 T < Ty

=Elp(z — 2x0) — ()] = > o,

o
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where as before, 7y = &1 (2(11_6)>. We notice that for 2 = 1,2

X; = (1-B)Y;+ BiZ,
has density

0 T < Xy
g+(z) =

(1 —€) oz —2z0) x> o,

which is symmetric at x. Therefore

TX) = [ ™
Ty
On the other hand, by similar arguments
% = x=| X |_( Q=-B)(N) | _ [ B(-Z)
—Xo (1= Bs)(-Y2) Bs (—25)
_ [ a-B)W . B, Z,
(1-By) Y, By Z,

where Y; and Y, are jointly normal with mean 0 and covariance matrix X (5.11). Since
B = Diag (B4, By), Y = (YI,YQ), and Z = (Zl,22>l are independent, the joint distri-
bution of X belongs to H.. Moreover, the variables Z; and Z, are independent with
common density

@) = 4@t —e@)] © <

0 T > —To,

and so, for1=1,2

I
I

(1-B)Y; + BiZ,
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has density

1— -2 < —

q_ (37) — ( 6) (p(ﬂ? .Z'()) T To
0 T > —xg,

which is symmetric at —zy. Therefore

T(X) = | "

Hence, for all marginally consistent and translation-scale equivariant estimate T we have

T(Gy)-T@G)=2| ™ |,

o
where Gy and G_ are the distribution functions for G, and G _, respectively. So as in

the proof of Theorem 5.1, we obtain
Br(e) > V2x. (5.12)

The theorem now follows from (5.12) and (5.10). |
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Chapter 6

Conclusion

Our study may be divided into three parts. In Part I we introduced a new contamination
model that is more suitable than the existing contamination models for the multivariate
setting. Part II dealt with the estimation of multivariate scatter where we revisited
Huber’s (1981) proposal and extended some of his results. Finally, in Part III, we studied
the estimation of the multivariate location, in which we considered the coordinate-wise
estimation.

The following is an outline of the main results obtained in the thesis, the problems

that we encountered, and the directions we foresee for future work.

e A New Contamination Model:

¥ We introduced a new multivariate contamination model that adequately repre-
sents reality for many multivariate data sets that arise in practice. This model
resolves the deficiency of the current contamination models by allowing more
flexibility and certain forms of dependency that the existing contamination

models do not address.

v We gave some arguments and numerical evidence which indicate that the
breakdown point of affine equivariant estimates tends to zero when the di-

mension p tends to infinity under the new contamination model.

¥ Our study concentrated on the multivariate location and scatter matrix es-

timates. It is desirable to investigate the performance of robust regression
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analysis and some other related models (e.g., error in variables) using the new
contamination model. It is also of interest to revisit the problem of outliers
detection in time series in the context of the new contamination model. This
will be based on an embedding of the time series which allows us to regard
the time series as a multivariate sample with identically distributed but non
independent observations. Thus, multivariate outlier identifiers can be trans-
ferred into the context of time series. This gives interesting insights in some
features of outliers in time dependent data, which are not recognizable by

other methods, see Gather et al. (2003).
e Simple Robust Pairwise Scatter Estimates:

V¥ The criterion for the selection of a good robust estimate includes small maxbias,
high breakdown point and computational feasibility. Based on this crite-
rion, we singled out a particular robust pairwise scatter estimate, namely,
the Huberized correlation coefficient (with ¢ = 1) based scatter matrix esti-
mates. We found that this estimate is computationally simpler than the Fast
MCD and other fast scatter estimates recently proposed (see Maronna and
Zamar, 2002). We also showed that the Huberized estimate is more stable
than the Fast MCD estimate when the data are contaminated according to

the independent-contamination model.

¥ We studied the consistency and asymptotic normality of the Huberized cor-
relation coefficient estimates. It remains to establish the asymptotic distribu-
tion of the Huberized correlation coefficient estimates using other than MM-

location and scale estimates.

v We added scalability to Maronna and Zamar (2002) pairwise robust scatter

estimate by replacing the robustified Gnanadesikan and Kettenring (1972)
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robust scale-based scatter estimate by the quadrant correlation estimate. We

showed its scalability to high dimensions and large sample sizes.

v We studied the maxbias and the intrinsic bias of the Huberized correlation
coefficient estimates. We then extended Huber’s (1981) maxbias formulas and
derived the analytical form of the maxbias for the quadrant correlation (QC)
coefficient when the locations and scales are unknown. It is desirable to show

that the QC is also minimax in this more general context.

e Coordinate-wise Robust Location Estimates:

¥ In this part we used the same criterion as in the case of the multivariate
scatter matrix to select a good robust estimate. The coordinate-wise medians

appeared to fulfil our requirements.

¥ We studied the minimaxity properties of the coordinate-wise median for two
special cases. The independent situation and the correlated situation; for
the latest case we restricted attention to the class of marginally-consistent
estimates. We have not been able to show that the coordinate-wise median is
minimax in general. However, we conjecture that this is true and, therefore,

deserves further study.

¥ Our proposed Huberized covariance matrix estimates and the coordinate-wise
medians can be used to define a robustified Mahalanobis distance. It is of

interest to study its approximate distribution properties.
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