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Abstract

This study considers the problem of building a linear prediction model when the number

of candidate covariates is large and the dataset contains a fraction of outliers and other

contaminations that are difficult to visualize and clean. We aim at predicting the future

non-outlying cases. Therefore, we need methods that are robust and scalable at the same

time.

We consider two different strategies for model selection: (a) one-step model building

and (b) two-step model building. For one-step model building, we robustify the step-by-

step algorithms forward selection (FS) and stepwise (SW), with robust partial F-tests as

stopping rules.

Our two-step model building procedure consists of sequencing and segmentation. In

sequencing, the input variables are sequenced to form a list such that the good predictors

are likely to appear in the beginning, and the first m variables of the list form a reduced

set for further consideration. For this step we robustify Least Angle Regression (LARS)

proposed by Efron, Hastie, Johnstone and Tibshirani (2004). We use bootstrap to sta-

bilize the results obtained by robust LARS, and use “learning curves” to determine the

size of the reduced set.
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The second step (of the two-step model building procedure) - which we call seg-

mentation - carefully examines subsets of the covariates in the reduced set in order to

select the final prediction model. For this we propose a computationally suitable robust

cross-validation procedure. We also propose a robust bootstrap procedure for segmenta-

tion, which is similar to the method proposed by Salibián-Barrera and Zamar (2002) to

conduct robust inferences in linear regression.

We introduce the idea of “multivariate-Winsorization” which we use for robust data

cleaning (for the robustification of LARS). We also propose a new correlation estimate

which we call the “adjusted-Winsorized correlation estimate”. This estimate is consis-

tent and has bounded influence, and has some advantages over univariate-Winsorized

correlation estimate (Huber 1981 and Alqallaf 2003).
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Chapter 1

Introduction

1.1 Motivation

We consider the problem of building a linear prediction model when there is a large

number d of candidate covariates. Large datasets usually contain a fraction of outliers and

other contaminations, which are difficult to visualize and clean. The classical algorithms

are much affected by these outliers and, therefore, these algorithms often fail to select the

‘correct’ linear prediction model that would have been chosen if there were no outliers.

We argue that it is not reasonable to attempt to predict future outliers without

knowledge of the underlying mechanism that produces them. Therefore, we aim at

predicting the future non-outlying cases by fitting well the majority of the data. For

this, we need a robust method that is capable of selecting the important variables in the

presence of outliers in high-dimensional datasets.
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Robust model selection has not received much attention in the robustness litera-

ture. Seminal papers that address this issue include Ronchetti (1985) and Ronchetti

and Staudte (1994) which introduced robust versions of the selection criteria AIC and

Cp, respectively. Yohai (1997) proposed a robust Final Prediction Error (FPE) crite-

rion (for Splus documentation). Ronchetti, Field and Blanchard (1997) proposed robust

model selection by cross-validation. Morgenthaler, Welsch and Zenide (2003) constructed

a selection technique to simultaneously identify the correct model structure as well as

unusual observations. All these robust methods require the fitting of all submodels. One

exception is the model selection based on the Wald test (Sommer and Huggins 1996)

which requires the computation of estimates from the full model only.

A major drawback of the existing robust model selection methods is that they do not

scale up to large dimensions, because fitting a robust model is a nonlinear optimization

problem. As the number d of possible predictors increases, the number of submodels

(which is 2d − 1) increases dramatically, making the computational burden enormous.

Also, the methods that require the fitting of only the full model are not suitable, because

only a few of the d covariates are typically included in the final model, and the fitting of

the full model increases the numerical complexity of the methods unnecessarily.

In this study, we attempt to achieve robustness and computational suitability at the

same time. That is, we attempt to develop linear prediction model building strategies

that are simultaneously (i) capable of selecting the important covariates in the presence

of contaminations, and (ii) scalable to high dimensions. The term “scalable” is used to

indicate that the numerical complexity of the statistical methods proposed is “reasonable”

(e.g., not exponential).
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1.2 Model selection strategy

We consider two different strategies for the selection of a linear prediction model for

high-dimensional datasets: (a) one-step model building and (b) two-step model building,

which are described below.

1.2.1 One-step model building

Since for large values of d the computational burden of all possible subsets regression is

enormous, we turn our focus on step-by-step algorithms like forward selection (FS) and

stepwise (SW) procedures (see, for example, Weisberg 1985, Chapter 8) that can stop

when certain goals are achieved.

Classical FS or SW procedures yield poor results when the data contain outliers

and other contaminations, since they attempt to select the covariates that will fit well all

the cases (including the outliers). Therefore, our goal is to develop robust step-by-step

algorithms that will select important variables in the presence of outliers, and predict

well the future non-outlying cases.

We express the classical FS and SW algorithms in terms of sample means, variances

and correlations, and replace these sample quantities by their robust counterparts to

obtain robust step-by-step algorithms. Similar ideas have been used for building robust

estimators of regression parameters (see, for example, Croux, Van Aelst and Dehon 2003,

and the references therein). We also incorporate robust partial F-tests as stopping rules

during the implementation of these robust algorithms.
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1.2.2 Two-step model building

Our two-step model building procedure is a blend of all possible subsets regression and

step-by-step algorithms. All possible subsets regression is expected to select a better

model (with respect to predictive power) than any step-by-step algorithm, but its com-

putational burden is extremely high for large values of d. We, therefore, consider ap-

plying this procedure on a “reduced set” of covariates. Thus, we consider proceeding in

two steps. The first step - which we call sequencing - quickly screens out unimportant

variables to form a “reduced set” for further consideration. The second step - which we

call segmentation - carefully examines different subsets of the variables in the reduced

set for possible inclusion in the prediction model. These two steps are described below.

Sequencing

The goal of the first step is a drastic reduction of the number of candidate covariates.

The input variables are sequenced to form a list such that the good predictors are likely

to appear at the beginning of the list. The first m covariates of the list then form the

reduced set from which the final prediction model will be obtained.

One strategy for sequencing the candidate covariates is to use one of the several

available step-by-step or stagewise algorithms, e.g., Forward Selection (FS), or Forward

Stagewise procedure (Stagewise) (see, for example, Hastie, Tibshirani and Friedman

2001, Chapter 10). We focus on the powerful algorithm recently proposed by Efron,

Hastie, Johnstone and Tibshirani (2004) called Least Angle Regression (LARS), which is

a mathematical solution to the Stagewise problem. LARS is computationally efficient and

4



has been shown to have clear statistical advantages over other step-by-step and stagewise

algorithms.

Since LARS is very sensitive to contamination, our goal is to robustify LARS. We

show that LARS can be expressed in terms of the mean vector and covariance matrix of

the data, and we replace these classical ingredients of LARS by their robust counterparts

to obtain robust LARS. We combine robust LARS algorithm with bootstrap to obtain a

more stable and reliable list of covariates.

One important issue in the sequencing step is to determine the appropriate value

of the number of covariates, m, for the reduced set. The probability that the reduced

set contains all the important variables increases with m. Unfortunately, also the com-

putational cost of the second step, segmentation, increases with m. Therefore, we aim

to determine a “reasonable” value of m which is large enough to include most of the

important variables but not so large as to make the second step impractical or unfeasi-

ble. For this purpose, we introduce a “learning curve” that plots robust R2 values versus

dimension. An appropriate value of m is the dimension corresponding to the point where

the curve starts to level off.

Segmentation

When we have a reduced set of m covariates for further consideration, one reasonable

approach to reach the final model is to perform all possible subsets regression on this

reduced set using an appropriate selection criterion. Again, the classical selection criteria,

e.g., Final Prediction Error (FPE), Akaike Information Criterion (AIC), Mallows’ Cp,

cross-validation (CV) and bootstrap procedures are not resistant to outliers. The robust

5



AIC procedure (Ronchetti 1985) has certain limitations, which are discussed in this

thesis. The robust CV method (Ronchetti, Field and Blanchard 1997) is computationally

expensive.

In this study, we propose computationally suitable robust CV and robust boot-

strap procedures to evaluate the predictive powers of different subsets of the reduced

set of covariates. Our robust bootstrap procedure is similar to the methods proposed

by Salibián-Barrera (2000), and Salibián-Barrera and Zamar (2002) to conduct robust

statistical inferences in linear regression. Since the performance of robust FPE procedure

(Yohai 1997) has not been studied so far, we also evaluate this method in our study.

1.3 Computation of robust correlation matrices

As mentioned earlier, our approach to robustification of FS, SW and LARS consists

of expressing these algorithms in terms of the mean vector and the correlation matrix

of the data, and then replacing these classical ingredients by their robust counterparts.

Therefore, robust estimation of the correlation matrix is a major component of the robust

methods we propose in this study.

The computation of robust correlation estimates from a d-dimensional data set is

very time-consuming, particularly for large values of d. Even the fast MCD algorithm

by Rousseeuw and Van Driessen (1999) is not fast enough for the type of applications

we have in mind. Therefore, we use robust correlations derived from a pairwise affine

equivariant covariance estimator.
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Interestingly, the pairwise approach for robust correlation matrix estimation is not

only computationally suitable, it is also more relevant than the d-dimensional approach

for robust step-by-step algorithms. Pairwise approach allows us to compute only the

required correlations at each step of the algorithm. Since we intend to stop as soon as

certain goals are achieved, a pairwise approach saves the computation of the correlations

that are not required.

We consider robust correlations derived from a simplified version of the bivariate

M-estimator proposed by Maronna (1976). This estimate is computationally efficient,

affine equivariant and has a breakdown point of 1/3 in two dimensions.

For very large high-dimensional data, however, we need an even faster robust corre-

lation estimator. Therefore, as a part of our robust LARS procedure, we propose a new

correlation estimate called the “adjusted-Windsorized correlation estimate”. Unlike two

separate univariate Windsorizations for X and Y (see Huber 1981 and Alqallaf 2003),

we propose a joint Windsorization with a larger tuning constant c1 for the points falling

in the two quadrants that contain the majority of the data, and a smaller constant c2

for the points in the two minor quadrants. Our estimate has some advantages over the

univariate-Windsorized correlation estimate.

1.4 Organization of subsequent chapters

The following chapters are organized as follows. In Chapter 2, we present the one-step

model selection procedure, where we develop robust versions of FS and SW algorithms

incorporated with robust partial F-tests used as stopping rules.
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In Chapter 3, we present the first step (robust sequencing) of the two-step model

selection procedure. Here, we robustify LARS to sequence the covariates, use bootstrap

to stabilize the results obtained by robust LARS, and use “learning curves” to decide

about the size of the reduced set. For the development of robust LARS, we introduce

the idea of “multivariate-windsorization” which we use for robust data cleaning. We also

propose a new correlation estimate which we call the “adjusted-Windsorized correlation

estimate”.

Chapter 4 deals with the second step (robust segmentation) of the two-step model

selection procedure. Here, we review the existing classical and robust selection criteria,

discuss their limitations, and propose computationally suitable robust CV and robust

bootstrap procedures to evaluate the predictive powers of different subsets of the reduced

set of covariates. We also evaluate the performance of robust FPE (Yohai 1997).

Chapter 5 studies the properties of the adjusted-Windsorized correlation estimate

(the new correlation estimate proposed in Chapter 3). We show that the proposed

estimate is consistent and has bounded influence. We obtain its asymptotic variance

and intrinsic bias. We show that the tuning constants of this estimate can be chosen

such that it is approximately Fisher-consistent. We also show that a smoothed version

of this estimate is asymptotically normal.

In Chapter 6 we conclude by summarizing the main ideas proposed in this thesis,

and the main results obtained.

Though the major chapters (Chapters 2-5) are connected conceptually, each of them

is independent of the others. That is, they may be considered as individual research

papers, to a certain extent.
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Chapter 2

One-step Model Building:

Robust Forward Selection and

Stepwise Procedures

2.1 Introduction

When the number d of candidate covariates is small, one can choose a linear predic-

tion model by computing a reasonable criterion (e.g., Cp, AIC, cross-validation error

or bootstrap error) for all possible subsets of the predictors. However, as d increases,

the computational burden of this approach (sometimes referred to as all possible subsets

regression) increases very quickly. This is one of the main reasons why step-by-step algo-

rithms like forward selection (FS) and stepwise (SW) (see, for example, Weisberg 1985,

Chapter 8) are popular.
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Unfortunately, classical FS or SW procedures yield poor results when the data con-

tain outliers and other contaminations. These algorithms attempt to select the covariates

that will fit well all the cases (including the outliers), and often fail to select the model

that would have been chosen if those outliers were not present in the data. Moreover,

aggressive deletion of outliers is not desirable, because we may end up deleting a lot of

observations which are outliers only with respect to the predictors that will not be in the

model.

We argued earlier that it is not reasonable to attempt to predict the future outliers

without knowledge of the underlying mechanism that produces them. Therefore, our

goal is to develop robust step-by-step algorithms that will select important variables in

the presence of outliers, and predict well the future non-outlying cases.

We show that the list of variables selected by classical FS and SW procedures are

functions of sample means, variances and correlations. We express the two classical algo-

rithms in terms of these sample quantities, and replace them by robust counterparts to

obtain the corresponding robust versions of the algorithms. Once the covariates are se-

lected (by using these simple robust selection algorithms), we can use a robust regression

estimator on the final model.

Robust correlation matrix estimators for d-dimensional data sets are usually de-

rived from affine-equivariant, robust estimators of scatter. This is very time-consuming,

particularly for large values of d. Moreover, the computation of such robust correlation

matrices becomes unstable when the dimension d is large compared to the sample size

n. On the other hand, only a few of the d covariates are typically included in the fi-

nal model, and the computation of the whole d-dimensional correlation matrix at once
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will unnecessarily increase the numerical complexity of the otherwise computationally

suitable step-by-step algorithms.

To avoid this complexity, we use an affine-equivariant bivariate M-estimator of scat-

ter to obtain robust correlation estimates for all pairs of variables, and combine these

to construct a robust correlation matrix. We call this the pairwise robust correlation

approach. Interestingly, this pairwise approach for robust correlation matrix estimation

is not only computationally suitable, but is also more convenient (compared to the full

d-dimensional approach) for robust step-by-step algorithms. The reason is as follows.

The sample correlation matrix (R, say) has the property that the correlation matrix of

a subset of variables can be obtained by simply taking the appropriate submatrix of R.

This property allows us to compute only the required correlations at each step of the

algorithm. With the pairwise robust correlation approach we keep this property.

Affine equivariance and regression equivariance are considered to be important prop-

erties for robust regression estimators (see, e.g., Rousseeuw and Leroy 1987). However,

these properties are not required in the context of variable selection, because we do not

consider linear combinations of the existing covariates. The only transformations that

should not affect the selection result are linear transformations of individual variables,

i.e., shifts and scale changes. Variable selection methods are often based on correlations

among the variables. Therefore, robust variable selection procedures need to be robust

against correlation outliers, that is, outliers that affect the classical correlation estimates

but can not be detected by looking at the individual variables separately. Our approach

based on pairwise correlations is robust against correlation outliers and thus suitable for

robust variable selection. It should be emphasized that with our approach we consider

the problem of “selecting” a list of important predictors, but we do not yet “fit” the
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selected model. The final model resulting from the selection procedure usually contains

only a small number of predictors compared to the initial dimension d, when d is large.

Therefore, to robstly fit the final model we propose to use a highly robust regression

estimator such as an MM-estimator (Yohai 1987) that is resistant to all types of outliers.

Note that we always use models with intercept.

Croux, Van Aelst and Dehon (2003) estimated the parameters of a regression model

using S-estimators of multivariate location and scatter. They also obtained the corre-

sponding standard errors. Their estimation method can be adapted for model-building

purposes. However, for the step-by-step algorithms like FS and SW, our pairwise ap-

proach has computational advantages.

The rest of this chapter is organized as follows. In Section 2.2 we review some

classical step-by-step algorithms. In Section 2.3 we decompose the FS and SW procedures

in terms of the correlation matrix of the data. In Section 2.4, we present robust versions

of these algorihms, along with their numerical complexities. Section 2.5 presents a Monte

Carlo study that compares our robust methods with the classical ones by their predicting

powers. Section 2.6 contains two real-data applications. Section 2.7 is the conclusion.

2.2 Review: classical step-by-step algorithms

In this section, we review the three most important step-by-step algorithms: Forward Se-

lection (FS), stepwise (SW) and Backward Elimination (BE). We show a serious drawback

of the BE procedure, which is why we did not consider this algorithm for robustification.
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2.2.1 Forward Selection (FS)

Let us have d predictors X1, . . . , Xd, and a response Y . Let each variable be standardized

using its mean and standard deviation. The FS procedure selects the predictor (X1,

say) that has the largest absolute correlation |r1Y | with Y , and obtains the residual

vector Y − r1YX1. All the other covariates are then ‘adjusted for X1’ and entered into

competition. That is, each Xj is regressed on X1, and the corresponding residual vector

Zj.1 (which is orthogonal to X1) is obtained. The correlations of these Zj.1 with the

residual vector Y − r1YX1, which are also called “the partial correlations between Xj

and Y adjusted for X1”, decide the next variable (X2, say) to enter the regression model.

All the other covariates are then ‘adjusted for X1 and X2’ and entered into further

competition, and so on. We continue adding one covariate at each step, until a stopping

criterion is met.

The reason behind the ‘orthogonalization’, that is, the construction of Zj.1 from Xj,

is that the algorithm measures what ‘additional’ contribution Xj makes in explaining

the variability of Y , when Xj joins X1 in the regression model. The R2 produced by

(X1, Z2) is the same as the R2 produced by (X1, X2), and the orthogonalization ensures

maximum R2 at each FS step.

We stop when the partial F-value for each covariate that has not yet entered the

model is less than a pre-selected number, say “F-IN” (Weisberg 1985).
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2.2.2 Stepwise (SW)

The SW algorithm is the same as the FS procedure up to the second step. When there

are at least two covariates in the model, at each subsequent SW step we either (a) remove

a covariate, or (b) exchange two covariates, or (c) add a covariate, or (d) stop. Note that,

the “exchange” of two covariates is not the same as the addition (removal) of a covariate

in one step followed by the removal (addition) of another covariate in the next step.

Sometimes, a new covariate cannot enter the model because of an existing covariate, and

the existing covariate cannot be removed according to the criterion used.

The options at each SW step are considered in the order in which they are mentioned

above. A selected covariate is removed if its partial F-value is less than a pre-selected

number, say “F-OUT” (Weisberg 1985). A selected covariate is exchanged with a new

one if the exchange increases R2. A covariate is added if it has the highest partial F-value

among the remaining covariates, and the value is more than F-IN (as in FS). And, we

stop when none of the above (removal, exchange or addition) occurs in a certain step.

2.2.3 Backward Elimination (BE)

The BE procedure (see, for example, Weisberg 1985, Chapter 8) is the opposite of FS.

BE starts with the full model, and removes one covariate at each step. The covariate to

remove is the one that has the smallest partial F-value among all the covariates that are

currently in the model. We stop when the partial F-value for each covariate currently in

the model is greater than F-OUT.
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Limitation of BE

When the number d of candidate covariates is large, only a few of these covariates are

typically included in the final model. However, to apply the BE algorithm, we have to

compute the pairwise correlation estimates for all the d covariates (since BE starts with

the full model). Therefore, BE has higher numerical complexity than that of FS (or SW).

This problem will be more serious with the computation of robust correlation estimates

(for robust BE). Therefore, we will not consider the BE procedure for robustification.

2.3 FS and SW Expressed in Correlations

In order to robustify the FS and SW procedures, we will now express these algorithm in

terms of the original correlations of the variables.

2.3.1 FS expressed in terms of correlations

Let the d covariates X1, . . . , Xd and the response Y be standardized using their mean and

standard deviation. Let rjY denote the correlation between Xj and Y , and RX be the

correlation matrix of the covariates. Suppose w.l.o.g. that X1 has the maximum absolute

correlation with Y . Then, X1 is the first variable that enters the regression model. We

call the predictors that are in the current regression model “active” predictors. The

remaining candidate predictors are called “inactive” predictors. We now need the partial

correlations between Xj (j 6= 1) and Y adjusted for X1, denoted by rjY.1, to determine

the second covariate X2 (say) that enters the model.
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The partial correlation rjY.1 expressed in terms of original correlations

Each inactive covariate Xj should be regressed on X1 to obtain the residual vector Zj.1

as follows

Zj.1 = Xj − βj1X1, (2.1)

where

βj1 =
1

n
X t

1Xj = rj1. (2.2)

We have

1

n
Zt

j.1Y = (Xj − βj1X1)
tY = rjY − rj1r1Y , (2.3)

and

1

n
Zt

j.1Zj.1 = (Xj − βj1X1)
t(Xj − βj1X1) = 1− r2

j1. (2.4)

Therefore, the partial correlation rjY.1 is given by

rjY.1 =
Zt

j.1(Y − βY 1X1)/n√
Zt

j.1Zj.1/n SD(Y − βY 1X1)
(2.5)

Note that the factor SD(Y − βY 1X1) in the denominator of (2.5) is independent of the

covariate Xj; (j = 2, . . . , d) being considered. Hence, when selecting the covariate Xj

that maximizes the partial correlation rjY.1, this constant factor can be ignored. This

reduces computations and therefore is more time efficient. It thus suffices to calculate

r̃jY.1 =
Zt

j.1(Y − βY 1X1)/n√
Zt

j.1Zj.1/n
(2.6)

which is proportional to the actual partial correlation. r̃jY.1 can be rewritten as follows

r̃jY.1 =
Zt

j.1Y/n√
Zt

j.1Zj.1/n
[since Zj.1 and X1 are orthogonal] (2.7)

=
rjY − rj1r1Y√

1− r2
j1

[using (2.3) and (2.4)].
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Now, suppose w.l.o.g. that X2 (or, equivalently, Z2.1) is the new active covariate, because

it minimizes r̃jY.1 (and thus also the partial correlation rjY.1). All the inactive covariates

should now be orthogonalized with respect to Z2.1.

Orthogonalization of Zj.1 wrt Z2.1

Each inactive variable Zj.1 should be regressed on Z2.1 to obtain the residual vector Zj.12

as follows

Zj.12 = Zj.1 − βj2.1Z2.1.

Here,

βj2.1 =
Zt

2.1Zj.1/n

Zt
2.1Z2.1/n

=
X t

2Zj.1/n

Zt
2.1Z2.1/n

[because of orthogonality] (2.8)

=
X t

2(Xj − rj1X1)/n

Zt
2.1Z2.1/n

[Using (2.1) and (2.2)]

=
r2j − r21rj1

1− r2
21

[using (squared) denominator of (2.7) for j = 2].

Thus, r̃jY.1 and βj2.1 are expressed in terms of original correlations.

Lemma 2.1. Given that the numerators and denominators of the following equations

r̃jY.12···(k−1) =
Zt

j.12···(k−1)Y/n√
Zt

j.12···(k−1)Zj.12···(k−1)/n
, for all inactive j, (2.9)

and

βjh.12···(h−1) =
Zt

h.12···(h−1)Zj.12···(h−1)/n

Zt
h.12···(h−1)Zh.12···(h−1)/n

, for h = 2, . . . , k; j inactive, (2.10)

are functions of original correlations, the numerators and denominators of the following

quantities can be expressed as functions of original correlations: (a) r̃jY.12···k and (b)

βj(k+1).12···k.
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Proof. Here, r̃jY.12···(k−1) determines the next active covariate Xk (or, equivalently,

Zk.12···(k−1)). The given βjk.12···(k−1) can be used to obtain the residual vector

Zj.12···k = Zj.12···(k−1) − βjk.12···(k−1)Zk.12···(k−1). (2.11)

Now,

r̃jY.12···k =
Zt

j.12···kY/n√
Zt

j.12···kZj.12···k/n
. (2.12)

Using (2.11), the numerator of (2.12) can be written as

1

n
Zt

j.12···(k−1)Y − βjk.12···(k−1)
1

n
Zt

k.12···(k−1)Y,

where the first part is the numerator of (2.9), βjk.12···(k−1) comes from (2.10) for h = k,

and the rest is the numerator of (2.9) for j = k (because Xk was inactive at that point).

Thus, the numerator of (2.12) is a function of the original correlations.

Using (2.11), the squared denominator of (2.12) can be written as

1

n
Zt

j.12···(k−1)Zj.12···(k−1) − 2βjk.12···(k−1)
1

n
Zt

k.12···(k−1)Zj.12···(k−1)

+ β2
jk.12···(k−1)Z

t
k.12···(k−1)Zk.12···(k−1), (2.13)

where, the first term is the (squared) denominator of (2.9), the second term is the nu-

merator of (2.10) for h = k, and the last term is the denominator of (2.10) for h = k.

This proves Part (a) of the lemma.

The quantities r̃jY.12···k determine the next active covriate X(k+1). Now,

βj(k+1).12···k =
Zt

(k+1).12···kZj.12···k/n

Zt
(k+1).12···kZ(k+1).12···k/n

. (2.14)
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Because of orthogonality, the numerator of (2.14) can be written as:

1

n
X t

(k+1)Zj.12···k =
1

n
X t

(k+1)(Xj − βj1X1 − βj2.1Z2.1 − . . . βjk.12···(k−1)Zk.12···(k−1))

= rj(k+1) − βj1
1

n
X t

(k+1)X1 − βj2.1
1

n
X t

(k+1)Z2.1 . . .− βjk.12···(k−1)
1

n
X t

(k+1)Zk.12···(k−1)

= rj(k+1) − rj1rk1 − βj2.1
1

n
Zt

(k+1).1Z2.1 · · · − βjk.12···(k−1)
1

n
Zt

(k+1).12···(k−1)Zk.12···(k−1),

where the β’s come from (2.10) for h = 2, . . . , k, and the other quantities are the numer-

ators of (2.10) for j = k + 1, and h = 2, . . . , k.

For the denominator of (2.14), we can use the relation

Z(k+1).12···k = Z(k+1).12···(k−1) − β(k+1)k.12···(k−1)Zk.12···(k−1),

which follows from (2.11) by replacing j = (k + 1). So, the denominator can be written

as

Zt
(k+1).12···(k−1)Z(k+1).12···(k−1)/n− 2β(k+1)k.12···(k−1)Z

t
(k+1).12···(k−1)Zk.12···(k−1)/n

+β2
(k+1)k.12···(k−1)Z

t
k.12···(k−1)Zk.12···(k−1)/n,

where the first part is the (squared) denominator of (2.9) for j = k + 1, the second part

is the numerator of (2.10) for j = k + 1 and h = k, and the last part is the denominator

of (2.10) for h = k. Therefore, βj(k+1).12...k is a function of original correlations. This

completes the proof. ¥

19



FS steps in correlations

We can now summarize the FS algorithm in terms of correlations among the original

variables as follows:

1. To select the first covariate Xm1 , determine m1 = argmax |rj|.

2. To select the kth covariate Xmk
(k = 2, 3, . . .), calculate r̃jY.m1···m(k−1)

, which is pro-

portional to the partial correlation betweenXj and Y adjusted forXm1 , · · · , Xm(k−1)
,

and then determine mk = argmax |r̃jY.m1···m(k−1)
|.

Partial F-tests for stopping

At each FS step, once the “best” covariate (among the remaining covariates) is identified,

we can perform a partial F-test to decide whether to include this covariate in the model

(and continue the process) or to stop. The new “best” covariate enters the model only if

the partial F-value, denoted by Fpartial, is greater than F (0.95, 1, n− k − 1) (say), where

k is the current size of the model including the new covariate. Here again, the required

quantities can be expressed in terms of correlations among the original variables, as we

show below.

Suppose that X1 is already included in the model, and X2 has the largest absolute

partial correlation with Y after adjusting for X1. To decide whether X2 should be

included in the model we perform a partial F-test using the statistic Fpartial given by
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Fpartial =
(Y − βY 1X1)

t(Y − βY 1X1)− (Y − βY 1X1 − βY 2.1Z2.1)
t(Y − βY 1X1 − βY 2.1Z2.1)

(Y − βY 1X1 − βY 2.1Z2.1)t(Y − βY 1X1 − βY 2.1Z2.1)/(n− 3)

=
(n− 3) (2 βY 2.1Z

t
2.1Y/n− β2

Y 2.1Z
t
2.1Z2.1/n)

1− r2
1Y − (2 βY 2.1Zt

2.1Y/n− β2
Y 2.1Z

t
2.1Z2.1/n)

=
(n− 3) (βY 2.1Z

t
2.1Y/n)

1− r2
1Y − βY 2.1Zt

2.1Y/n

=
(n− 3) r̃2

2Y.1

1− r2
1Y − r̃2

2Y.1

, (2.15)

where r̃2Y.1 is expressed in correlations in (2.7).

Similarly, when (k−1) covariates X1, . . . , Xk−1 are already in the model, and w.l.o.g.

Xk has the largest absolute partial correlation with Y after adjusting for X1, . . . , Xk−1,

the partial F-statistic for Xk can be expressed as:

Fpartial =
(n− k − 1) r̃2

kY.12···(k−1)

1− r2
1Y − r̃2

2Y.1 − · · · − r̃2
kY.12···(k−1)

, (2.16)

where the partial correlations can be expressed in terms of the original correlations using

Lemma 2.1.

2.3.2 SW expressed in terms of correlations

The SW algorithm starts as the FS procedure. When there are at least two covariates in

the model, at each subsequent SW step we either add a covariate, or drop a covariate,

or exchange two covariates, or stop.
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To decide whether to add a covariate, the partial correlations of each inactive co-

variate Xj with Y can be computed as in the case of FS (see (2.12)) to perform a partial

F-test (see (2.15) and (2.16)). To decide whether to drop an “active” covariate, we can

pretend that the active covariate under consideration entered the model last, and calcu-

late its partial correlations with Y (see (2.12), subscripts modified) to perform a partial

F-test (see (2.15) and (2.16), subscripts modified).

Once an “active” covariate is dropped, the “orthogonalizations” of the other covari-

ates (active or inactive) with this covariate that were used before to derive the partial

correlations become irrelevant, and the order of the other active covariates in the model

cannot be determined. Fortunately, this does not create a problem to decide the next

covariate, because, for example, r̃jY.346 = r̃jY.643. Therefore, we can update all relevant

calculations considering the currently active covariates in any order.

Stopping criteria for SW. Unlike the FS algorithm where a stopping criterion

is “optional” (we may choose to sequence all the covariates), SW has to have a built-in

stopping rule, because at each step we have to decide whether to add one covariate and/or

drop another. We may choose two different theoretical F percentiles as the inclusion and

deletion criteria, e.g., F (0.95, 1, n− k1− 1) and F (0.90, 1, n− k2− 1), respectively, where

k1 and k2 are the model sizes after inclusion and before deletion.

2.4 Robustification of FS and SW algorithms

In the last section we expressed the FS and SW algorithms in terms of sample means,

variances and correlations. Because of these non-robust building blocks, these algorithms
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are sensitive to contamination in the data, as shown by our simulation and real-data ex-

amples later on. A simple robustification of these algorithms can be achieved by replacing

the non-robust ingredients of the algorithms by their robust counterparts. For the ini-

tial standardization, the choices of fast computable robust center and scale measures are

straightforward: median (med) and median absolute deviation (mad). As mentioned ear-

lier, most available robust correlation estimators are computed from the d-dimensional

data and therefore are very time consuming (see, for example, Rousseeuw and Leroy

1987). Robust pairwise approaches (Huber 1981) are not affine equivariant and, there-

fore, are sensitive to two-dimensional outliers.

One solution is to use robust correlations derived from a pairwise affine equivariant

covariance estimate. We consider an estimate which is inspired by the computation-

ally suitable multivariate M-estimate proposed by Maronna (1976). We first present

Maronna’s estimate below.

Definition 2.1. (Maronna’s M-estimate of multivariate location and scatter)

Let us have n multivariate observations zi, i = 1, . . . , n. Maronna’s M-estimate of the

location vector t and scatter matrix V is defined as the solution of the system of equations:

1

n

∑
i

u1(di)(zi − t) = 0, (2.17)

1

n

∑
i

u2(d
2
i )(zi − t)(zi − t)′ = V, (2.18)

where d2
i = (zi − t)′V −1(zi − t), and u1 and u2 satisfy a set of general assumptions.

For further computational ease, we considered the following simplified version of

the bivariate M-estimate. We used the coordinatewise median as the bivariate location

estimate and only solved (2.18) to estimate the scatter matrix and hence the correlation.
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We used the function u2(t) = u(t) = min(c/t, 1) with c = 9.21, the 99% quantile of a

χ2
2 distribution. For the bivariate observations zi = (xi, yi), i = 1, . . . , n, the steps for

calculating this correlation estimate are presented below:

1. Calculate the medians mX and mY , and obtain z̃i = (x̃i, ỹi), i = 1, . . . , n, where

x̃i = xi −mX , and ỹi = yi −mY .

2. Calculate the mads sX and sY , and set V0 =




sX 0

0 sY


.

3. Calculate d2
i = z̃′i V

−1
0 z̃i, i = 1, . . . , n. Then obtain V1 = 1

n

n∑
i=1

u(d2
i ) z̃i z̃′i.

4. Set V0 ← V1.

5. Repeat steps 3 and 4.

We stop when |r(V1) − r(V0)| < δ, where δ > 0 is a pre-selected small number, and r(.)

is the correlation coefficient calculated from the bivariate scatter matrix.

Finally, FS and SW algorithms are implemented using these robust pairwise corre-

lations.

Robust partial F-tests. We replace the classical correlations in the partial F

statistic by their robust counterparts to form a robust partial F statistic. We conjecture

that the robust pairwise correlations appearing in the numerator of the F statistic are

jointly normal. Therefore, under the null hypothesis, the robust F statistic is asymptoti-

cally distributed as χ2
1. To assess our conjecture numerically, we conducted the following

simulation. We generated X1, ε1 and ε2 from a standard normal distribution. We then

generated Y = β0 + β1X1 + σ1ε1, and X2 = γ0 + γ1X1 + σ2ε2, where β0, β1, γ0 and γ1
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are generated from a uniform distribution on (−10, 10), σ1 is chosen so that the signal-

to-noise ratio equals 2, and σ2 is chosen so that X1 and X2 have a particular correlation

randomly chosen from a uniform distribution on (0, 1). We generated 2000 datasets

of size 100, and calculated the robust partial F statistic for covariate X2 in each case.

Figure 2.1 shows the qqplot of the robust partial F values against the theoretical χ2
1

quantiles. Moreover, the average and variance of the robust F values are 0.99 (' 1) and

2.02 (' 2), respectively. All of these support our conjecture. Therefore, we consider it

to be reasonable to use theretical F quantiles as our stopping criteria for robust FS and

SW algorithms.
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Figure 2.1: QQplot of the robust partial F values against the theoretical χ2
1 quantiles.

2.4.1 Numerical complexity of the algorithms

If we sequence all d covariates, the standard FS procedure requiresO(nd2) time. However,

when applied with a stopping criterion, the complexity of FS depends on the number of
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covariates selected in the model. Assuming that the model size will not exceed a certain

number m < d, the complexity of FS is less than or equal to O(ndm). Similarly, the

maximum complexity of SW is O(n(dm+m2)) = O(ndm).

Since we used the coordinatewise median as the bivariate location estimate, the

correlation based on Maronna’s M-estimate can be computed in O(n log n + bn) time,

where b is the number of iterations required. Assuming that b does not exceed O(log n)

(convergence was achieved after 3 to 5 iterations in our simulations), the complexity

of this estimate is O(n log n). As a result, the maximum complexity of robust FS is

O((n log n)dm), and the maximum complexity of robust SW is O((n log n)(dm+m2)) =

O((n log n)dm).

Though all possible subsets regression is expected to select a better model (with

respect to predictive power) than any step-by-step algorithm, its computational burden

is extremely high for large values of d, since it requires the fitting of all 2d−1 submodels.

The complexity of the classical algorithms of this type is O(2d nd2). Since robust model

selection methods proposed so far uses all possible subsets regression, the complexity

of the existing robust algorithms is O(2d nd2) multiplied by the number of iterations

required for the robust fits.

2.4.2 Limitation of the proposed algorithms

The robust FS and SW procedures based on robust pairwise correlations proposed are

resistant to bivariate (correlation) outliers. However, they can be sensitive to three-

or higher-dimensional outliers, that is, outliers that are not detected by univariate and
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bivariate analyses. Also, the correlation matrix obtained from the pairwise correlation

approach may not be positive definite, forcing the use of correction for positive definite-

ness in some cases (see, e.g., Alqallaf et al. 2002).

It should be emphasized here that these are very small prices to pay to make the

selection of covariates possible for large values of d. For example, in our simulations

(presented later) we used d = 50. It is impossible to apply all possible subsets regression

on a dataset of this dimension. If one robust fit takes 0.001 cpu second, we would need

250 ∗ 0.001/(3600 ∗ 24 ∗ 365) years to select the final model.

2.5 A simulation study

To compare our robust methods with the classical ones, we carried out a simulation study

similar to Frank and Friedman (1993). The total number of variables is d = 50. A small

number a = 9 or a = 15 of them are nonzero covariates. We considered 2 correlation

structures of these nonzero covariates: “moderate correlation” case and “no correlation”

case, which are described below.

For the moderate-correlation case, we considered 3 independent ‘unknown’ processes,

represented by latent variables Li, i = 1, 2, 3, which are responsible for the systematic

variation of both the response and the covariates. The model is

Y = 7L1 + 6L2 + 5L3 + ε = Signal + ε, (2.19)

where Li ∼ N(0, 1), and ε is a normal error not related to the latent variables. The

variance of ε is chosen such that the signal-to-noise ratio equals 2, that is Var(ε) = 110/4.
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The nonzero covariates are divided in 3 equal groups, with each group related to exactly

one of the latent variables by the following relation

Xj = Li + δj,

where δj ∼ N(0, 1). Thus, we have a true correlation of 0.5 between the covariates

generated with the same latent variable.

For the no-correlation case (a true correlation of 0 between the covariates), inde-

pendent predictors Xj ∼ N(0, 1) are considered, and Y is generated using the a non-zero

covariates, with coefficients (7, 6, 5) repeated three times for a = 9, and five times for

a = 15.

For each case we generated 1000 datasets each of which was randomly divided into

a training sample of size 100 and a test sample of size 100.

Contamination of the training data. Each of the d − a noise variables are

contaminated independently. Each observation of a noise variables is assigned probability

0.003 of being replaced by a large number. If this observation is contaminated, then the

corresponding observation of Y is also replaced by a large number. Thus, the probability

that any particular row of the training sample will be contaminated is 1− (1−0.003)d−a,

which is approximately 10% for a = 15, and 11.6% for a = 9.

For each of the 4 methods (2 classical and 2 robust), we fitted the obtained model

on the training data, and then used it to predict the test data outcomes. We used MM-

estimator (Yohai 1987) to fit the models obtained by either of the robust methods, because

of its high breakdown point and high efficiency at the normal model. For each simulated

dataset, we recorded (1) the average squared prediction error on the test sample, (2) the
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number of noise variables selected in the model, and (3) the total number of variables

selected in the model.

Table 2.1: Performance of the classical and robust methods in clean and contaminated

data for moderate-correlation case. The average (SD) of mean squared prediction error

(MSPE) on the test set and the number of noise variables (Noise) selected are shown.

a = 9 a = 15

Data Method MSPE Noise MSPE Noise

Clean FS 59.7 (12.0) 4.9 (2.4) 50.2 (9.3) 4.3 (2.2)

SW 60.3 (12.3) 4.8 (2.3) 51.2 (9.7) 4.2 (2.1)

Rob FS 60.4 (12.2) 5.1 (2.6) 51.5 (10.3) 4.7 (2.5)

Rob SW 61.1 (12.8) 5.0 (2.5) 52.8 (10.5) 4.6 (2.4)

Contam FS 157.6 (40.8) 13.6 (3.1) 134.5 (32.9) 11.7 (2.9)

SW 158.4 (41.3) 13.4 (3.0) 136.3 (33.3) 11.6 (2.8)

Rob FS 94.9 (27.9) 2.5 (2.9) 78.9 (23.7) 1.6 (2.9)

Rob SW 95.1 (27.8) 2.4 (2.8) 79.3 (23.4) 1.5 (2.6)

Table 2.1 shows the average (sd) of the first two quantities mentioned above over

all generated datasets for the moderate-correlation case. The average (sd) of the third

quantity (total number of variables) is similar for all the methods in the clean data.

However, for the contaminated data, the average increases (decreases) for the classical

(robust) methods. For example, for a = 15, the average for the classical methods increases

from 13 to 17 (approximately), while for the robust methods it decreases from 13 to 6.

In general, FS performs as good as SW, and robust FS performs as good as robust
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SW. For the clean data, the performance of robust FS (SW) is comparable to standard FS

(SW). For the contaminated data, the test errors produced by robust methods are much

smaller than the classical ones. Also, the models obtained by robust methods contain

fewer noise variables than the classical ones.

Table 2.2: Performance of the classical and robust methods in clean and contaminated

data for no-correlation case. The average (SD) of mean squared prediction error (MSPE)

on the test set and the average number of noise variables (Noise) selected are shown.

a = 9 a = 15

Data Method MSPE Noise MSPE Noise

Clean FS 55.6 (11.6) 5.0 (2.4) 107.0 (21.7) 4.6 (2.3)

SW 55.8 (11.8) 4.8 (2.3) 108.1 (22.1) 4.3 (2.1)

Rob FS 56.5 (12.4) 5.1 (2.6) 109.9 (21.6) 4.8 (2.4)

Rob SW 56.7 (12.8) 4.9 (2.5) 108.4 (22.4) 4.6 (2.3)

Contam FS 161.8 (38.1) 13.6 (3.0) 296.7 (75.3) 11.9 (2.8)

SW 162.5 (37.5) 13.4 (2.8) 297.9 (75.9) 11.7 (2.7)

Rob FS 72.5 (13.9) 2.1 (2.4) 124.1 (19.9) 1.2 (1.8)

Rob SW 72.6 (13.8) 2.1 (2.3) 124.2 (20.8) 1.2 (1.7)

Table 2.2 presents the results for the no-correlation case. Here, robust FS and SW

more drastically outperform the standard FS and SW, as compared to the moderate-

correlation case. Note that the errors presented in this table are not comparable to those

of Table 2.1 since Y is generated using the non-zero covariates (a = 9 or a = 15), instead

of the 3 latent variables. Thus, Y has much more variability for a = 15 than for a = 9.

30



2.5.1 Model selection with Spearman’s ρ and Kendall’s τ

In Section 2.3 we expressed the classical FS and SW algorithms in terms of the corre-

lation matrix of the data. In Section 2.4 we replaced these correlations by their robust

counerparts to obtain robust FS and SW.

We can also consider replacing the classical correlations in FS and SW by Spearman’s

ρ or Kendall’s τ , since they are standard estimates of association that are invariant to

monotone transformations of the data. They may be good options for variable selection

when there is skewness in the data and no cluster of multivariate outliers. A small

simulation study (not presented here) indicates that the methods based on Spearman’s ρ

and Kendall’s τ may perform better than the classical FS and SW. Further study is

required to investigate their performance as model building tools and compare them

with classical and robust FS and SW.

It should be mentioned here that Spearman’s ρ can be computed in O(n log n) time,

the same as the adjusted-Winsorized correlation estimate (the new correlation estimate

proposed later in this thesis). Though Kendall’s τ separately examines each of the
(

n
2

)

(order of n2) pairs of bivariate observations, there is an algorithm that can calculate

Kendall’s τ in O(n log n) time (Knight 1966).

2.6 Examples

In this section, we used two real-data examples to show the robustness and scalability of

our algorithms.
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Executive data. This dataset is obtained from Mendenhall and Sincich (2003).

The annual salary of 100 executives is recorded as well as 10 potential predictors (7

quantitative and 3 qualitative) such as education, experience etc. We label the candidate

predictors from 1 to 10. Classical FS (with F0.9 as the inclusion criterion) and SW (with

F0.9 as both inclusion and deletion criterion) both select the covariates: (1, 3, 4, 2, 5).

Robust FS and SW (also with F0.9 as inclusion and deletion criterion) select the same

model.

We then contaminated the data by replacing one small value of predictor 1 (less

than 5) by a large value 100. When FS and SW are applied to the contaminated

data, they both now select a larger set of variables: (7, 3, 4, 2, 1, 5, 10). Thus, changing a

single number in the data set drastically changes the selected model. On the other hand,

robust FS and SW select the same model, (1, 3, 4, 2, 5), when applied to the contaminated

dataset.

Particle data. This quantum physics dataset was used for the KDD-Cup 2004.

Each of n = 50000 data-points (rows) describes one “example” (particle generated in

a high energy collider experiment). There are 80 variables in the data: Example ID,

class of the example (positive examples are denoted by 1, negative examples by 0), and

78 feature measurements. We considered only the feature variables in our analysis. We

deleted 13 of the features (either because they have a large number of missing values, or

they are degenerate with all observations equal to 0), and used the first feature as the

response. Thus, there are 64 covariates and one response in the selected data. Though

this analysis may not be of particular scientific interest, it will demonstrate the scalability

and robustness of our algorithms.
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We first applied the four algorithms to a training sample of size n = 5000. The

remaining 45000 cases will be used as a test sample. The classical FS and SW (with F0.9

criterion) select the same model. It contains the following 25 covariates:

(2, 60, 58, 18, 8, 4, 51, 53, 1, 59, 5, 20, 10, 6, 62, 19, 38, 46, 39, 47, 21, 36, 50, 48, 37).

With F0.95 criterion, the model has 23 covariates. Interestingly, only one covariate is

selected by robust FS and SW (with either F0.9 or F0.95 criterion): Covariate 1. The

reason for this drastic difference is as follows. The robust correlation of Y and Covariate

1 is 0.86, while the classical correlation between these variables is only 0.42. About 86%

of the values of the response variable and 88% of the values of Covariate 1 are equal to

zero. There are many zeroes in other covriates as well. Classical methods fail to identify

this unusual pattern in the data and therefore are unable to select a parsimonious model

that fits well the majority the data (as opposed to all the data). The robust methods,

on the other hand, successfully detect the unusual pattern and select a model capable of

predicting well 90% of the data as explained below.

We fitted the selected classical and robust models using the training data, and

then used them to predict the test data outcomes. The 5% and 10% trimmed means

of squared prediction errors for the classical and (robust) models are: 0.012 (0.043) and

0.008 (0.005), respectively. That is, the robust model with only one covariate predicts

90% of the data better than the classical model with 25 covariates.

To illustrate the scalability of our algorithm we also used a training sample of size

n = 25000. This time, classical FS and SW select a model of 30 covariates, and robust

FS and SW both select one covariate, in this case covariate 2 instead of covariate 1.

(Covariates 1 and 2 have robust correlations 0.82 and −0.85 with Y , respectively.)
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2.7 Conclusion

The main contribution of this chapter is that we developed robust step-by-step algorithms

as one-step model-building procedures. Classical step-by-step algorithms FS and SW are

popular and computationally suitable, but they are sensitive to outliers. We expressed

these algorithms in terms of sample means, variances and correlations, and obtained

simple robust versions of FS and SW by replacing these sample quantities by their robust

counterparts. We used robust partial F-tests for stopping during the implementation of

the proposed robust algorithms.

For the construction of the robust correlation matrix of the required covariates

we used a pairwise approach, because it is both computationally suitable, and more

consistent with the idea of step-by-step algorithms. We used robust correlations derived

from a simplified version of Maronna’s bivariate M-estimator of the scatter matrix.

Our robust methods have much better performance compared to the standard FS

and SW algorithms. Also, they are computationally very suitable, and scalable to large

dimensions.
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Chapter 3

Two-step Model Building:

Robust Sequencing with Least Angle

Regression

3.1 Introduction

In this chapter, we will consider the first step (sequencing) of the two-step model building

procedure. The candidate covariates will be sequenced to form a list such that the good

predictors are likely to appear at the beginning of the list . The first m covariates of the

list will form the reduced set which will be studied further in the next chapter.

We need a suitable step-by-step algorithm to sequence the covariates. We focus on

the powerful algorithm recently proposed by Efron, Hastie, Johnstone and Tibshirani
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(2004), which is called Least Angle Regression (LARS). LARS is computationally effi-

cient and has been shown to have clear statistical advantages over other step-by-step

algorithms.

Since LARS is based on sample means, variances and correlations (as will be shown

later), it yields poor results when the data are contaminated. This is a potentially

serious deficiency. Therefore, we propose several approaches to strengthen the robustness

properties of LARS without affecting its computational efficiency too much, and compare

their behavior.

The rest of this chapter is organized as follows. In Section 3.2, we review LARS in

details. In Section 3.3, we express the LARS procedure in terms of the correlation matrix

of the data. In Section 3.4, we illustrate LARS’ sensitivity to outliers and introduce two

different approaches to robustify LARS. A small simulation study is also presented here

to compare the performance and the computing time of LARS to those of the two robust

approaches. In Section 3.5, we investigate the selection of the size of the reduced set

of candidate predictors. Section 3.6 proposes to use bootstrap to stabilize the results

obtained by robust LARS. Section 3.7 introduces “learning curves” as a graphical tool

to choose the size of the reduced set. Section 3.8 contains some real-data applications.

Section 3.9 concludes and the chapter appendix contains some technical derivations.

3.2 Review: Least Angle Regression (LARS)

Least Angle Regression (LARS), proposed by Efron, Hastie, Johnstone and Tibshirani

(2004), is closely related to another new algorithm called Forward Stagewise (Hastie,
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Tibshirani and Friedman 2001, Chapter 10). To better understand LARS, we will review

the Forward Stagewise procedure in details.

3.2.1 Forward Stagewise procedure (Stagewise)

The Forward Stagewise procedure (Stagewise) is related to the classical algorithm For-

ward Selection (FS). In FS, when the first predictor (X1, say) is selected, all other

predictors are regressed on X1, and the residual vectors compete for the next entrance

in the model. This causes a problem. Important predictors that happen to be correlated

with X1 are eliminated from the competition in many cases, which the researchers usually

want to avoid. In this sense, FS is an aggressive model-building algorithm.

The Forward Stagewise procedure is a less aggressive version of FS. Unlike FS, the

Stagewise procedure takes many tiny steps to move towards a final model. We take the

zero vector as the initial prediction. If X1 has the largest absolute correlation with Y ,

we modify our prediction by moving a ‘small’ step in the direction of X1. We obtain the

new residual vector and repeat the process, until the required number of predictors are

selected. The goal is to obtain the order in which the variables enter the model.

We can assume, without loss of generality, that the covariates have mean 0 and

variance 1, and the response has mean 0. Let ε be a positive constant, typically small

(less than the absolute value of the regression coefficients). The Stagewise algorithm can

be described as follows:

1. Set the prediction vector, µ̂ = 0.

37



2. Calculate ĉj = X ′
j (Y − µ̂), j = 1, . . . , k,

where ĉj is proportional to the correlation between Xj and the current residual.

3. Let m = argmaxj |ĉj|. Modify the current prediction vector as follows:

µ̂← µ̂ + ε sign(ĉm) Xm,

where ε is a positive constant.

4. Repeat steps 2 and 3.

At each step, the algorithm updates the prediction, and keeps track of the sequence

of covariates as they enter the model. Notice that at each Stagewise step, we maximize

the correlation of the current residual vector with a covariate, which is equivalent to

minimizing the ‘local loss’
n∑

i=1

(Yi − µ̂i − βjXji)
2 (3.1)

over all j. (Because of standardization, β̂m is proportional to ĉm.)

Stagewise and FS: loss comparison

Both Stagewise and FS select the same variable in their first steps, because they minimize

the same loss function. Suppose, the selected variable isX1, i.e., its loss
∑n

i=1 (Yi − β1X1i)
2

is minimum. Let us consider that, after many ε-steps along X1, Stagewise is about to

choose a second variable from the contenders X2, . . . , Xd. On the other hand, for the

second step, FS considers Z2, . . . , Zd, which are the residuals of the corresponding co-

variates after being adjusted for X1. To choose the second variable, FS minimizes the
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loss
n∑

i=1

(Yi − β1X1i − βjZji)
2 ,

which is same as the loss
n∑

i=1

(
Yi − β∗1X1i − β∗jXji

)2
. (3.2)

Note that β∗1 is usually different from β1. The loss used in Stagewise is

n∑
i=1

(
Yi − βε

1X1i − β̃jXji

)2

. (3.3)

This loss depends on our position on the X1-vector controlled by ε. By choosing a small

ε, we ensure that βε
1 ≤ β∗1 , so that the variables correlated with X1 have more chance

of staying in the competition. (It should be noted that we are not ‘fitting’ a model.

We are ‘selecting’ the covariates.) The minimizer of the Stagewise loss cannot beat the

minimizer of the FS loss (see equation (3.2)), at least at this stage. This means, if FS

chooses (X1, X2) and Stagewise selects (X1, X3), then FS will yield a greater value of R2.

Because, FS technically considers the residual sum of squares of the final fit (equation

(3.2)). However, this is not necessarily true for the next stage if FS selects (X1, X2, X4)

(for example), and Stagewise selects (X1, X3, X5). (Because, this Stagewise combination

has not been considered by FS so far in any order. In other words, FS has taken a different

path.)

Greater R2 does not necessarily imply more prediction accuracy. Moreover, FS

cannot guarantee greater R2 for a particular subset size in all cases. Therefore, orthog-

onalization of the subsequent covariates with respect to the active ones is not usually

meaningful. This is why researchers often prefer Stagewise to FS.
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Stagewise and Boosting

Boosting, originally developed for classification problems, is a procedure that combines

the output of many “weak” classifiers to produce a powerful “committee” (Hastie et al.

2001, Chapter 10). In the general setup, boosting is a way of predicting Yi by combining

a set of simple “basis” functions additively:

f(x) =
K∑

k=1

βkb(x,αk), k = 1, . . . , K, (3.4)

where βk are the expansion coefficients, and b(x,αk) are real-valued functions of multi-

variate x with parameters αk. Usually, f(x) is fitted by considering a loss function

n∑
i=1

L

(
Yi,

K∑

k=1

βkb(xi,αk)

)
, (3.5)

which is minimized with respect to βk’s and αk’s. Often, this is computationally intensive,

and the solution to (3.5) is approximated by sequentially adding new basis functions

without adjusting the parameters and expansion coefficients of the existing ones. In this

approach, at each iteration k, one updates

fk(xi) = fk−1(xi) + βkb(xi,αk)

by minimizing the loss
n∑

i=1

L (Yi, fk−1(xi) + βkb(xi,αk)) . (3.6)

In Regularized boosting, one uses a parameter ε to control the “learning rate” of the

boosting procedure:

fk(xi) = fk−1(xi) + εβkb(xi,αk). (3.7)

The Stagewise algorithm discussed before is very similar to this regularized boosting,

where we use squared error loss for L in (3.6), K (see (3.4)) is the number of ε-steps
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in Stagewise, b(xi,αk) = xki (the ith observation of covariate X(k) chosen in the kth

iteration, not necessarily same as Xk), and βk in (3.7) is replaced by sign{βk}.

Choice of an appropriate ε for Stagewise

The choice of an appropriate ε is a problem with the Stagewise procedure, and is the

motivation for LARS. If ε is ‘small’, the number of Stagewise steps to reach a final model

may be very large, increasing the computational burden of the algorithm. On the other

hand, if ε is ‘large’, we have either or both of the following two problems:

‘Incorrect’ ordering of predictors: If ε → |ĉm|, Stagewise will aggressively throw

covariates correlated with Xm out of the competition.

A closed loop: In many cases, after the selection of the mth (say) covariate, the

remaining predictors (that are not yet selected) have very small correlations with the

current residual vector. Suppose that the correlation of the currently selected predictor

Xm is positive. If ε is large, when we make an ‘ε-step’ in the direction of ‘+Xm’, the

correlation of Xm with the updated residuals becomes negative and larger in absolute

value than that of any other competitor. Thus, the next Stagewise step is to make an

‘ε-step’ in the direction of ‘−Xm’. These back-and-forth movements may go on endlessly.

Even when there is no closed loop, the Stagewise procedure may require hundreds

of tiny steps to reach the final model. Therefore, this algorithm is not computationally

suitable. LARS overcomes this problem by taking a mathematical approach.
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3.2.2 The LARS algorithm

LARS uses a mathematical formula to accelerate the computations in the Stagewise

procedure. Suppose, the first selected predictor in Stagewise is X1 (i.e., X1 has the

largest absolute correlation with Y ). If we choose a ‘small’ ε, there will be at least

several Stagewise steps in the direction of the vector X1. A second predictor X2 (say)

will come in the picture as soon as we cross a certain point in the direction of X1, a point

at which both X1 and X2 have equal absolute correlation with the residual. LARS uses a

mathematical formula to determine that point, and the prediction is modified by making

a move up to that point in a single step.

In Stagewise, when a second predictor X2 enters the model for the first time, we

make a few small steps in the direction of X2, but then X1 becomes more correlated with

the residual, and we move in the direction of X1. Thus, we alternate between the two

directions, technically maintaining approximately equal absolute correlations of X1 and

X2 with the residual (until a third predictor comes into the picture). LARS, on the other

hand, mathematically determines a direction that has equal angle (correlation) with X1

and X2, and makes the second LARS move along that direction upto a point (determined

mathematically, again) at which a third predictor X3 has equal absolute correlation with

the residual vector, and so on.

For the original LARS algorithm, Efron et al. (2004) is referred to, which is designed

to get the modified predictions at each step, in addition to the sequence of the covariates

as they enter the model. In Section 3.3 we show that, if we are interested in the ordering

of the covariates only (and not the modified predictions), the algorithm can be expressed

in terms of the correlation matrix of the data (and not the observations themselves).
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3.2.3 LARS and Shrinkage methods

LARS and Ridge Regression

If there are many correlated variables in a linear model, the estimates may show high

variance. This can be prevented by imposing a restriction on the size of the coefficients.

The ridge regression (Hoerl and Kennard 1970) minimizes a penalized residual sum of

squares
n∑

i=1

(Yi − β′xi)
2 + λ

d∑
j=1

β2
j ,

where λ is the parameter that controls the amount of shrinkage.

Ridge regression shrinks the coefficients towards zero, but does not set some coeffi-

cients exactly equal to zero. Therefore, it is not suitable for subset selection, and cannot

be compared to LARS. By imposing a different penalty, the Lasso algorithm (Tibshirani

1996) forces some of the coefficients to zero, which is presented below.

LARS and Lasso

The Lasso (Tibshirani 1996) estimates are obtained by minimizing

n∑
i=1

(Yi − β′xi)
2 + λ

d∑
j=1

|βj|. (3.8)

Moderate to large λ will cause some of the Lasso coefficients to be exactly zero, others

will be smaller in magnitude than the corresponding least squares estimates.

Interestingly, the estimates (and the sequance of the covariates) obtained by LARS

and Lasso are usually quite close, if not the same. The reason has not been established
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mathematically, though it is clear that both algorithms can be viewed as less aggressive

versions of the FS procedure. Efron et al. (2004) suggested a modification in the LARS

algorithm that will yield the Lasso solution, which is as follows. Let β̂ be the current

Lasso estimate, and µ̂ = Xβ̂. Then, for the Lasso estimates,

sign(β̂j) = sign (corr(Y − µ̂, Xj)) ,

which is not necessarily true for the LARS estimates. This restriction should be enforced

in the LARS algorithm if we want the Lasso solution.

To better understand the LARS-Lasso relationship, let us consider the following

definition of the Lasso estimate, which is equivalent to (3.8).

β̂Lasso = argminβ

n∑
i=1

(Yi − β′xi)
2, (3.9)

subject to
d∑

j=1

|βj| ≤ t.

The ‘tuning parameter’ t is varied over a certain range. If t >
∑d

j=1 |β̂ls
j |, where β̂ls

j are

the least squares estimates, then the Lasso estimates are the least squares estimates.

For a LARS-Lasso comparison, suppose that LARS has selected the first covariate s1X1.

(LARS considers the ‘signed covariates’ to determine the equiangular vectors later.) To

select the second covariate, LARS mathematically determines the minimum distance γ

to move along s1X1 so that a new covariate s2X2 (say) is equally correlated with the

residual vector. We may assume that γ is determined first (as in Stagewise, where we

make many ε-steps to obtain βε (see 3.3)) so that LARS loss can be written as

n∑
i=1

(Yi − γs1X1i − βjXji)
2 =

n∑
i=1

(Yi − γsX1i − βjXji)
2 , (3.10)

where j = 2, . . . , d, and γs = s1γ is a restricted regression coeffcient. Since |γs| is the

minimum distance (determined mathematically) to move before a second variable enters
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the model, a comparison of (3.10) and (3.9) makes it evident that, in the Lasso algorithm,

t < |γs| ⇒ only X1 is in the model (only β̂1 is nonzero).

In LARS, when we have two active covariates s1X1 and s2X2, we modify our prediction

by moving along the equiangular vector BA upto a point γA, so that the LARS loss has

the form

n∑
i=1

(Yi − γsX1i − γABAi − βjXji)
2

=
n∑

i=1

(Yi − γsX1i − γA(w1s1X1i + w2s2X2i)− βjXji)
2

=
n∑

i=1

(Yi − (γ + γAw1)s1X1i − γAw2s2X2i − βjXji)
2 , (3.11)

where j = 3, . . . , d, and w1 and w2 are given by (3.21) (see Chapter Appendix, Sec-

tion 3.10.2). Again, since γA is the minimum distance to move along BA before a third

covariate comes in the picture, by comparing (3.11) and (3.9) we can say

|γs| ≤ t < |γs|+ |γA(w1 + w2)| ⇒ only X1 and X2 will be in the model,

and so on. Note that |(γ+γAw1)s1|+ |γAw2s2| = |γs|+ |γA(w1 +w2)|, since γ, γA, w1 and

w2 are all positive at this stage. (The wj may not be all positive for higher dimensions.)

Thus, it is not surprising that LARS and Lasso sequences agree in most cases. However,

Lasso requires a computationally expensive quadratic programming technique to obtain

the estimates, while the computational cost of LARS is comparable to the ordinary least

squares applied to the full set of covariates.
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LARS and Boosting

For a comparison of Stagewise and boosting we refer to Section 3.2.1. Since LARS is a

mathematical solution of the Stagewise problem, the LARS algorithm maybe considered

as a mathematical alternative to a regularized boosting algorithm.

3.3 LARS expressed in terms of correlations

In this section, we show that the sequence of covariates obtained by LARS can be derived

from the correlation matrix of the data (without using the observations themselves).

Let Y,X1, . . . , Xd be the variables, standardized using their mean and standard de-

viation. Let rjY denote the correlation between Xj and Y , and RX be the correlation

matrix of the covariates X1, . . . , Xd. Suppose that Xm has the maximum absolute corre-

lation r with Y and denote sm = sign(rmY ). Then, Xm becomes the first active variable

and the current prediction µ̂ ← 0 should be modified by moving along the direction of

smXm upto a certain distance γ that can be expressed in terms of correlations between

the variables (see Chapter Appendix, Section 3.10.1, for details). By determining γ,

LARS simultaneously identifies the new covariate that will enter the model, that is the

second active variable.

As soon as we have more than one active variable, LARS modifies the current

prediction along the equiangular direction, that is the direction that has equal angle

(correlation) with all active covariates. Moving along this direction ensure that the

current correlation of each active covariate with the residual decreases equally. Let A
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be the set of subscripts corresponding to the active variables. In Chapter Appendix

(Section 3.10.2) the standardized equiangular vector BA is derived. Note that we do not

need the direction BA itself to decide which covariate enters the model next. We only

need the correlation of all variables (active and inactive) with BA. These correlations

can be expressed in terms of the correlation matrix of the variables as shown in Chapter

Appendix (Section 3.10.2). LARS modifies the current prediction by moving along BA

upto a certain distance γA which, again, can be determined from the correlations of the

variables (see Chapter Appendix, Section 3.10.3).

Thus, the sequence of covariates obtained by the LARS algorithm is a function of

the correlation matrix of the standardized data. We now summarize the LARS algorithm

in terms of correlations rjY between Xj and Y , and the correlation matrix RX of the

covariates:

1. Set the active set, A = ∅, and the sign vector sA = ∅.

2. Determine m = argmax |rjY |, and sm = sign{rmY }. Let r = smrmY .

3. Put A← A ∪ {m}, and sA ← sA ∪ {sm}.

4. Calculate a = [1′A(DARADA)−11A]−1/2, where 1A is a vector of 1’s, DA = diag(sA),

and RA is the submatrix of RX corresponding to the active variables. Calculate

wA = a (DARADA)−11A, and aj = (DArjA)′wA, for j ∈ Ac, where rjA is the

vector of correlations between Xj and the active variables. (Note that, when there

is only one active covariate Xm, the above quantities simplify to a = 1, w = 1, and

aj = rjm.)

5. For j ∈ Ac, calculate γ+
j = (r − rjY )/(a − aj), and γ−j = (r + rjY )/(a + aj),
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and let γj = min(γ+
j , γ

−
j ). Determine γ = min{γj, j ∈ Ac}, and m, the index

corresponding to the minimum γ = γm. If γm = γ+
m, set sm = +1. Otherwise, set

sm = −1. Modify r ← r − γa, and rjY ← rjY − γaj, for j ∈ Ac.

6. Repeat steps 3, 4 and 5.

3.4 Robustification of LARS

From the results in Section 3.3, it is not surprising to see that LARS is sensitive to

contamination in the data. To illustrate this, we use a dataset on executives obtained

from Mendenhall and Sincich (2003). The annual salary of 100 executives is recorded

as well as 10 potential predictors (7 quantitative and 3 qualitative) such as education,

experience etc. We label the candidate predictors from 1 to 10. LARS sequences the

covariates in the following order: (1, 3, 4, 2, 5, 6, 9, 8, 10, 7). We contaminate the data by

replacing one small value of predictor 1 (less than 5) by the large value 100. When

LARS is applied to the contaminated data, we obtain the following completely different

sequence of predictors: (7, 3,2,4, 5,1,10,6,8,9). Predictor 7, which was selected last

(10th) in the clean data, now enters the model first. The position of predictor 1 changes

from first to sixth. Predictors 2 and 4 interchange their places. Thus, changing a single

number in the data set completely changes the predictor sequence, which illustrates the

sensitivity of LARS to contamination.

We now introduce two approaches to robustify the LARS procedure which we call

the plug-in and cleaning approaches respectively.
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3.4.1 Robust Plug-in

The plug-in approach consists of replacing the non-robust building blocks of LARS (mean,

variance and correlation) by robust counterparts. The choices of fast computable robust

center and scale measures are straightforward: median (med) and median absolute devi-

ation (mad). Unfortunately, good available robust correlation estimators are computed

from the d-dimensional data and therefore are very time consuming (see Rousseeuw and

Leroy 1987). Robust pairwise approaches (see Huber 1981) are not affine equivariant and

therefore are sensitive to two-dimensional outliers. One solution is to use robust correla-

tions derived from a pairwise affine equivariant covariance estimator. A computationally

efficient choice is a bivariate M-estimator as defined by Maronna (1976). Alternatively,

a bivariate correlation estimator can be computed from bivariate Winsorized data. Both

methods will be explained in detail below.

M Plug-in

Maronna’s bivariate M-estimator of the location vector t and scatter matrix V is defined

in Chapter 2. It is affine equivariant and computationally efficient, and has breakdown

point 1/3 in two dimensions. As before, to further simplify computations, we used

the coordinatewise median as the bivariate location estimate and only solved (2.18) to

estimate the scatter matrix and hence the correlation. In this equation we used the

function u2(t) = min(c/t, 1) with c = 9.21, the 99% quantile of a χ2
2 distribution. The

bivariate correlations are then ensembled to form a d× d correlation matrix R. Finally,

LARS is applied to this robust correlation matrix. We call this the M plug-in method.
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Figure 3.1: Limitation of separate univariate-Winsorizations (c = 2). The bivariate

outliers are left almost unchanged.

W Plug-in

For very large, high-dimensional data we need an even faster robust correlation es-

timator. Huber (1981) introduced the idea of one-dimensional Winsorization of the

data, and suggested that classical correlation coefficients be calculated from the trans-

formed data. Alqallaf, Konis, Martin and Zamar (2002) re-examined this approach for

the estimation of individual elements of a large-dimension correlation matrix. For n

univariate observations x1, x2 . . . , xn, the transformation is given by ui = ψc((xi −
med(xi))/mad(xi)), i = 1, 2, . . . , n, where the Huber score function ψc (x) is defined as

ψc (x) = min{max{−c, x}, c}, with c a tuning constant chosen by the user, e.g., c = 2 or

c = 2.5. This one-dimensional Winsorization approach is very fast to compute but un-
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fortunately it does not take into account the orientation of the bivariate data. It merely

brings the outlying observations to the boundary of a 2c × 2c square, as shown in Fig-

ure 3.1. This plot clearly shows that the univariate approach does not resolve the effect

of the obvious outliers at the bottom right which are shrunken to the corner (2, −2), and

thus are left almost unchanged.

To remedy this problem, we propose a bivariate Winsorization of the data based

on an initial tolerance ellipse for the majority of the data. Outliers are shrunken to the

border of this ellipse by using the bivariate transformation u = min(
√
c/D(x), 1) x

with x = (x1, x2)
t. Here D(x) is the Mahalanobis distance based on an initial bivariate

correlation matrix R0. For the tuning constant c we used c = 5.99, the 95% quantile

of the χ2
2 distribution. We call this the W plug-in method. The choice of R0 will be

discussed below.

Figure 3.2 shows bivariate Winsorizations for both the complete data set of Fig-

ure 3.1 and the data set excluding the outliers. The ellipse for the contaminated data is

only slightly larger than that for the clean data. By using bivariate Winsorization the

outliers are shrunken to the boundary of the larger ellipsoid.

The initial correlation estimate. Choosing an appropriate initial correlation

matrix R0 is an essential part of bivariate Winsorization. For computational simplicity

we can choose the estimate based on univariate Winsorization explained above. However,

we propose an adjusted Winsorization method that is more resistant to bivariate outliers.

This method uses two tuning constants: a tuning constant c1 for the two quadrants

that contain the majority of the standardized data and a smaller tuning constant c2

for the other two quadrants. For example, c1 is taken equal to 2 or 2.5 as before and
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Figure 3.2: Bivariate Winsorizations for clean and contaminated data. The ellipse for

the contaminated data is only slightly larger than that for the clean data.

c2 = hc1 where h = n2/n1 with n1 the number of observations in the major quadrants

and n2 = n− n1. We use c1 = 2 in this chapter.

Figure 3.3 shows how the adjusted Winsorization deals with bivariate outliers, which

are now shrunken to the boundary of the smaller square. Thus, adjusted Winsorization

handles bivariate outliers much better than univariate Winsorization. The initial correla-

tion matrix R0 is obtained by computing the classical correlation matrix of the adjusted

Winsorized data.

It should be mentioned here that, though we used c2 = hc1 in this study, a more

reasonable choice would have been c2 =
√
h c1 (i.e., c22 = hc21), because the areas of the

two squares should be proportional to the number of observations they contain.
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Figure 3.3: Adjusted-Winsorization (for initial estimate R0) with c1 = 2, c2 = 1. The

bivariate outliers are now shrunken to the corner of the smaller square.

Note that the correlations based on both univariate- and adjusted-Winsorized data

can be computed in O(n log n) time. The adjusted-Winsorized estimate takes slightly

more time for a particular n, but is much more accurate in the presence of bivariate

outliers as shown above. Bivariate-Winsorized estimate and Maronna’s M-estimate also

require O(n log n) time, but Maronna’s M-estimate has a larger multiplication factor de-

pending on the number of iterations required. Thus for large n, the bivariate-Winsorized

estimate is much faster to compute than Maronna’s M-estimate. Figure 3.4 shows for each

of the four correlation estimates the mean cpu times in seconds (based on 100 replicates)

for 5 different sample sizes: 10000, 20000, 30000, 40000 and 50000. These results confirm

that the bivariate-Winsorized estimate is faster to compute than Maronna’s M-estimate

and the difference increases with sample size. Numerical results (not presented here)
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Figure 3.4: Numerical complexity of different correlation estimates. Each estimate can be

computed in O(n log n) time, but Maronna’s estimate has a larger multiplication factor.

showed that the bivariate-Winsorized estimate is almost as accurate as Maronna’s M-

estimate also in the presence of contamination. Note that both the univariate-Winsorized

and adjusted-Winsorized correlations are very fast to compute.

3.4.2 Robust Data Cleaning

If the dimension d is not extremely large, an alternative approach to robustifying LARS

is to apply it on cleaned data. For example, each standardized d-dimensional data point

x = (x1, . . . , xd)
t can be replaced by its Winsorized counterpart u = min(

√
c/D(x), 1) x

in the d-dimensional space. HereD(x) = xtV −1x, is the Mahalanobis distance of x based
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on V , a fast computable, robust initial correlation matrix. A reasonable choice for the

tuning distance c is c = χ2
d(0.95), the 95% quantile of the χ2

d distribution.

The initial correlation matrix V . The choice of the initial correlation matrix

V is an essential part of the Winsorization procedure. Most available high-breakdown,

affine-equivariant methods are inappropriate for our purposes because they are too com-

putationally intensive. Therefore, we resort to pairwise approaches, that is methods in

which each entry of the correlation matrix is estimated separately (see Alqallaf et al.

2002). As before we will use a bivariate M-estimator or the bivariate windsorized esti-

mator to calculate the correlations in V . The resulting methods are called M cleaning

and W cleaning, respectively.

3.4.3 Simulations

To investigate the performance and stability of the four proposed methods we consider

a simulation study involving a small number of variables. We used the following design

(see Ronchetti et al. 1997). The error distributions considered are (e1) standard normal,

(e2) 93% from standard normal and 7% from N(0, 52), (e3) standard normal divided by

a uniform on (0, 1), and (e4) 90% from standard normal and 10% from N(30, 1).

Two design matrices are considered: the uniform design for which the columns are

generated from a uniform distribution on (0, 1), and the leverage design which is the same

as the uniform design except that it contains a leverage point. Six variables are used

from which the first three are nonzero and in order of importance. The true regression

coefficients for the nonzero variables are 7, 5 and 3, respectively. The sample size equals
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Table 3.1: Percentages of correct sequences obtained by classical and robust methods for

univariate and leverage designs with 4 different error distributions.

Uniform Leverage

Method e1 e2 e3 e4 e1 e2 e3 e4

LARS E 97 86 11 8 0 1 1 2

LARS G 100 89 26 24 0 2 5 7

M plug-in E 95 97 53 87 96 96 49 87

M plug-in G 99 99 74 95 99 99 68 95

W plug-in E 96 97 58 78 92 85 46 59

W plug-in G 99 99 77 89 94 86 61 68

M cleaning E 96 98 55 89 96 97 50 87

M cleaning G 99 99 77 97 100 98 73 97

W cleaning E 96 98 54 82 96 94 52 83

W cleaning G 99 99 76 92 98 96 71 92

n = 60 and we generated 200 data sets for each setting. We used two performance

measures which we call exact (E) and global (G). The exact measure gives the percentage

of times a procedure sequences the important variables in front and in their true order.

The global measure gives the percentage of times a procedure sequences the important

variables in front in any order.

Table 3.1 shows the simulation results. For error distribution e1 (standard normal),

the performance of the robust methods is almost as good as that of standard LARS.

For the heavy tailed distributions the robust methods drastically outperform LARS.
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Overall we see from Table 3.1 that the plug-in approaches are almost as stable as the

computationally more expensive data cleaning approaches. Comparing the M and W

approaches for both the plug-in and data cleaning procedures, it is reassuring to see that

the computationally faster W approach (see Figure 3.5 below) is almost as stable as the

M approach.

Numerical complexity of the algorithms

We now compare the computational complexity of the different methods. The stan-

dard LARS procedure sequences all d covariates in only O(nd2) time. The plug-in and

cleaning procedures based on M-estimators both require O((n log n)d2) time. Based on

Winsorization these procedures also require O((n log n)d2) time, but with a much smaller

multiplication factor. Moreover, if we are only interested in sequencing the top fraction

of a large number of covariates, then the plug-in approach will be much faster than the

cleaning approach, because the plug-in approach only calculates the required correlations

along the way instead of the ‘full’ correlation matrix. In this case, the complexity for

plug-in methods reduces to O((n log n)dm), where m is the number of variables being

sequenced.

Figure 3.5 shows the mean cpu times based on 10 replicates for LARS, W plug-in

and M plug-in for different dimensions d with a fixed sample size n = 2000. The times

required by the cleaning methods are not shown because they were similar to the plug-in

times since we sequenced all the covariates. As in Figure 3.4, we see that the approaches

based on M-estimators are more time consuming than the Winsorization approaches.

The difference increases fast with dimension.
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Figure 3.5: Numerical complexity of different techniques. LARS requires O(nd2) time.

W plug-in and M plug-in both require O((n log n)d2) time, but M plug-in has a larger

multiplication factor.

The cleaning approaches perform slightly better than the plug-in approaches when

the number of variables is relatively small, and much smaller than the number of cases

(see Table 3.1). However, plug-in approaches are less time-consuming when only a part of

the predictors are sequenced. Since W plug-in has a reasonable performance compared to

the other methods and has favorable computing times, this method is to be preferred for

large, high-dimensional datasets. The performance of W plug-in will be studied further

in the next sections and we will call this method robust LARS from now on.
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3.5 Size of the reduced set

To obtain a good final model, it is important to choose an appropriate value of m, the size

of the reduced set of covariates kept from the sequencing step. The reduced set should

be large enough to include most of the important covariates, but not so large as to make

the segmentation step (where we have to evaluate all possible subsets of the reduced set)

impractical. Several factors can be important when determining the size m such as d, the

total number of variables, the sample size n, the unknown number of non-zero variables

in the optimal model, the correlation structure of the covariates, and of course also time

and feasibility of the segmentation step. For example, for high-dimensional datasets,

including only 1% of the variables in the reduced set may make the segmentation step

already infeasible.

To investigate what values of m are appropriate, we carry out a simulation study

similar to Frank and Friedman (1993). The total number of variables is d = 100. A small

number a = 9 or a = 15 of them are nonzero covariates. We considered 3 correlation

structures of these nonzero covariates: “no-correlation” case, “moderate-correlation” case

and “high-correlation” case, which are described below.

For the no-correlation case (a true correlation of 0 between the covariates), inde-

pendent covariates Xj ∼ N(0, 1) are considered, and Y is generated using the a non-zero

covariates, with coefficients (7, 6, 5) repeated three times for a = 9, and five times for

a = 15. The variance of the error term is chosen such that the signal-to-noise ratio

equals 2.

For the moderate-correlation and high-correlation cases, we consider 3 independent
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‘unknown’ processes, represented by latent variables Li, i = 1, 2, 3, which are responsible

for the systematic variation of both the response and the covariates. The model is

Y = 5L1 + 4L2 + 3L3 + ε = Signal + ε, (3.12)

where Li ∼ N(0, 1), and ε is a normal error not related to the latent variables. The

variance of ε is chosen such that the signal-to-noise ratio equals 2, that is Var(ε) = 50/4.

The nonzero covariates are divided in 3 equal groups, with each group related to exactly

one of the latent variables by the following relation

Xj = Li + δj,

where δj ∼ N(0, σ2
j ). The value of σ2

j determines the correlation structure of the nonzero

covariates. The high-correlation case has a true correlation of 0.9 between the covariates

generated with the same latent variable, and the moderate-correlation case has a true

correlation of 0.5.

For each situation we generated 100 samples of size n = 150. Outliers were added

by giving the noise term a large positive mean (asymmetric error). We considered four

different levels of contamination: 0, 5, 10 and 20%.

For the high-correlation and moderate-correlation cases, though “a” of the covari-

ates are linked to the response Y through the latent variables, it is not clear which of

these covariates should be considered important for explaining Y . Even when the true

pairwise correlations of the covariates are zero (no-correlation case), the “best” model

not necessarily includes all of the a non-zero coefficients because of the bias-variance

trade-off. Therefore, for each simulated dataset we first find the “best” model among

all possible subsets of the non-zero covariates that has the minimum prediction error

estimated by 5-fold cross-validation.
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Figure 3.6: Recall curves for a = 9; (a) no correlation (b) low correlation (c) high

correlation. The 4 curves for (robust) LARS correspond to 4 levels of contamination.
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For each simulated dataset, we determine the “recall proportion”, i.e., the propor-

tion of important variables (in the sense that they are in the “best” model by cross-

validation) that are captured (recalled) by LARS/robust LARS for a fixed size of the

reduced sequence.

For a = 9, Figure 3.6 plots the average recall proportion against the size of the

reduced set for the three correlation structures. In each plot, the 4 curves with the same

line type correspond to the 4 levels of contamination, higher curves correspond to lower

levels of contamination. These plots show that, for each correlation structure considered,

we can capture the important variables if the percentage of variables in the reduced set

is 9 or 10. Robust LARS performs as good as LARS for clean data, and much better

than LARS for contaminated data.

Figure 3.7 plots the average recall proportion against the size of the reduced set for

the moderate-correlation case with a = 15. This plot can be compared with Figure 3.6(b)

to see how the increase in the number of nonzero variables affects the recall proportions.

In both cases, we observe that the average recall proportions stop increasing even before

the size m of the reduced set exceeds the number a of non-zero variables.

3.6 Bootstrapped sequencing

To obtain more stable and reliable results we can combine robust LARS with bootstrap.

Therefore, we generate a number B of bootstrap samples from the dataset, and use robust

LARS to obtain the corresponding sequence of covariates for each of these bootstrap

samples. Each sequence ranks the covariates from 1 to d. For each covariate we can take
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Figure 3.7: Recall curves for a = 15 and moderate correlation with 4 different levels of

contamination.

the average over these B ranks, and the m covariates with the smallest average ranks

then form the reduced set.

When resampling from a high-dimensional dataset (compared to the sample size,

e.g., n = 150, d = 100) the probability of obtaining singular samples becomes very high.

Note that even the original sample may already be singular or the dimension d of the

data may exceed the sample size. In these cases it will be impossible to sequence all

covariates. We can easily overcome this problem by sequencing only the first m0 < d

of the covariates for each bootstrap sample, where preferably m0 ≥ m. We then rank

the covariates according to the number of times (out of B) they are actually sequenced.

When ties occur, the order of the covariates is determined according to the average rank
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in the sequences. In our simulations, we generated B = 100 bootstrap samples from each

of the 100 simulated datasets. We sequenced the first 25 covariates in each bootstrap

sample.

Figure 3.8 shows the recall curves obtained by robust LARS (solid lines) and boot-

strapped robust LARS (dotted lines) for covariates with moderate correlation. The recall

curves obtained by bootstrapped robust LARS perform better than the initial robust

LARS curves for all levels of contamination, the difference being larger with larger con-

tamination proportions. This confirms that by applying the bootstrap we obtain more

stable and reliable results. Even with 20% of contamination, bootstrapped robust LARS

with m = 10 (a = 9) or m = 15 (a = 15) already yields a recall proportion around 90%.

To investigate what minimum number of bootstrap samples is required to obtain

significant improvement over robust LARS, we also tried B = 10, 20 and 50 in the above

setups. In each case, B = 10 and B = 20 do not yield much improvement, while with

B = 50 the results obtained are almost as stable as with B = 100.

3.7 Learning curves

Although the simulation results in the previous sections suggested that it suffices to select

the size of the reduced set equal to or slightly larger than the number of predictors in the

final model, we usually have no information about the number of predictors that is needed.

Hence, a graphical tool to select the size of the reduced set would be useful. The following

plot can be constructed to determine a reasonable size for the reduced set. Starting from

a model with only 1 variable (the first one in the sequence), we increase the number of
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Figure 3.8: Recall curves for robust LARS and bootstrapped robust LARS for covariates

with moderate correlation; (a) a = 9 (b) a = 15. The 4 curves for each method correspond

to 4 levels of contamination.
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variables according to the sequence obtained and each time fit a robust regression model

to compute a robust R2 measure such as R2 = 1−Median(e2)/MAD2(Y ), where e is the

vector of residuals from the robust fit. We then plot these robust R2 values against the

number of variables in the model to obtain a learning curve. The size of the reduced set

can be selected as the point where the learning curve does not have a considerable slope

anymore.

A problem that can occur with a robust R2 measure is that, unlike its classical coun-

terpart, it is not always a nondecreasing function of the number of covariates. This can

be resolved as follows. If the robust R2 at any step is smaller than that of the preceding

step, then fit a robust simple linear regression of the residuals from the preceding step on

the newly selected covariate. The residuals obtained from this fit can be used to compute

another robust R2 value. We then use the larger of the two values.

To investigate the performance of learning curves, we consider a dataset on air

pollution and mortality in 60 Metropolitan areas in the United States. The response

variable is the age-adjusted mortality. There are 14 potential predictors, numbered from

1 to 14. Since row 21 contains 2 missing values, we drop this observation from the data.

Based on robust data exploration we identified 4 clear outliers that correspond to the

four metropolitan areas in California. We applied 5-fold cross-validation (CV) to this

dataset without the four outliers, and obtained the “best model” that has the following

7 covariates: (2, 3, 4, 6, 7, 10, 13). (The order of the covariates is not relevant here.)

Bootstrapped robust LARS applied to this dataset (including the outliers) produced

the sequence (7, 5, 13, 4, 6, 3, 2, 10, 9, 1, 14, 11, 8, 12). We used this sequence and fitted

Least Median of Squares (Rousseeuw 1984) regressions to obtain the robust R2 values.
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Figure 3.9: Learning curve for Pollution data. A reduced set of 8 covariates is suggested

by the plot.

Figure 3.9 shows the corresponding learning curve. This plot suggests a reduced set of

size 8. It is encouraging to notice that the reduced set (first 8 covariates in the sequence

above) contains all 7 predictors selected in the “best model” obtained by CV.

3.8 Examples

In this section we use two real datasets to evaluate the performance of (bootstrapped)

robust LARS. The demographic data example further explores the idea of “learning

curves” to choose the size of the reduced set. We then use a large dataset (protein data)

to demonstrate the scalability as well as stability of robust LARS.
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Demographic data. This dataset contains demographical information on the 50

states of the United States for 1980. The response variable of interest is the murder rate

per 100,000 residents. There are 25 predictors which we number from 1 to 25. Exploration

of the data using robust estimation and graphical tools revealed one clear outlier. We

applied 5-fold CV to this dataset without the outlier, and obtained the “best of 25”

model that has the following 15 covariates (1, 2, 3, 5, 6, 8, 9, 10, 16, 17, 18, 19, 21, 24, 25).

Figure 3.10 shows the learning curve for the Demographic data based on boot-

strapped robust LARS. This plot suggests a reduced set of size 12 which include the

covariates: (22, 20, 4, 15,10,2,19,25,8,18,6,24). The boldface numbers correspond to

covariates in the sequence that are also in the model obtained by CV. The number of

“hits” is 8 out of 12.
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Figure 3.10: Learning curve for Demographic data. A reduced set of 12 covariates is

suggested by the plot.

We applied 5-fold CV to the clean data using the reduced set of size 12 obtained by
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bootstrapped robust LARS. The model selected in this case has the following 9 covariates:

(22, 20, 4, 15, 2, 10, 25, 18, 24). To compare this “best of 12” model with the “best of 25”

model above, we estimated the prediction errors of these two models 1000 times using

5-fold CV. The two density curves are shown in Figure 3.11. The “best of 12” model has

a mean error of 204.8 (median error 201.5) while the “best of 25” model has a mean error

of 215.9 (median error 202.0). Also, the standard deviations (mads) of the errors are 25.6

(22.7) and 74.6 (31.4), respectively. (Some of the “best of 25” errors are very large and

not included in the plot.) Thus, bootstrapped robust LARS gives more stable results in

this high-variability dataset. It should be mentioned here that we needed almost 10 days

to find the “best of 25” model, while “best of 12” model requires less than 5 minutes

including the time needed to sequence the covariates by bootstrapped robust LARS. (CV

on m covariates is 2(d−m) times faster than CV on d covariates.)
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Figure 3.11: Error densities for the two “best” models for Demographic data. The “best

of 12” model gives more stable result.
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Protein data. This dataset of n = 145751 protein sequences was used for the

KDD-Cup 2004. Each of the 153 blocks corresponds to a native protein, and each data-

point of a particular block is a candidate homologous protein. There are 75 variables in

the dataset: the block number (categorical) and 74 measurements of protein features.

We replace the categorical variable by block indicator variables, and use the first feature

as the response. Though this analysis may not be of particular scientific interest, it will

demonstrate the scalability and stability of the robust LARS algorithm.

We used the package R to apply robust LARS to this dataset, and obtained a

reduced set of size 25 from d = 225 covariates (152 block indicators + 73 features) in

only 30 minutes. Given the huge computational burden of other robust variable selection

procedures, our algorithm maybe considered extremely suitable for computations of this

magnitude.

For a thorough investigation of the performance of robust LARS with this dataset,

we select 5 blocks with a total of n = 4141 protein sequences. These blocks were chosen

because they contain the highest proportions of homologous proteins (and hence the

highest proportions of potential outliers). We split the data of each block into two

almost equal parts to get a training sample of size n = 2072 and a test sample of size

n = 2069. The number of covariates is d = 77, with 4 block indicators (variables 1 − 4)

and 73 features. We apply bootstrapped robust LARS with B = 100 bootstrap samples

and we sequence the first 25 variables of each bootstrap sample. The resulting learning

curve is shown in Figure 3.12.

This plot suggests that a drastic reduction to a small number of predictors can be

performed, e.g. m=5 or m=10. The first 10 predictors found by bootstrapped robust
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Figure 3.12: Learning curve for Protein data. A reduced set of 5 covariates is suggested

by the plot.

LARS are (14, 13, 5, 76, 73, 8, 7, 40, 46, 51). The covariates in this sequence are almost

the same as those obtained with the whole dataset (not shown). The standard LARS

produced the sequence (14, 13, 5, 8, 7, 76, 18, 65, 2, 46). Note that the two sequences are

quite different. For example, if we select a model from the first five predictors, then only

3 predictors are contained in both sequences. Using MM-estimators and robust AIC,

the best model selected from the first five variables of the robust sequence contains vari-

ables (14, 13, 5, 76) while the best model out of the first 10 predictors contains variables

(14, 13, 5, 76, 40). Hence only 1 variable is added.

Using classical AIC, the best model selected from the first 5 variables of the LARS

sequence contains variables (14, 13, 5, 8). Variable 76 of the corresponding robust model

is replaced by Variable 8. The best model from the first 10 predictors contains variables

(14, 13, 5, 8, 76, 2). Note that 2 variables are added to the list compared to 1 variable in
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the robust case.

We fitted the 4 best models using the training data, and then used them to predict

the test data outcomes. The 1%, 5% and 10% trimmed means of prediction errors for the

smaller robust (classical) model are : 114.92 (117.49), 92.77 (95.66) and 74.82 (78.19),

respectively. The corresponding quantities for the larger robust (classical) model are:

114.37 (115.46), 92.43 (94.84) and 74.34 (76.50), respectively. Notice that the robust

models always outperform the classical models.

3.9 Conclusion

The main contribution of this chapter is that we developed robust versions of LARS to

obtain a reduced set of covariates for further investigation. We also introduced the idea

of multivariate-Winsorization of the data (when the dimension is not too large). We

can perform computationally suitable classical multivariate analyses on the transformed

data to obtain reliable results. We also proposed a new robust correlation estimate for

bivariate data which we called the “adjusted-Winsorized correlation estimate.”

LARS is a very effective, time-efficient model building tool, but is not resistant to

outliers. We introduced two different approaches to construct robust versions of the LARS

technique. The plug-in approach replaces the classical correlations in LARS by easily

computable robust correlation estimates. The cleaning approach first transforms the

dataset by shrinking the outliers towards the bulk of the data, and then applies LARS on

the transformed data. Both approaches use robust pairwise correlation estimates which

can be computed efficiently using bivariate-Winsorization or bivariate M-estimates.
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The data cleaning approach is limited in use because the sample size needs to be

(much) larger than the number of candidate predictors to ensure that the resulting cor-

relation matrix is positive definite. Moreover, the data cleaning approach is more time

consuming than the plug-in approach, certainly when only part of the predictors is being

sequenced. Since the plug-in approach has good performance, is faster to compute and

more widely applicable, we prefer this method. Comparing bivariate M-estimates with

bivariate Winsorization we showed that the latter is faster to compute with important

time differences when the number of candidate predictors becomes high.

We propose using the robust LARS technique to sequence the candidate predictors

and as such identify a reduced set of most promising predictors from which a more refined

model can be selected in a second segmentation step. We recommend combining W plug-

in with bootstrap to obtain more stable and reliable results. The reduced sets obtained

by bootstrapped robust LARS contain more of the important covariates than the reduced

sets obtained by initial robust LARS.

It is important to select the number of predictors to use for the second step. This

number is a trade-off between success-rate, that is the number of important predictors

captured in the reduced set, and feasibility of the segmentation step. Our simulation

study indicated that the reduced set can have size comparable to the actual number of

relevant candidate predictors. However, this number is usually unknown. To still get

an idea about an appropriate size for the reduced set we introduced a learning curve

that plots robust R2 values versus dimension. An appropriate size can be selected as the

dimension corresponding to the point where the curve starts to level off.
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3.10 Chapter Appendix

3.10.1 Determination of γ for one active covariate

Assume that the first selected covariate is +Xm. The current prediction µ̂ ← 0 should

be modified as

µ̂← γ Xm.

The distance γ should be such that the modified residual (Y − µ̂) will have equal corre-

lation with +Xm and another signed covariate Xj. We have

cor(Y − µ̂, Xm) =
X ′

m(Y − γXm)/n

SD(Y − γXm)
=

r − γ
SD(Y − γXm)

, (3.13)

and

cor(Y − µ̂,+Xj) =
X ′

j(Y − γXm)/n

SD(Y − γXm)
=

rjY − γrjm

SD(Y − γXm)
. (3.14)

Equating (3.13) to (3.14), we have

γ(+Xj) =
r − rjY

1− rjm

. (3.15)

Similarly, equating (3.13) with the correlation of modified residual and −Xj we have

γ(−Xj) =
r + rjY

1 + rjm

. (3.16)

We should take the minimum of (3.15) and (3.16) and minimum over all inactive (not yet

selected) j. The signed covariate that will enter the model at this point is determined

alongwith.
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3.10.2 Quantities related to equiangular vector BA

Here, A is the set of ‘active’ subscripts. Let XA = (· · · slXl · · · ), l ∈ A, where sl is the

sign of Xl as it enters the model. The standardized equiangular vector BA is obtained

using the following three conditions. BA is a linear combination of the active signed

predictors.

BA = XA wA , where wA is a vector of weights. (3.17)

BA has unit variance:

1

n
B′

ABA = 1. (3.18)

BA has equal correlation (a, say) with each of the active predictors. Since the covariates

and BA are standardized,

1

n
X ′

ABA = a 1A , 1A is a vector of 1’s. (3.19)

Using equation (3.17) in equation (3.18), we have

1

n
w′

AX
′
AXAwA = 1,

so that

w′
AR

(s)
A wA = 1, (3.20)

where R
(s)
A is the correlation matrix of the active signed variables. Using (3.17) in (3.19),

we have

R
(s)
A wA = a1A,

so that the weight vector wA can be expressed as

wA = a (R
(s)
A )−11A.
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Let RA be the correlation matrix the unsigned active covariates, i.e., RA is a submatrix

of RX . Let sA be the vector of signs of the active covariates (we get the sign of each

covariate as it enters the model). We have

wA = a (DARADA)−11A, (3.21)

where DA is the diagonal matrix whose diagonal elements are the elements of sA. Finally,

using equation (3.21) in equation (3.20), we get

a = [1′A(DARADA)−11A]−1/2. (3.22)

The correlation of an inactive covariate Xj with BA, denoted by aj, can be expressed

as follows

aj =
1

n
X ′

jBA =
1

n
X ′

jXAwA = (DArjA)′wA, (3.23)

where rjA is the vector of correlation coefficients between the inactive covariate Xj and

the (unsigned) selected covariates. Thus, we need only (a part of) the correlation matrix

of the data (not the observations themselves) to determine the above quantities.

3.10.3 Determination of γ for two or more active covariates

Let us update r ← (r − γ), see (3.13), and rjY ← (rjY − γrjm), see (3.14).

The correlation of an active covariate with the ‘current’ residual Y − µ̂ is r/SD(Y −
µ̂), and the correlation of the active covariate with the current equiangular vector BA

is ‘a’. Therefore, the correlation between an active covariate and the ‘modified’ residual

(Y − µ̂− γABA) is

r − γA a

SD(Y − µ̂− γABA)
.
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An inactive covariate +Xj, j ∈ Ac, has correlation rjY /SD(Y − µ̂) with the ‘current’

residual, and it has correlation aj with BA. Therefore, the correlation between +Xj,

j ∈ Ac, and the ‘modified’ residual is

rjY − γA aj

SD(Y − µ̂− γABA)
.

Equating the above two quantities, we get

γA(+Xj) = (r − rjY )/(a− aj). (3.24)

Similarly,

γA(−Xj) = (r + rjY )/(a+ aj). (3.25)

We have to choose the minimum possible γA over all inactive covariates. Note that when

A has only one covariate, (3.24) and (3.25) reduce to (3.15) and (3.16), respectively.
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Chapter 4

Two-step Model Building:

Robust Segmentation

4.1 Introduction

In Chapter 3 we developed robust sequencing methods to obtain a reduced set of covari-

ates from which the final prediction model can be selected. According to the notation

used before, we have m predictors X1, . . . , Xm in the reduced set. In this chapter we

consider methods of segmentation (evaluation of all possible subsets of the reduced set

of covariates) in order to select the final prediction model.

To compare different subsets of covariates, we require an appropriate robust selection

criterion. For this purpose, we review some classical selection criteria in Section 4.2, and

their robust counterparts in Section 4.3. We use β̂p to denote the estimate of βp for the
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p-parameter submodel (p predictors including the intercept) under consideration. Many

of the methods below require and estimate the variance of the error term under the

“true” model, σ2. In such cases, σ2 is estimated using the full model (with k = m + 1

parameters).

4.2 Review: classical selection criteria

In this section, we review some important classical selection criteria: Final Prediction

Error (FPE), Akaike Information Criterion (AIC), Mallows’ Cp, cross-validation and

bootstrap.

4.2.1 Akaike Information Criterion (AIC)

A measure of the similarity between the fitted distribution f(y|β̂p) and the true distri-

bution g(y|β) is the Kullback-Leibler information number (Kullback and Leibler 1951)

I(g, f) = E

{
log

g(Y |β)

f(Y |β̂p)

}

=

∫
log

(
g(y|β)

f(y|β̂p)

)
g(y|β) dy.

It can be shown that

(i) I(g, f) ≥ 0,

(ii) I(g, f) = 0⇐⇒ g(y) = f(y) almost everywhere (Lebesgue measure).
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Our purpose is to minimize

I(g, f) = E {log g(Y |β)} − E
{

log f(Y |β̂p)
}
,

where only the second term is important in evaluating the fitted model. This term is

unknown, and it seems reasonable to consider the log-likelihood

L(β̂p) =
n∑

i=1

log f(yi|β̂p)

as an estimate of nE
{

log f(Y |β̂p)
}

. However, this estimate has a bias, since the same

data are used to find the estimates β̂p and to calculate the log-likelihood. Akaike (1973)

showed that the expected value of the bias ' p. Therefore, the corrected estimate of

nE
{

log f(Y |β̂p)
}

is

L∗(β̂p) = L(β̂p)− p.

Based on this, Akaike (1973) proposed to choose the model that minimizes the Akaike

Information Criterion:

AIC = −2L(β̂p) + 2p.

Bhansali and Downham (1977) proposed to generalize AIC by choosing a model

that minimizes, for a chosen fixed α,

AIC(p, α) = −2L(β̂p) + α p.

For normal errors,

AIC(p, α) = K(n, σ̂) +
RSSp

σ̂2
+ αp, (4.1)

where K(n, σ̂) is a constant depending on the marginal distribution of the covariates,

RSSp is the residual sum of squares, and σ̂2 is the estimate of σ2 from the full model.
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4.2.2 Mallows’ Cp

Let us consider the following submodel of p parameters:

Yi = β′pxi + εi, i = 1, 2, · · · , n, (4.2)

where εi are independent observations from the distribution F with mean zero and vari-

ance σ2 (when the current submodel is the true model). This subset model may produce

biased fitted values, i.e., E(Ŷi) 6= E(Yi), where Ŷi = β̂
′
pxi. The bias may be tolerable if it

is offset by a reduced variance. Therefore, Mallows (1973) considered the mean square

error for each fitted value, and defined the following criterion for model evaluation:

Jp =
1

σ2

n∑
i=1

mse(Ŷi)

=
1

σ2
E

[
n∑

i=1

(Ŷi − E(Yi))
2

]
. (4.3)

The value of Jp has to be estimated from the data. Mallows (1973) proposed the following

estimate:

Cp = Ĵp =
RSSp

σ̂2
+ 2p− n, (4.4)

where σ̂2 is the estimate of σ2 from the full model. It can be shown that, for the full

model with k = m + 1 parameters, Ck = k. It is interesting to note that, for normal

errors, the Cp statistic is equivalent to AIC(p, 2) (see (4.1)).

4.2.3 Final Prediction Error (FPE)

Akaike (1969, 1970) proposed a criterion for the selection of predictors in the context

of autoregressive processes. The author minimized an estimate of the expected squared
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error in predicting the observations that are independent of the available data, but have

the same distribution.

Consider the subset model (4.2). Suppose that we are trying to predict, using the

estimates β̂p, the values Y ∗
i satisfying

Y ∗
i = β′pxi + ε∗i , i = 1, 2, · · · , n, (4.5)

where ε∗i ’s have the same distribution F , but they are independent of the εi’s. The Final

Prediction Error (FPE) of the current model is defined as

FPE =
1

σ2

n∑
i=1

E
[
(Y ∗

i − β̂
′
pxi)

2
]
. (4.6)

It is interesting to note that, for the linear regression setup considered above

FPE =
1

σ2

n∑
i=1

E
[
(Y ∗

i − E(Y ∗
i ) + E(Yi)− β̂

′
pxi)

2
]

=
1

σ2

n∑
i=1

σ2 +
1

σ2
E

[
n∑

i=1

(Ŷi − E(Yi))
2

]

= Jp + n,

where Jp is defined in (4.3). Therefore, based on (4.4), an estimate of FPE is given by

F̂PE =
RSSp

σ̂2
+ 2p, (4.7)

where σ̂2 is the estimate of σ2 from the full model. Note that, for the evaluation of linear

prediction models, F̂PE is equivalent to the Cp statistic.

4.2.4 Cross-validation

Cross-validation (CV) obtains an estimate of the error-rate of a prediction rule by split-

ting the n data points into a training sample of size nt (used for fitting the predic-
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tion model, i.e., for estimating the model parameters) and a validation sample of size

nv = n − nt (used for assessing the model). We calculate the average prediction error

based on all or some of the
(

n
nv

)
different validation samples, and use it as a criterion to

select a prediction model. It is often called leave-nv-out cross-validation, or CV(nv).

The vast majority of papers on this topic deals with leave-one-out cross-validation,

denoted by CV(1). Lachenbruch and Mickey (1968) proposed the use of CV(1) in dis-

criminant analysis. The method is furthered by Allen (1974), Stone (1974), and Geisser

(1975). The asymptotic equivalence of CV(1) and AIC is shown by Stone (1977).

Efron (1983) used CV(1) to estimate the error rate of a prediction rule in the situa-

tion where the response Y is dichotomous. We can easily generalize the author’s approach

to a continuous response. Suppose that we have an n× p dataset

Z = {zi, i = 1, 2, · · · , n},

where each case (row) zi = (xi, yi) is an observation of the random quantity (X, Y ), with

X being a row-vector of (p− 1) covariates and Y being a real-valued response variable.

The dataset Z is a random sample from distribution H on the p-dimensional sample

space Rp.

We want to evaluate a prediction rule η(x, Z) constructed based on the given dataset.

An example of η(x, Z) is β̂
′
Zx where β̂Z is the linear regression coefficient of Y on X.

We want to estimate the error rate of η(x, Z) when η(x0, Z) is used to predict a future

value y0 of Y for a given predictor value x0. Let Q[y0, η(x0, Z)] denote the “error” in

predicting y0 from x0. For example, we can consider the squared error

Q[y0, η(x0, Z)] = (y0 − η(x0, Z))2. (4.8)
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True error rate

The true error rate Err(Z,H) of the prediction rule η(x0, Z) can be defined as

Err(Z,H) = EH (Q[Y0, η(X0, Z)]) , (4.9)

the expectation being taken over (X0, Y0) ∼ H with Z fixed at its observed value.

Apparent error rate

The most obvious estimate of the true error rate Err(Z,H) is the apparent error rate

ērr(Z,H):

ērr(Z,H) =
1

n

n∑
i=1

Q[yi, η(xi, Z)], (4.10)

which usually underestimates Err(Z,H), because the same data have been used both to

construct and to evaluate the prediction rule η(x, Z).

CV error rate

CV attempts to overcome the problem of underestimation of Err(Z,H) by dividing the

given dataset into the training and the validation parts. For CV(1), let Z(i) be the

training set with case zi removed, and η(x, Z(i)) be the corresponding prediction rule.

The CV(1) estimate of Err(Z,H) is given by

Êrr
(CV)

=
1

n

n∑
i=1

Q[yi, η(xi, Z(i))]. (4.11)

Shao (1993) used CV(nv) for model selection in regression using a random selection

of the
(

n
nv

)
possible validation samples.
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4.2.5 Bootstrap

Efron (1983) used bootstrap to estimate the true error rate Err(Z,H) (see (4.9)). Since

the apparent error rate ērr(Z,H) (see (4.10)) is an underestimate of Err(Z,H), a correc-

tion is required. Let op(Z,H) be defined as

op(Z,H) = Err(Z,H)− ērr(Z,H). (4.12)

The expectation of op(Z,H), denoted by w(H), is given by

w(H) = EH

{
Err(Z,H)− ērr(Z,H)

}
, (4.13)

which could be the ideal correction if it were known. Note that, though the true error

rate and the apparent error rate are defined for particular dataset Z, the target correction

is the expectation over all datasets. It is not easy to find an estimate for (4.12) which is

defined for a particular Z.

The unknown w(H) can be estimated using the bootstrap procedure to get the

bootstrap estimate of Err(Z,H) as

Êrr
(Boot)

= ērr + ŵ(Boot). (4.14)

To obtain ŵ(Boot), let Z∗ be a bootstrap sample, i.e., a random sample of size n from Ĥ.

Based on (4.13), ŵ(Boot) can be written as

ŵ(Boot) = E∗
{

Err(Z∗, Ĥ)
}
− E∗

{
ērr(Z∗, Ĥ)

}

= E∗

(
1

n

n∑
i=1

Q[yi, η(xi, Z
∗)]

)
− E∗

(
n∑

i=1

P ∗i Q[yi, η(xi, Z
∗)]

)
, (4.15)

where E∗ is the expectations over all bootstrap samples, and P ∗i is the proportion of

times a particular case zi occurs in the bootstrap sample Z∗, i.e.,

P ∗i =
#{z∗j = zi}

n
, i = 1, 2, · · · , n.
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The expression inside the first pair of parentheses of (4.15) suggests that the prediction

rule be constructed with the bootstrap sample Z∗, and an average error of this rule be

calculated on the given dataset Z. The expression inside the second pair of parentheses

of (4.15) suggests that the prediction rule be constructed with the bootstrap sample Z∗,

and an average error of this rule be calculated on the same bootstap sample Z∗.

4.3 Review: robust selection criteria

In this section we present the robust counterparts of the classical selection criteria AIC,

Cp and FPE (in order of appearance in the robustness literature), and discuss their

limitations. We discuss robust counterparts of cross-validation and bootstrap procedures

in Section 4.4 and Section 4.5, respectively.

4.3.1 Robust AIC

Ronchetti (1985) proposed a robust counterpart of the AIC statistic. The extension

of AIC to AICR is inspired by the extension of maximum likelihood estimation to M-

estimation. The author derived AICR for an error distribution with density

f(ε) = K exp(−χ(ε)). (4.16)

For a given constant α and a given function χ, we can choose the model that minimizes

AICR(p, α, χ) = 2
n∑

i=1

χ(ri) + α p, (4.17)
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where ri = (Yi − β̂
′
pxi)/σ̂, σ̂ is some robust estimate of σ, and β̂

′
p is the M-estimator

defined as the implicit solution of

n∑
i=1

ψ(ri)xi = 0,

with ψ = χ′. The author also proposed a choice for the parameter α, which is given by

α = 2 E
[
ψ2(ε)

]
/E [ψ′(ε)] . (4.18)

Limitation. The author considered that the M-estimate was the maximum likelihood

estimate for the density in (4.16). Unfortunately, this only hold for unbounded χ func-

tions, and in such cases the breakdown point of the M-estimate is 0.

4.3.2 Robust Cp

Ronchetti and Staudte (1994) pointed out the sensitivity of the classical Cp to outlying

points, and proposed a robust Cp statistic denoted by RCp. Consider an M-estimator β̂p

with weights ŵi = ψ(ri)/ri, where ri is the residual for the ith observation. Using these

weights, the author defined a weighted version of Jp (see (4.3)) as follows

Γp =
1

σ2
E

[
n∑

i=1

ŵ2
i (Ŷi − E(Yi))

2

]
.

The author proposed the estimate of Γp, i.e., the robust version of Cp (see (4.4)), as

RCp =
Wp

σ̂2
− (Up − Vp), (4.19)

where Wp =
∑
ŵ2

i r
2
i is the weighted residual sum of squares, σ̂2 is a robust and consistent

estimate of σ2 from the full model, and Up and Vp are constants depending on the weight

function and the number of parameters p.

When the weights are identically 1, RCp reduces to Mallows Cp.
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4.3.3 Robust FPE

The robust analogue to the classical FPE criterion is proposed by Yohai (1997). Let s

be an estimate of the scale σ from the full model, and β̂p be the M-estimator of the

particular model under consideration.

β̂p = argmin
n∑

i=1

χ((yi − β′pxi)/s). (4.20)

When we are trying to predict y∗i (equation 4.5) using the estimate β̂p, the robust FPE

(RFPE) is defined as

RFPE =
n∑

i=1

E

[
χ

(
y∗i − β̂

′
pxi

σ

)]
, (4.21)

where the expectations are taken in the y∗i ’s as well as in β̂p. Note that when χ(u) = u2,

RFPE reduces to the classical FPE.

Using second order Taylor expansions with respect to βp (assuming that the current

model is the true model), RFPE is expressed as

RFPE ' E

(
n∑

i=1

χ

(
yi − β̂

′
xi

σ

))
+ p

A

B
, (4.22)

where A = E(ψ2(ε/σ)), B = E(ψ′(ε/σ)), and ψ = χ′. Therefore, an estimate of RFPE is

given by

R̂FPE '
n∑

i=1

χ

(
yi − β̂

′
xi

s

)
+ p

Â

B̂
, (4.23)

where Â = n−1
∑n

i=1(ψ
2(ri/s)), B = n−1

∑n
i=1(ψ

′(ri/s)), and ri = yi − β̂
′
pxi.

The performance of RFPE has not been studied so far. In Section 4.6 we carry out

a simulation study to evaluate RFPE.
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4.4 Robust cross-validation

Ronchetti, Field and Blanchard (1997) proposed a robust cross-validation procedure

which is a robust version of the cross-validation method proposed by Shao (1993). The

authors used estimators that have optimal bounded influence for prediction. However,

their method is computationally expensive. Hubert and Engelen (2004) proposed a fast

cross-validation method in the context of robust covariance estimation with MCD and

robust principal component analysis.

In this section we propose a robust CV procedure which is computationally suitable.

First, let us consider a simple robustification of the CV procedure achieved by (a) con-

structing a robust prediction rule, denoted by ηR(x, Z), based on the given dataset Z,

and (b) calculating robust summary statistics of the prediction errors Q[yi, η
R(xi, Z(i))].

For the construction of a robust prediction rule, we consider the regression MM-estimates

proposed by Yohai (1987) because of its high breakdown point and high efficiency at the

normal model. This estimate is defined as follows.

Definition 4.1. (Regression MM-estimate) Let χ0 : R→ R and χ1 : R→ R be two

score functions such that χ0(u) ≤ χ1(u), u ∈ R, and each χ satisfies the following set of

regularity conditions:

1. χ(−u) = χ(u), u ∈ R,

2. χ is non-decreasing on [0,∞),

3. χ(0) = 0, and χ(∞) = 1,

4. χ is continuously differentiable.
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Let β̃ be a high-breakdown-point “initial” estimate for β, and σ̂ be the estimate of scale

of the residuals based on β̃ satisfying

1

n

n∑
i=1

χ0

(
(yi − xt

iβ̃)/σ̂
)

= b, (4.24)

where b ∈ (0, 1] is the expectation of χ0(.) under the central model. Then, the regression

MM-estimate β̂ is defined as the solution of

n∑
i=1

χ′1
(
(yi − xt

iβ̂)/σ̂
)

xi = 0. (4.25)

A reasonable choice for the initial estimate β̃ in Definition 4.1 is the regression S-

estimate proposed by Rousseeuw and Yohai (1984) because of its high breakdown point.

This estimate is defined as follows.

Definition 4.2. (Regression S-estimate) Let χ0 : R → R be the score function de-

scribed above. The regression S-estimate β̃ is defined as

β̃ = argmin
β

σ̂(β), (4.26)

where σ̂(β) solves

1

n

n∑
i=1

χ0

(
(yi − xt

iβ)/σ̂(β)
)

= b. (4.27)

The corresponding S-estimate of scale, σ̂, is given by

σ̂ = inf
β
σ̂(β) = σ̂(β̃). (4.28)

For a robust summary of the (squared) prediction errors we will use the trimmed

means with different amounts of trimming. The α-trimmed mean of X, denoted by

mα(X), is the sample mean obtained after dropping the largest 100α% observations of
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X. Let U1 < U2 < · · · < Un be the ordered observations of X, and k = [n(1−α)], where

[n(1− α)] means the integer part of n(1− α). Then,

mα(X) =
1

n− k
n−k∑
j=1

Uj. (4.29)

The robust counterpart of Êrr
(CV)

is now given by

Êrr
(RCV)

= mα

(
Q[yi, η

R(xi, Z(i))]
)
. (4.30)

Note that Êrr
(RCV)

does not estimate Err(Z,H) (see equation 4.9). Instead, it estimates

ErrR(Z,H) = Eα
H

(
Q[y0, η

R(x0, Z)]
)

=
1

1− α
∫ H−1(1−α)

0

Q[y0, η
R(x0, Z)]dH. (4.31)

The use of α-trimmed mean will help us identify the robust model(s) that can be

expected to predict 100(1− α)% of the future data better than other models.

4.4.1 Dealing with numerical complexity

The computation of the MM estimates of regression for each training sample, i.e., the

computation of β̂(i), i = 1, 2, · · · , n, is very computer intensive. We propose to remedy

this problem as follows. We express the MM estimates of regression based on all the

observations on the current set of covariates as a weighted least squares fit, and obtain

the weighted least squares fit for each training sample by using the selected cases and

their corresponding weights. We elaborate the proposed method below.

Let ri = yi − β̂
t
xi be the residuals obtained from the fit β̂ (based on all the ob-

servations on the current set of covariates). Once the robust fit is complete, β̂ can be

91



expressed as a weighted least squares regression coefficient as follows:

β̂ =

(
n∑

i=1

wi xi x
t
i

)−1 n∑
i=1

wi xi yi, (4.32)

with the weights wi expressed as

wi = χ′1 (ri/σ̂)/ri, i = 1, 2, · · · , n. (4.33)

For further computational ease, we will assume that σ̂(i) ' σ̂, where σ̂(i) is the S-

scale based on the training sample Z(i). Now, a computationally suitable version of the

regression MM-estimate β̂(i) can be calculated as

β̂
(0)

(i) =

(
n∑

j 6=i

wj xj xt
j

)−1 n∑

j 6=i

wj xj yj. (4.34)

Note that no robust fitting is needed for the calculation of β̂
(0)

(i) .

One-step adjustment

Based on a small simulation study (not presented here), we consider a one-step correction

to β̂
(0)

(i) to make it closer to β̂(i). Let r
(1)
j = yj − xt

jβ̂
(0)

(i) , j = 1, 2, · · · , i− 1, i+ 1, · · · , n.

The updated set of weights w
(1)
j can be expressed as

w
(1)
j = χ′1 (r

(1)
j /σ̂)/r

(1)
j , j = 1, 2, · · · , i− 1, i+ 1, · · · , n. (4.35)

Thus, an adjusted estimate of β(i) is given by

β̂
(1)

(i) =

(
n∑

j 6=i

w
(1)
j xj xt

j

)−1 n∑

j 6=i

w
(1)
j xj yj. (4.36)
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4.5 Robust bootstrap

For the purpose of making robust statistical inferences about the linear regression co-

efficient β, Salibián-Barrera (2000), and Salibián-Barrera and Zamar (2002) developed

the robust bootstrap procedure. The author(s) considered the regression MM-estimate

β̂, and generated a large number of re-calculated β̂∗’s to estimate the asymptotic co-

variance matrix and the distribution function of the robust estimate β̂. This robust

procedure is computationally suitable, because a linear system of equations is solved for

each bootstrap sample.

We propose to use a similar approach to develop a computationally suitable robust

counterpart of the bootstrap estimate Êrr
(Boot)

of the true prediction error Err(Z,H).

Let β̂ be the MM-estimate, β̃ be the (initial) S-estimate and σ̂ be the S-scale. The

robust counterpart of the apparent error rate ērr(Z) (see equation 4.10) is given by

ērrR(Z) = mα (Q[yi, η(xi, Z)]) , (4.37)

where mα(.) is the α-trimmed mean defined before, and ηR(xi, Z) uses the MM-estimate

β̂. Let ri and r̃i be the residuals associated with the MM- and S-estimates, respectively.

Once the robust fit is complete, β̂ and σ̂ can be expressed as a weighted least squares

fit. Equation (4.32) shows the weighted average representation of β̂ with the weights wi

defined in Equation (4.33). The scale estimate σ̂ can be expressed as

σ̂ =
n∑

i=1

vi (yi − β̃
t
xi), (4.38)

with the weights vi defined as

vi =
σ̂

nb
χ0 (r̃i/σ̂)/r̃i, i = 1, 2, · · · , n. (4.39)
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Let Z∗ = {(xi, yi), i = 1, 2, · · · , n} be a bootstrap sample from Z. The unadjusted

bootstrap estimates can be calculated as

β̂
∗
u =

(
n∑

i=1

w∗i x∗i x∗ti

)−1 n∑
i=1

w∗i x∗i y
∗
i , (4.40)

σ̂∗u =
n∑

i=1

v∗i (y∗i − β̃
t
x∗i ), (4.41)

where w∗i = wj and v∗i = vj when (x∗i , y
∗
i ) = (xj, yj). The corrected bootstrap estimate

β̂
∗

can be obtained as

β̂
∗

= β̂ +M(β̂
∗
u − β̂) + d(σ̂∗u − σ̂), (4.42)

where M and d are the linear correction factors (see Salibián-Barrera and Zamar 2002).

The robust prediction rules ηR(x, Z∗) can be based on the β̂
∗

above. Now the robust

counterpart of ŵ(Boot) (see equation 4.15) is given by

ŵ(RBoot) = E∗
{
mα

(
Q[yi, η

R(xi, Z
∗)]

)}− E∗
{
mα

(
Q[y∗i , η

R(x∗i , Z
∗)]

)}
. (4.43)

Finally, the robust bootstrap estimate of ErrR(Z,H) (see equation 4.31) can be expressed

as

Êrr
(RBoot)

= ērrR(Z) + ŵ(RBoot). (4.44)

4.6 Simulation study

At first, we carry out a small simulation (Section 4.6.1) to show that the classical CV

and bootstrap estimates of true error rate (see (4.9)) are sensitive to outliers while the

robust estimates are resistant to outliers. We then conduct another study (Section 4.6.2)

where we use these methods along with FPE and RFPE to select the “best” models, and
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compare the predictive powers of these models. Since AIC and Cp are equivalent to FPE

for linear regression setup with normal errors, and robust AIC and robust Cp have some

limitations, we do not consider these criteria for our simulation study.

4.6.1 Robustness of the estimates

We evaluate the 4 estimates Êrr
(CV)

, Êrr
(Boot)

, Êrr
(RCV)

and Êrr
(RBoot)

using simulated

clean and contaminated datasets. Since the true error rates Err(Z,H) and ErrR(Z,H)

are different (the latter uses the trimmed mean), we multiply the robust estimates by

λ =
EH0

(
Q[y, ηR(x, Z)]

)

Eα
H0

(Q[y, ηR(x, Z)])

to make the results more comparable with the classical results.

We considered two standard normal covariatesX1 andX2, and generated Y = 2X1+

X2+ε, where ε ∼ N(0, 4). We simulated 100 datasets, and for each dataset we calculated

the estimates mentioned above. We then contaminated each dataset as follows. Each

of the 3 variables (2 covariates and the response) is contaminated independently. Each

observation of a variable is assigned probability 0.03 of being replaced by a large number.

Therefore, the probability that any particular row of the dataset will be contaminated

is 1 − (1 − 0.03)3, which means approximately 9% of the rows will be contaminated.

For each contaminated dataset we obtained the 4 estimates mentioned above. Table 4.1

presents the results for the first 10 trials.

The average Err(Z,H0) (the average true error rate for the clean data) is 4.12, while

the average ErrR(Z,H0) (multiplied by λ) is 4.13. Table 4.1 shows that, for the clean data

both the classical and robust methods estimate the true error rates very well. However, in
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Table 4.1: First 10 trials: classical and robust estimates of prediction errors.

Trial CV Boot RCV RBoot

Clean Contam Clean Contam Clean Contam Clean Contam

1 4.60 12.01 4.61 11.65 4.18 5.80 4.15 5.47

2 4.05 10.20 4.02 8.99 3.48 5.18 3.42 5.05

3 3.86 10.35 3.88 10.64 3.70 5.72 3.67 5.66

4 4.95 11.56 4.97 11.80 5.45 6.14 5.43 6.47

5 3.95 14.92 3.94 11.77 4.29 5.57 4.25 5.33

6 4.54 12.56 4.52 10.91 5.11 6.37 5.07 6.30

7 5.22 10.28 5.16 10.53 4.72 6.37 4.74 6.65

8 4.03 8.54 4.04 8.63 4.04 5.43 4.04 5.45

9 4.16 10.45 4.20 10.60 4.21 6.59 4.21 6.36

10 4.57 9.82 4.53 9.72 4.75 5.90 4.70 6.54

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
mean 4.14 10.94 4.13 10.28 4.17 5.32 4.16 5.22

(sd) (0.58) (2.57) (0.58) (2.13) (0.67) (0.94) (0.69) (0.93)

the contaminated data, robust estimates perform much better than the classical methods.

4.6.2 Final model selection

In this simulation study we use the classical segmentation methods CV, Boot and FPE

along with their robust counterparts RCV, RBoot and RFPE to select the “best” models,

and compare the predictive powers of these models. The study is similar to Frank and
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Friedman (1993). We considered 2 latent variables Li, i = 1, 2, to generate Y = 6L1 +

5L2 + ε, where Li ∼ N(0, 1), and ε is a normal error not related to the latent variables.

We considered a total of m = 8 covariates. Of them, a = 4 are related to the two latent

variables, with 2 covariates related to L1 and the other two related to L2.

We generated 100 datasets each of which was randomly divided into a training sam-

ple of size 100 and a test sample of size 100. Each training dataset was then contaminated

as follows. A number of rows (10%) were chosen randomly, and for these rows the co-

variates values were replaced by large positive numbers while the response values were

replaced by large negative numbers.

We used all 6 methods on the clean and contaminated training data to select and

fit the final models, and then used them to predict the test data outcomes. For each

simulated dataset, we recorded the number of noise variables in the model, and the

average squared prediction error on the test sample.

Table 4.2 shows the average test error and the average number of noise variables

selected by each method. For the clean data, the robust methods perform as good as the

classical methods. For the contaminated data, robust methods produce much smaller

test errors than the classical methods. Also, robust models contain less noise variables.

The performance of the three robust methods are similar.
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Table 4.2: Performance of the classical and robust methods of segmentation (evaluation

of all possible subsets of the reduced set).

Method Test error Noise

Clean Contam Clean Contam

Classical CV 41.81 56.49 0.00 0.60

Boot 41.32 54.88 0.00 0.50

FPE 41.93 55.17 0.02 0.60

Robust RCV 42.97 43.62 0.06 0.08

RBoot 41.59 44.80 0.08 0.08

RFPE 42.73 44.91 0.06 0.06

4.7 Examples

In this section we use two real datasets to evaluate the performance of the classical and

robust methods for the segmentation of the reduced set. Both of these datasets were

used in Chapter 3 for the evaluation of robust sequencing.

4.7.1 Demographic data

This dataset contains n = 50 obsrvations on d = 25 covariates and a response. For more

details Section 3.8 is referred to. Using the learning curve based on standard LARS, we

selected the reduced set (22, 20, 4, 15, 25, 2, 14, 5, 3, 17, 24, 23). The robust bootstrapped

LARS produced the reduced set (22, 20, 4, 15, 10, 2, 19, 25, 8, 18, 6, 24).
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We applied the classical segmentation methods CV, Boot and FPE on the first re-

duced set above. The covariates selected by these methods are (22, 4, 25, 2, 14, 17, 24, 23),

(22, 4, 15, 25, 2, 17, 24), and (22, 20, 4, 15, 25, 2, 14, 17, 24, 23), respectively. We then ap-

plied the robust methods RCV, RBoot and RFPE on the second reduced set. The covari-

ates selected are (22, 4, 15, 10, 19, 25, 18, 24), (22, 20, 4, 10, 19, 25, 18, 24), and (15, 6, 24),

respectively. Interestingly, RFPE selects a very small model compared to others.

To compare the models obtained by the classical and robust methods, we used the

clean data (dropping one clear outlier) to estimate the prediction errors of these models

1000 times using 5-fold CV. The mean prediction errors for the models are: CV 199.3,

Boot 198.2, FPE 207.6, RCV 195.8, RBoot 197.5 and RFPE 246.9. The robust method

RCV performs slightly better than RBoot, and both of them perform much better than

the classical methods and RFPE.

4.7.2 Protein data

This KDD-Cup 2004 dataset was used in Section 3.8. We considered n = 4141 protein

sequences from 5 blocks. The number of covariates is d = 77, with 4 block indicators

(variables 1 − 4) and 73 features. The data were split to get a training sample of size

n = 2072 and a test sample of size n = 2069.

We considered a reduced set of size 5 using the learning curve based on standard

LARS on the training data, which contains the covariates (14, 13, 5, 8, 7). Robust boot-

strapped LARS gives the reduced set (14, 13, 5, 76, 73). We applied the 3 classical meth-

ods of segmentation on the first reduced set. They all select the same model, and it
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includes the covariates (14, 13, 5, 8). The robust methods used on the second reduced set

select the covariates (14, 13, 5, 76).

We fitted the 2 models using the training data, and then used them to predict the test

data outcomes. The 1%, 5% and 10% trimmed means of prediction errors for the robust

(classical) model are : 114.92 (117.49), 92.77 (95.66) and 74.82 (78.19), respectively. It

is encouraging to note that the robust methods outperform the classical methods for the

majority of the data.

4.8 Conclusion

The main contribution of this chapter is that we developed computationally suitable

robust methods of segmentation (evaluation of all possible subsets of the reduced set

obtained in Chapter 3) to select the final model.

Classical selection criteria FPE, AIC, Cp, CV and bootstrap are sensitive to out-

liers. We also identified certain limitations of Robust AIC (Ronchetti 1985) and robust

CV (Ronchetti, Field and Blanchard 1997) methods. We proposed computationally suit-

able robust versions of CV and bootstrap procedures. We evaluated our methods using

both simulated and real datasets, and compared them with the classical methods as

well as robust FPE proposed by Yohai (1997). According to the simulation study, the

performance of the three robust methods are similar, and better than the classical meth-

ods. In the real datasets, robust CV (RCV) and robust bootstrap (RBoot) have better

performance compared to RFPE.
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Chapter 5

Properties of Adjusted-Winsorized

Correlation Estimate

5.1 Introduction

In Chapter 3 we proposed a new correlation estimate for bivariate data, which we called

the adjusted-Winsorized estimate. Unlike two separate univariate Winsorizations for

X and Y (Huber 1981 and Alqallaf 2003), we proposed a joint Winsorization with a

larger tuning constant c1 for the points falling in the two major quadrants, and a smaller

constant c2 for the points in the two minor quadrants.

In this chapter we will establish the consistency and derive the influence function of

the proposed correlation estimate. We will then discuss the asymptotic normality of this

estimate.
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Definition 5.1. (Adjusted-Winsorization) The adjusted-Winsorization of (u, v) ∈
R2, denoted by Ψc(u, v) with c = (c1, c2), is defined as

Ψc(u, v) = (ψc(u), ψc(v)) =





(ψc1(u), ψc1(v)) , uv ≥ 0,

(ψc2(u), ψc2(v)) , uv < 0,
(5.1)

where ψ is a non-decreasing symmetric function, and c1 and c2 are chosen constants.

Definition 5.2. (Adjusted-Winsorized estimate of correlation) Let (Xi, Yi), i =

1, 2, · · · , n, be a random sample from a bivariate distribution with location parameters

µX and µY , and scale parameters σX and σY , respectively. Let θ = (µX , µY , σX , σY ),

and θ̂ = (µ̂X , µ̂Y , σ̂X , σ̂Y ) be an estimate of θ. Denote Ûi = (Xi − µ̂X)/σ̂X , and V̂i =

(Yi − µ̂Y )/σ̂Y . Let Ψc

(
Ûi, V̂i

)
=

(
ψc(Ûi), ψc(V̂i)

)
be as defined in (5.1). Then, the

adjusted-Winsorized estimate r̂w of the correlation between X and Y is given by

r̂w =

1
n

n∑
i=1

ψc(Ûi)ψc(V̂i)−
(

1
n

n∑
i=1

ψc(Ûi)

) (
1
n

n∑
i=1

ψc(V̂i)

)

√
1
n

n∑
i=1

ψ2
c(Ûi)−

(
1
n

n∑
i=1

ψc(Ûi)

)2
√

1
n

n∑
i=1

ψ2
c(V̂i)−

(
1
n

n∑
i=1

ψc(V̂i)

)2
. (5.2)

For the validity of the results obtained in the subsequent sections, we need some

assumptions on the functions ψc1 and ψc2 used for the adjusted-Winsorization of the data.

Let ψ : R→ R satisfy the following set of regularity conditions:

A1. ψ(−u) = −ψ(u), u ∈ R,

A2. ψ is non-decreasing,

A3. ψ is continuously differentiable,

A4. ψ, ψ′ and ψ′(u)u are bounded.
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For the adjusted-Winsorization of the data, we will use the S-scales σ̂X and σ̂Y

defined in Chapter 4. Let us assume that the score function χ : R → R used in the

S-scales satisfy the following set of regularity conditions:

B1. χ(−u) = χ(u), u ∈ R, χ(0) = 0, and χ(∞) = 1,

B2. χ is non-decreasing on [0,∞),

B3. χ is continuously differentiable,

B4. χ, χ′ and χ′(u)u are bounded.

5.2 Consistency of adjusted-Winsorized estimate

The following theorem shows that under certain regularity conditions the adjusted-

Winsorized correlation estimates are consistent, provided that the location and scale

estimates are consistent.

Theorem 5.1. (Consistency of adjusted-Winsorized estimate) Let (Xi, Yi), i =

1, 2, · · · , n, be a random sample from a bivariate distribution with location parameters

µX and µY , and scale parameters σX and σY , respectively. Let Ui = (Xi − µX)/σX ,

and Vi = (Yi − µY )/σY be the standardized variables. Let θ = (µX , µY , σX , σY ), and

θ̂ = (µ̂X , µ̂Y , σ̂X , σ̂Y ) be an estimate of θ. Then, if

θ̂n
P−−−→

n→∞
θ,

then

r̂w
P−−−→

n→∞
rw,
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where r̂w is the adjusted-Winsorized estimate of correlation between X and Y , and

rw =
E [ψc(U)ψc(V )]− E [ψc(U)]E [ψc(V )]√

E [ψ2
c(U)]− (E [ψc(U)])2

√
E [ψ2

c(V )]− (E [ψc(V )])2
. (5.3)

To prove this theorem, we need an extension of “Serfling’s Lemma” (Serfling 1980,

page 253).

Lemma 5.1. (Extension of Serfling’s Lemma) Let Zi = (Xi, Yi), i = 1, 2, · · · , n,
be a sequence of independent random variables having an identical bivariate distribution

with parameter vector θ. Let g(z, t) : R2×R4 → R be continuous in t uniformly on z ∈
Ac(θ,∆) for all ∆ > 0, and P (z ∈ A(θ,∆)) → 0 as ∆ → 0, with P (z ∈ A(θ, 0)) = 0.

Assume that |g(z, t)| < K for all z ∈ R2. Let θ̂n be a sequence of random vectors such

that θ̂n
P−−−→

n→∞
θ. Then

1

n

n∑
i=1

g(zi, θ̂n)
P−−−→

n→∞
E[g(Z, θ)]. (5.4)

Proof. We have to show that, for any given ε > 0,

lim
n→∞

P

(∣∣∣∣
1

n

n∑
i=1

g(zi, θ̂n)− E[g(Z, θ)]

∣∣∣∣ < ε

)
= 1. (5.5)

Now,

∣∣∣∣
1

n

n∑
i=1

g(zi, θ̂n)− E[g(Z, θ)]

∣∣∣∣

=

∣∣∣∣
1

n

n∑
i=1

g(zi, θ̂n)I(zi ∈ A(θ,∆))− E[g(Z, θ)I(Z ∈ A(θ,∆))]

+
1

n

n∑
i=1

g(zi, θ̂n)I(zi ∈ Ac(θ,∆))− E[g(Z, θ)I(Z ∈ Ac(θ,∆))]

∣∣∣∣
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≤
∣∣∣∣
1

n

n∑
i=1

g(zi, θ̂n)I(zi ∈ A(θ,∆))

∣∣∣∣ +

∣∣∣∣E[g(Z, θ)I(Z ∈ A(θ,∆))]

∣∣∣∣

+

∣∣∣∣
1

n

n∑
i=1

g(zi, θ̂n)I(zi ∈ Ac(θ,∆))− E[g(Z, θ)I(Z ∈ Ac(θ,∆))]

∣∣∣∣ (5.6)

≤
∣∣∣∣k

1

n

n∑
i=1

I(zi ∈ A(θ,∆))

∣∣∣∣ +

∣∣∣∣k E[I(Z ∈ A(θ,∆))]

∣∣∣∣

+

∣∣∣∣
1

n

n∑
i=1

g(zi, θ̂n)I(zi ∈ Ac(θ,∆))− 1

n

n∑
i=1

g(zi, θ)I(zi ∈ Ac(θ,∆))

∣∣∣∣

+

∣∣∣∣
1

n

n∑
i=1

g(zi, θ)I(zi ∈ Ac(θ,∆))− E[g(Z, θ)I(Z ∈ Ac(θ,∆))]

∣∣∣∣, (5.7)

= Q (say).

Note that the last expression in (5.6) is bounded by the sum of the last two expressions

in (5.7). We will now deal with each of the four parts in (5.7).

As n → ∞, 1
n

n∑
i=1

I(zi ∈ A(θ,∆)) → P (z ∈ A(θ,∆)), and P (z ∈ A(θ, 0)) = 0.

Therefore, for any given ε > 0, there exists ∆ > 0 such that

lim
n→∞

P

(
k

1

n

n∑
i=1

I(zi ∈ A(θ,∆)) < ε/4

)
= 1, (5.8)

and

k E[I(Z ∈ A(θ,∆))] = k P (Z ∈ A(θ,∆)) < ε/4. (5.9)

We now focus on the third part of (5.7). Since θ̂n
P−−−→

n→∞
θ, we have, for any δ > 0,

lim
n→∞

P
(∥∥θ̂n − θ

∥∥ < δ
)

= 1. (5.10)

Now, for any ε > 0, we can choose δ = δ(∆) (where ∆ has been chosen before) such that

∥∥θ̂n − θ
∥∥ < δ =⇒ ∣∣g(z, θ̂n)− g(z, θ)

∣∣ < ε/4, z ∈ Ac(θ,∆). (5.11)
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That is, δ is chosen in such a way that it will ensure the uniform continuity of g(z, θ) in

θ on z ∈ Ac(θ,∆). Using (5.10) and (5.11), we have, for any ε > 0,

lim
n→∞

P

(∣∣∣∣
(
g(z, θ̂n)− g(z, θ)

)
I(z ∈ Ac(θ,∆))

∣∣∣∣ < ε/4

)
= 1,

which gives

lim
n→∞

P

(∣∣∣∣
1

n

n∑
i=1

g(zi, θ̂n)I(zi ∈ Ac(θ,∆))

− 1

n

n∑
i=1

g(zi, θ)I(zi ∈ Ac(θ,∆))

∣∣∣∣ < ε/4

)
= 1. (5.12)

For the fourth part of (5.7), we can use the Weak Law of Large Numbers. For any ε > 0,

lim
n→∞

P

(∣∣∣∣
1

n

n∑
i=1

g(zi, θ)I(zi ∈ Ac(θ,∆))

− E[g(Z, θ)I(Z ∈ Ac(θ,∆))]

∣∣∣∣ < ε/4

)
= 1. (5.13)

Using inequalities (5.8), (5.9), (5.12) and (5.13) in (5.7), we have,

lim
n→∞

P (Q < ε) = 1,

which completes the proof. ¥

To prove Theorem 5.1, we also need the following lemma, which is similar to

Lemma 7.7 (Salibián-Barrera 2000, page 217), where the author deals with ρ-functions

(χ-functions according to our notation).

Lemma 5.2. (Uniform continuity of ψ-functions) Let ψ : R → R be a continuous

function such that ψ(u) = −c for u ≤ −c, and ψ(u) = c for u ≥ c, where c is a finite

constant. Let m ∈ M and s ∈ S, where M and S are bounded real intervals, and

inf S > 0. Then

f(u,m, s) = ψ

(
u−m
s

)
, u ∈ R, m ∈M, s ∈ S,
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is conutinuous in m and s uniformly in u.

The proof of this lemma is presented in Chapter Appendix (Section 5.8.1).

Proof of Theorem 5.1

With the use of Lemma 5.1 and Lemma 5.2 the proof is straightforward. We have

Z = (X, Y ), θ = (µX , µY , σX , σY ), and t = (µ̂X , µ̂Y , σ̂X , σ̂Y ). First, let us deal with

the second term in the numerator of Equation 5.2. We have

1

n

n∑
i=1

ψc(Ûi) =
1

n

n∑
i=1

ψc

(
X − µ̂X

σ̂X

)

=
1

n

n∑
i=1

ψc1

(
X − µ̂X

σ̂X

)
I
(
(X − µ̂X)(Y − µ̂Y ) > 0

)

+
1

n

n∑
i=1

ψc2

(
X − µ̂X

σ̂X

)
I
(
(X − µ̂X)(Y − µ̂Y ) < 0

)
.

Consider

g(Z, θ) = ψc

(
X − µX

σX

)

= ψc1

(
X − µX

σX

)
I
(
(X − µX)(Y − µY ) > 0

)

+ ψc2

(
X − µX

σX

)
I
(
(X − µX)(Y − µY ) < 0

)
.

Since the tuning constant of our score function ψ changes with quadrants, to apply

Lemma 5.1 we set

A(θ,∆) = {z = (x, y) : |x− µX | < ∆ or |y − µY | < ∆} .

We have to choose δ in (5.11) such that if (x− µX , y − µY ) ∈ Ac(θ,∆) belongs to a

particular quadrant, then (x− µ̂X , y − µ̂Y ) belongs to the same quadrant. If, for ex-

ample, (x − µX)(y − µY ) > 0, then (x − µ̂X)(y − µ̂Y ) > 0, and, using Lemma 5.2,
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ψc

(
x−µ̂X

σ̂X

)
= ψc1

(
x−µ̂X

σ̂X

)
is continuous in µ̂X and σ̂X uniformly on z ∈ Ac(θ,∆). There-

fore, using Lemma 5.1, we have

1

n

n∑
i=1

ψc

(
X − µ̂X

σ̂X

)
P−−−→

n→∞
E

[
ψc

(
X − µX

σX

)]
.

That is,

1

n

n∑
i=1

ψc(Ûi)
P−−−→

n→∞
E [ψc(U)] . (5.14)

Similarly,

1

n

n∑
i=1

ψc(V̂i)
P−−−→

n→∞
E [ψc(V )] . (5.15)

Let us now deal with the first term in the numerator of Equation 5.2. We have

1

n

n∑
i=1

ψc(Ûi)ψc(V̂i) =
1

n

n∑
i=1

ψc

(
X − µ̂X

σ̂X

)
ψc

(
Y − µ̂Y

σ̂Y

)

=
1

n

n∑
i=1

ψc1

(
X − µ̂X

σ̂X

)
ψc1

(
Y − µ̂Y

σ̂Y

)
I
(
(X − µ̂X)(Y − µ̂Y ) > 0

)

+
1

n

n∑
i=1

ψc2

(
X − µ̂X

σ̂X

)
ψc2

(
Y − µ̂Y

σ̂Y

)
I
(
(X − µ̂X)(Y − µ̂Y ) < 0

)
.

Considering g(Z, θ) = ψc

(
X−µX

σX

)
ψc

(
Y−µY

σY

)
= ψc(U)ψc(V ), we have

1

n

n∑
i=1

ψc(Ûi) ψc(V̂i)
P−−−→

n→∞
E [ψc(U)ψc(V )] . (5.16)

Using (5.16), (5.14) and (5.15) in the numerator of (5.2), we have

1

n

n∑
i=1

ψc(Ûi) ψc(V̂i)−
(

1

n

n∑
i=1

ψc(Ûi)

)(
1

n

n∑
i=1

ψc(V̂i)

)

P−−−→
n→∞

E [ψc(U)ψc(V )]− E [ψc(U)]E [ψc(V )] . (5.17)
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Let us now focus on the denominator of Equation 5.2. We have

1

n

n∑
i=1

ψ2
c(Ûi) =

1

n

n∑
i=1

ψ2
c

(
X − µ̂X

σ̂X

)

=
1

n

n∑
i=1

ψ2
c1

(
X − µ̂X

σ̂X

)
I
(
(X − µ̂X)(Y − µ̂Y ) > 0

)

+
1

n

n∑
i=1

ψ2
c2

(
X − µ̂X

σ̂X

)
I
(
(X − µ̂X)(Y − µ̂Y ) < 0

)
.

Consider g(Z, θ) = ψ2
c

(
X−µX

σX

)
= ψ2

c(U). We then have

1

n

n∑
i=1

ψ2
c(Ûi)

P−−−→
n→∞

E
[
ψ2

c(U)
]
. (5.18)

Similarly,

1

n

n∑
i=1

ψ2
c(V̂i)

P−−−→
n→∞

E
[
ψ2

c(V )
]
. (5.19)

Using (5.18), (5.19), (5.14) and (5.15), we can say that the denominator of (5.2) converges

in probability to the denominator of (5.3). ¥

5.3 Influence function of adjusted-Winsorized esti-

mate

The following theorem gives the influence function of the adjusted-Winsorized correlation

estimate, when the influence functions of the scale estimates are well-defined.

Theorem 5.2. (Influence function of the adjusted-Winsorized estimate) Let

(X, Y ) follow a continuous distribution H. Consider the adjusted-Winsorized correlation

functional rw(H) given by

rw(H) =
N(H)

D(H)
, (5.20)
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with

N(H) = EH

{
ψc

(
X −mX(H)

sX(H)

)
ψc

(
Y −mY (H)

sY (H)

)}

− EH

{
ψc

(
X −mX(H)

sX(H)

)}
EH

{
ψc

(
Y −mY (H)

sY (H)

)}
, (5.21)

and

D(H) =

[
EH

{
ψ2

c

(
X −mX(H)

sX(H)

)}
−

(
EH

{
ψc

(
X −mX(H)

sX(H)

)})2
]1/2

[
EH

{
ψ2

c

(
Y −mY (H)

sY (H)

)}
−

(
EH

{
ψc

(
Y −mY (H)

sY (H)

)})2
]1/2

, (5.22)

where mX(H) and mY (H) are location functionals, and sX(H) and sY (H) are dispersion

functionals. Suppose that

1. The central model H0 is symmetric about (mX(H0),mY (H0)). We can assume,

without loss of generality, that mX(H0) = 0, mY (H0) = 0, sX(H0) = 1, and

sY (H0) = 1.

2. The influence functions IF (sX , u,H0) and IF (sY , v,H0) are well-defined for all

z = (u, v) ∈ R2.

The influence function of rw(H) at H0 and z, denoted by IF (rw,z, H0), is given by

IF (rw, z, H0) =
D0Ṅ0 −N0Ḋ0

D2
0

,

where

N0 = EH0

{
ψc(X)ψc(Y )

}
,

D0 =
√
EH0

{
ψ2

c(X)
}
EH0

{
ψ2

c(Y )
}
,
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Ṅ0 = −EH0 {ψc(X)ψc(Y )}+ ψc(u)ψc(v)

− IF (sY , v,H0) EH0

{
ψc(X)ψ′c(Y )Y

}

− IF (sX , u,H0) EH0

{
ψc(Y )ψ′c(X)X

}
,

and

Ḋ0 = −
√

EH0

{
ψ2

c(Y )
}

2EH0

{
ψ2

c(X)
}

(
EH0

{
ψ2

c(X)
}− ψ2

c(u)

+ IF (sX , u,H0) EH0

{
2ψc(X)ψ′c(X)X

} )

−
√

EH0

{
ψ2

c(X)
}

2EH0

{
ψ2

c(Y )
}

(
EH0

{
ψ2

c(Y )
}− ψ2

c(v)

+ IF (sY , v,H0) EH0

{
2ψc(Y )ψ′c(Y )Y

} )
.

Proof. Let H be given by

Ht, z = (1− t)H0 + tδz. (5.23)

For a fixed z = (u, v), using (5.21) we can express N(Ht, z) = N(t, z) = N(t) as

N(t) = (1− t) EH0

{
ψc

(
X −mX(t)

sX(t)

)
ψc

(
Y −mY (t)

sY (t)

)}

+ t ψc

(
u−mX(t)

sX(t)

)
ψc

(
v −mY (t)

sY (t)

)

−
[
(1− t) EH0

{
ψc

(
X −mX(t)

sX(t)

)}
+ t ψc

(
u−mX(t)

sX(t)

)]

[
(1− t) EH0

{
ψc

(
Y −mY (t)

sY (t)

)}
+ t ψc

(
v −mY (t)

sY (t)

)]
(5.24)
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= (1− t) EH0

{
ψc

(
X −mX(t)

sX(t)

)
ψc

(
Y −mY (t)

sY (t)

)}

+ t ψc

(
u−mX(t)

sX(t)

)
ψc

(
v −mY (t)

sY (t)

)

− (1− 2t) EH0

{
ψc

(
X −mX(t)

sX(t)

)}
EH0

{
ψc

(
Y −mY (t)

sY (t)

)}

− t EH0

{
ψc

(
X −mX(t)

sX(t)

)}
ψc

(
v −mY (t)

sY (t)

)

− t EH0

{
ψc

(
Y −mY (t)

sY (t)

)}
ψc

(
u−mX(t)

sX(t)

)
+ o(t), (5.25)

where o(t) includes the terms involving t2. Now, since mX(0) = 0, mY (0) = 0, sX(0) = 1,

and sY (0) = 1, we have

d

dt
N(t)

∣∣∣∣
t=0

= −EH0 {ψc(X)ψc(Y )}+ ψc(u)ψc(v)

+
d

dt
EH0

{
ψc

(
X −mX(t)

sX(t)

)
ψc

(
Y −mY (t)

sY (t)

)}∣∣∣∣
t=0

. (5.26)

The last term in (5.26) can be written as

d

dt
EH0

{
ψc

(
X −mX(t)

sX(t)

)
ψc

(
Y −mY (t)

sY (t)

)}∣∣∣∣
t=0

=
d

dt

[
EH0

{
ψc1

(
X −mX(t)

sX(t)

)
ψc1

(
Y −mY (t)

sY (t)

)

I

(
(X −mX(t))(Y −mY (t)) > 0

)}]

t=0

+
d

dt

[
EH0

{
ψc2

(
X −mX(t)

sX(t)

)
ψc2

(
Y −mY (t)

sY (t)

)

I

(
(X −mX(t))(Y −mY (t)) < 0

)}]

t=0

. (5.27)

Interchanging the operations of differentiation and integration (see Chapter Appendix,

Section 5.8.2, for the justification), we can express (5.27) as

d

dt
EH0

{
ψc

(
X −mX(t)

sX(t)

)
ψc

(
Y −mY (t)

sY (t)

)}∣∣∣∣
t=0
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= EH0

[
d

dt

{
ψc1

(
X −mX(t)

sX(t)

)
ψc1

(
Y −mY (t)

sY (t)

)
I
(
XY > 0

)}∣∣∣∣
t=0

]

+ EH0

[
d

dt

{
ψc2

(
X −mX(t)

sX(t)

)
ψc2

(
Y −mY (t)

sY (t)

)
I
(
XY < 0

)}∣∣∣∣
t=0

]
. (5.28)

The first term of (5.28) can be expressed as

EH0

[
d

dt

{
ψc1

(
X −mX(t)

sX(t)

)
ψc1

(
Y −mY (t)

sY (t)

)
I
(
XY > 0

)}∣∣∣∣
t=0

]

= EH0

{
ψc1

(
X −mX(t)

sX(t)

)
ψ′c1

(
Y −mY (t)

sY (t)

)

−sY (t) d
dt

[mY (t)]− d
dt

[sY (t)]
(
Y −mY (t)

)

s2
Y (t)

I
(
XY > 0

)

+ ψc1

(
Y −mY (t)

sY (t)

)
ψ′c1

(
X −mX(t)

sX(t)

)

−sX(t) d
dt

[mX(t)]− d
dt

[sX(t)]
(
X −mX(t)

)

s2
X(t)

I
(
XY > 0

)∣∣∣∣
t=0

}

= −EH0

{
ψc1(X)ψ′c1(Y )

[
IF (mY , v,H0) + IF (sY , v,H0)Y

]
I
(
XY > 0

)

+ ψc1(Y )ψ′c1(X)
[
IF (mX , u,H0) + IF (sX , u,H0)X

]
I
(
XY > 0

)}
. (5.29)

Similarly, the second term of (5.28) can be expressed as

EH0

[
d

dt

{
ψc2

(
X −mX(t)

sX(t)

)
ψc2

(
Y −mY (t)

sY (t)

)
I
(
XY < 0

)}∣∣∣∣
t=0

]

= −EH0

{
ψc1(X)ψ′c1(Y )

[
IF (mY , v,H0) + IF (sY , v,H0)Y

]
I
(
XY < 0

)

+ ψc1(Y )ψ′c1(X)
[
IF (mX , u,H0) + IF (sX , u,H0)X

]
I
(
XY < 0

)}
. (5.30)

Using (5.29) and (5.30) in (5.28), we have

d

dt
EH0

{
ψc

(
X −mX(t)

sX(t)

)
ψc

(
Y −mY (t)

sY (t)

)}∣∣∣∣
t=0
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= − IF (mY , v,H0) EH0

{
ψc(X)ψ′c(Y )

} − IF (mX , u,H0) EH0

{
ψc(Y )ψ′c(X)

}

− IF (sY , v,H0) EH0

{
ψc(X)ψ′c(Y )Y

} − IF (sX , u,H0) EH0

{
ψc(Y )ψ′c(X)X

}

= − IF (sY , v,H0) EH0

{
ψc(X)ψ′c(Y )Y

}− IF (sX , u,H0) EH0

{
ψc(Y )ψ′c(X)X

}
. (5.31)

Using (5.31) in (5.26), we have

d

dt
N(t)

∣∣∣∣
t=0

= −EH0 {ψc(X)ψc(Y )}+ ψc(u)ψc(v)

− IF (sY , v,H0) EH0

{
ψc(X)ψ′c(Y )Y

}

− IF (sX , u,H0) EH0

{
ψc(Y )ψ′c(X)X

}
. (5.32)

Using (5.23) in (5.22), we have

D(t) = D
1
2
1 (t) D

1
2
2 (t), (5.33)

where

D1(t) = (1− t) EH0

{
ψ2

c

(
X −mX(t)

sX(t)

)}
+ t ψ2

c

(
u−mX(t)

sX(t)

)

−
[
(1− t) EH0

{
ψc

(
X −mX(t)

sX(t)

)}
+ t ψc

(
u−mX(t)

sX(t)

)]2

, (5.34)

and

D2(t) = (1− t) EH0

{
ψ2

c

(
Y −mY (t)

sY (t)

)}
+ t ψ2

c

(
v −mY (t)

sY (t)

)

−
[
(1− t) EH0

{
ψc

(
Y −mY (t)

sY (t)

)}
+ t ψc

(
v −mY (t)

sY (t)

)]2

. (5.35)

Differentiating both sides of (5.33) w.r.t. t, and setting t = 0, we have

d

dt
D(t)

∣∣∣∣
t=0

=
1

2

{√
D2(t)

D1(t)

d

dt
D1(t) +

√
D1(t)

D2(t)

d

dt
D2(t)

}∣∣∣∣
t=0

. (5.36)

114



From (5.34), we have

d

dt
D1(t)

∣∣∣∣
t=0

= −EH0

{
ψ2

c(X)
}

+
d

dt
EH0

{
ψ2

c

(
X −mX(t)

sX(t)

)}∣∣∣∣
t=0

+ ψ2
c(u). (5.37)

Using similar arguments as in the case of the numerator (see Chapter Appendix, Sec-

tion 5.8.2),

EH0

{
d

dt
ψ2

c

(
X −mX(t)

sX(t)

)}∣∣∣∣
t=0

= EH0

{
d

dt
ψ2

c1

(
X −mX(t)

sX(t)

)
I
(
XY > 0

)∣∣∣∣
t=0

}

+ EH0

{
d

dt
ψ2

c2

(
X −mX(t)

sX(t)

)
I
(
XY < 0

)∣∣∣∣
t=0

}
(5.38)

= EH0

{
2ψc1

(
X −mX(t)

sX(t)

)
ψ′c1

(
X −mX(t)

sX(t)

)

−sX(t) d
dt

[mX(t)]− d
dt

[sX(t)]
(
X −mX(t)

)

s2
X(t)

I
(
XY > 0

)

+ 2ψc2

(
X −mX(t)

sX(t)

)
ψ′c2

(
X −mX(t)

sX(t)

)

−sX(t) d
dt

[mX(t)]− d
dt

[sX(t)]
(
X −mX(t)

)

s2
X(t)

I
(
XY < 0

)∣∣∣∣
t=0

}

= −EH0

{
2ψc1(X)ψ′c1(X)

[
IF (mX , u,H0) + IF (sX , u,H0)X

]
I
(
XY > 0

)

+ 2ψc2(X)ψ′c2(X)
[
IF (mX , u,H0) + IF (sX , u,H0)X

]
I
(
XY < 0

)}

= −IF (mX , u,H0)EH0

{
2ψc(X)ψ′c(X)

}− IF (sX , u,H0)EH0

{
2ψc(X)ψ′c(X)X

}

= −IF (sX , u,H0)EH0

{
2ψc(X)ψ′c(X)X

}
. (5.39)

Using (5.39) in (5.37), we have

d

dt
D1(t)

∣∣∣∣
t=0

= −EH0

{
ψ2

c(X)
}− IF (sX , u,H0)EH0

{
2ψc(X)ψ′c(X)X

}
+ ψ2

c(u). (5.40)
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Similarly,

d

dt
D2(t)

∣∣∣∣
t=0

= −EH0

{
ψ2

c(Y )
}− IF (sY , v,H0)EH0

{
2ψc(Y )ψ′c(Y )Y

}
+ ψ2

c(v). (5.41)

Using (5.40) and (5.41) in (5.36), we have

d

dt
D(t)

∣∣∣∣
t=0

= −
√

EH0

{
ψ2

c(Y )
}

2EH0

{
ψ2

c(X)
}

(
EH0

{
ψ2

c(X)
}− ψ2

c(u)

+ IF (sX , u,H0) EH0

{
2ψc(X)ψ′c(X)X

} )

−
√

EH0

{
ψ2

c(X)
}

2EH0

{
ψ2

c(Y )
}

(
EH0

{
ψ2

c(Y )
}− ψ2

c(v)

+ IF (sY , v,H0) EH0

{
2ψc(Y )ψ′c(Y )Y

} )
. (5.42)

We also have

N(t)
∣∣
t=0

= EH0

{
ψc(X)ψc(Y )

}
= N0 (say), (5.43)

and

D(t)
∣∣
t=0

=
√
EH0

{
ψ2

c(X)
}
EH0

{
ψ2

c(Y )
}

= D0 (say). (5.44)

Finally, differentiating both sides of

rw(t) =
N(t)

D(t)
(5.45)

w.r.t. t, and setting t = 0, we have

IF (rw, z, H0) =
D0Ṅ0 −N0Ḋ0

D2
0

, (5.46)

where Ṅ0 = d
dt
N(t)

∣∣
t=0

and Ḋ0 = d
dt
D(t)

∣∣
t=0

are obtained from (5.32) and (5.42), respec-

tively, and N0 and D0 are obtained from (5.43) and (5.44), respectively. ¥
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Figure 5.1 shows a 3D-plot of IF (rw, z, H0) against z = (u, v), with u, v ∈ [−10, 10],

H0 = N(0,Σ), and

Σ =




1 ρ

ρ 1


 . (5.47)

We used ρ = 0.5 for the bivariate normal distribution, and (c1, c2) = (3, 2) for rw.
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Figure 5.1: Influence curve of adjusted-Winsorized estimate with (c1, c2) = (3, 2). The

curve is symmetric about (0, 0).

Based on Equation 5.46 and Figure 5.1, we can make the following comments on

the influence function of the adjusted-Winsorized estimate:

• Because of Regularity Condition A4, the expectations in (5.46) are bounded. Also,

D0 > 0. Therefore, IF (rw, z, H0) is bounded when IF (sX , u,H0) and IF (sY , v,H0)
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are bounded. Figure 5.1 also exhibits the boundedness of the influence function.

• Since the ψ-functions are symmetric, the influence function IF (rw,z, H0) is sym-

metric about (u, v) = (mX(H0),mY (H0)) = (0, 0) if IF (sX , u,H0) is symmetric

about u = 0, and IF (sY , v,H0) is symmetric about v = 0.

• By setting c1 = c2 = c in IF (rw,z, H0), the influence function of the univariate-

Winsorized correlation functional can be obtained.

5.3.1 Standard error of adjusted-Winsorized estimate

Let Zi = (Xi, Yi), i = 1, 2, · · · , n, be i.i.d. according to a continuous distribution H,

and rw(H) be the adjusted-Winsorized correlation functional. The influence function of

rw(H) at the central model H0 and z ∈ R2, denoted by IF (rw, z, H0), is given by (5.46).

Using this, the asymptotic variance of the adjusted-Winsorized correlation estimator

r̂w for the central model H0 can be obtained as (see, for example, Hampel, Ronchetti,

Rousseeuw and Stahel 1986, page 85)

AV (rw, H0) =

∫
IF 2(rw, z, H0) dH0(z). (5.48)

For a sufficiently large n, the standard error of r̂w, denoted by SE(r̂w), is given by

SE(r̂w) =
√
AV (rw, H0)/n. (5.49)

Since it is difficult to get a closed form expression for (5.48), we can use numerical

integration to obtain approximations to the asymptotic variance and the standard error

of r̂w.

To evaluate the accuracy of the (approximate) standard error of the adjusted-

Winsorized correlation estimates, we carried out the following simulation study. We
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generated 2000 random samples of size n from a bivariate normal distribution with mean

vector 0 and covariance matrix Σ = Σ(ρ) given by (5.47). We considered 3 different

sample sizes: n = 25, 100 and 400, and 3 different correlation coefficient values: ρ = 0.1,

0.5 and 0.9. The values of (c1, c2) chosen for these correlation coefficients are (3, 3), (3, 2)

and (3, 1), respectively. The choice of c1 and c2 is discussed later on in Section 5.4.

Table 5.1: Evaluation of the standard errors of r̂w. The empirical SD and formula-based

SE are close.

n = 25 n = 100 n = 400

ρ SD SE SD SE SD SE

0.10 0.203 0.199 0.100 0.099 0.049 0.050

0.50 0.136 0.146 0.069 0.073 0.034 0.037

0.90 0.035 0.039 0.018 0.019 0.009 0.010

Table 5.1 presents the obtained results. For each n, the first column gives the

empirical standard deviations of the adjusted-Winsorized correlation estimates (based

on 2000 samples), while the second column shows the standard errors calculated using

(5.49). In general, the differences between the numbers in the two columns are reasonably

small, particularly for large sample sizes.

An estimate of the asymptotic variance in (5.48) is given by

ÂV (rw, Hn) =
1

n

n∑
i=1

IF 2
n(rw,zi, Hn), (5.50)

and the estimated standard error of r̂w, denoted by ŜE(r̂w) is given by

ŜE(r̂w) =

√
ÂV (rw, Hn)/n. (5.51)
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5.4 Choice of c1 and c2 for r̂w

It is important to note that the robustness, efficiency and intrinsic bias (to be discussed in

the next section) of the adjusted-Winsorized correlation estimate depends on the values

chosen for c1 and c2. Figure 3.3 in Chapter 3 shows how the bivariate outliers are handled

by r̂w. If we choose large values for c1 and c2, r̂w will be less resistant to the outliers. On

the other hand, this will lead to a decrease in the standard error (increase in efficiency)

and a decrease in the intrinsic bias, both of which are desirable as well. Thus, the choice

of c1 and c2 may depend on our goal in a particular situation.

For application purposes, we can first select an appropriate value for c1 (the larger

tuning constant for the two “major” quadrants, i.e., the quadrants that contain the

majority of the standardized data). Then, for the two “minor” quadrants, we can use

c2 = hc1, where h is the ratio of the number of observations in the minor quadrants to

the number of observations in the major quadrants. Note that, as |ρ| increases from 0 to

1, the asymptotic value of h decreases from 1 to 0.

5.5 Intrinsic bias in adjusted-Winsorized estimate

Let Z = (X,Y ) have a continuous distribution H, and rw(H) be the adjusted-Winsorized

correlation functional. Let the central model H0 be given by H0 = N(0,Σ), where

Σ = Σ(ρ) is given by (5.47), and ρ = ρ(H0) is the true correlation coefficient of X and Y .

The intrinsic bias of rw occurs at the central model H0 because of the data trans-

formation. Since the adjusted-Winsorized data have a slightly different correlation coef-

120



ficient than that of the original data, rw(H0) 6= ρ(H0). Therefore, the intrinsic bias of

rw, denoted by IB(rw), is given by

IB(rw) = rw(H0)− ρ(H0). (5.52)

To compare rw(H0) and ρ(H0) empirically, we generated random samples of size

n = 100000 from a bivariate normal distribution with mean 0 and covariance matrix

Σ = Σ(ρ). We considered several values of ρ from −1 to 1. To calculate rw = rw(H0) we

used Huber score function with different values of c1 with c2 = hc1, where h is defined in

the last section.

Figure 5.2 displays the plots of rw against ρ for c1 = 0.01, 1, 2 and 3. Based on

these plots we can make the following comments:

• The intrinsic bias of rw decreases as c1 increases.

• rw is a non-decreasing function of ρ.

• Consider 0 ≤ ρ ≤ 1. The magnitude of intrinsic bias increases from zero to reach

its maximum at ρ = 0.5, and then decreases to zero. Similar behavior is observed

for −1 ≤ ρ ≤ 0.

• For −1 ≤ ρ ≤ 0 the intrinsic bias is negative, while for 0 ≤ ρ ≤ 1 the intrinsic

bias is positive. This is the exact opposite of the results obtained for univariate-

Winsorized estimate (see Alqallaf 2003, Figure 4.5, page 97), for which the bias is

positive when −1 ≤ ρ ≤ 0, and negative when 0 ≤ ρ ≤ 1.

To compare the behavior of rw (with c1 ' 0, c2 ' 0) with the univariate-Winsorized

correlation estimate r = r(H0) (with c ' 0), we plotted r with c = 0.01 against ρ in
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Figure 5.2: Intrinsic bias in adjusted-Winsorized estimates with c2 = hc1. The bias in

rw decreases as c1 increases.
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Figure 5.3: Intrinsic bias in univariate-Winsorized estimate (c=0.01).

Figure 5.3 (which is a reproduction of the top left plot of Figure 4.5, Alqallaf 2003).

This plot is the exact opposite of the top left plot of Figure 5.2 in terms of the sign

of the intrinsic bias. The reason maybe as follows. Though c1 = 0 ⇒ c2 = 0 for the

adjusted-Winsorized estimates, but c2 = hc1 approaches zero faster than c1, making the

limit of rw different from the limit of r as c tends to zero (the limit in the latter case

being the quadrant correlation estimate).

5.5.1 Achieving (approximate) Fisher-consistency for rw

Let H0 = N(0,Σ(ρ)) and let rw(ρ, c1, c2) be the asymptotic value of rw (H0) when we use

tuning constants c1 and c2. A plot of rw(ρ, c1, c2) against ρ is exhibited by Figure 5.2 for

different values of c1 and c2 = hc1. Recall that h is the ratio of the number of observations
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in the minor quadrants to the number of observations in the major quadrants. To fix

ideas and without loss of generality, let us assume that ρ ≥ 0.We notice that when c2 = c1

(univariate-Winsorized estimate, Alqallaf 2003) rw(ρ, c1, c1) ≤ ρ, while rw(ρ, c1, hc1) ≥ ρ

when c2 = hc1. Therefore, to achieve Fisher-consistency for a fixed value of ρ, we

could use an appropriate value of c2 between c2 = hc1 and c2 = c1. That is, we could

use c2 = ac1, where a ∈ (h, 1) is such that rw(ρ, c1, ac1) = ρ. In practice, we could

approximate a by numerical means. For a fixed value of c1 we could obtain a table

relating ρ and a = g1 (ρ). Since h is a decreasing function of ρ we have that a = g (h).

Tables relating a and h could be constructed by numerical means for any desired value

of c1. We will not elaborate this approach further, since a simple approach that works

remarkably well is presented below.

To avoid the construction and use of numerous tables, we can use a simple alternative

that does not require any table. Since c2 = hc1 and c2 = c1 give biases of similar

(though not same) magnitudes with opposite signs, we can use c2 = c1(h+ 1)/2, that is,

a = (h+ 1)/2. Figure 5.4 displays the plots of rw against ρ for c1 = 1 with c2 = hc1 and

c2 = c1(h + 1)/2. Though the first plot (c2 = hc1) is the same as the top right plot of

Figure 5.2, it is presented again here to make its scale more comparable to that of the

second plot. The degree of Fisher-consistency achieved by using c2 = c1(h+1)/2 is quite

satisfactory.

Note that c2 = c1(h + 1)/2 ≤ c1. Therefore, with this choice of c2 the adjusted-

Winsorized estimate is still more resistant to bivariate outliers than the univariate-

Winsorized estimate. At the same time, the extra tuning constant c2 allows us to make

our estimate approximately Fisher-consistent.
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Figure 5.4: Approximate Fisher-consistency for rw. By using c2 = c1(h+1)/2 we get less

intrinsic bias than c2 = hc1.

We mentioned in Chapter 3 that though we used c2 = hc1 in this study, a more

reasonable choice would have been c2 =
√
h c1 (i.e., c22 = hc21), because the areas of

the two squares should be proportional to the number of observations they contain.

Interestingly, (h+ 1)/2 (the shrinkage factor that gives approximate Fisher-consistency)

is the first-order Taylor expansion of
√
h.

5.6 Asymptotic normality of adjusted-Winsorized es-

timate

Since the indicator functions involved in the adjusted-Winsorized correlation estimate

are not differentiable, proving the asymptotic normality of this estimate is extremely
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difficult. One approach we can consider is to replace the sample indicator functions by

the true ones, which we can do only if the amount of error due to the replacement is

o (1/
√
n). See Chapter Appendix (Section 5.8.3) for more details of this idea, where we

use this approach to establish the asymptotic normality of the numerator of (5.2), i.e.,

the asymptotic normality of the adjusted-Winsorized “covariance” estimates.

Unfortunately, for the denominator of (5.2), the amount of error due to replacing

the sample indicator functions by the true ones is O (1/
√
n) (see Chapter Appendix,

Section 5.8.4), and cannot be ignored. Therefore, the above approach cannot be used to

establish the asymptotic normality of the adjusted-Winsorized “correlation” estimates.

As a remedy of this, we can use differentiable versions of the indicator functions,

denoted by γ1

(
Xi−µ̂X

σ̂X

Yi−µ̂Y

σ̂Y

)
and γ2(.) = 1 − γ1(.), respectively. For example, γ1 can

be the distribution function of a continous random variable with support (−ε, ε), for

any small ε > 0. Using the functions γ1 and γ2, we now define the smoothed adjusted-

Winsorization of the data, and the smoothed adjusted-Winsorized correlation estimates

as follows.

Definition 5.3. (Smoothed adjusted-Winsorization)

The smoothed adjusted-Winsorization of (u, v) ∈ R2, denoted by ΨS
c (u, v), is defined as

ΨS
c (u, v) =

(
ψS

c (u), ψS
c (v)

)
, (5.53)

where

ψS
c (u) = ψc1(u)γ1(uv) + ψc2(u)γ2(uv),

ψS
c (v) = ψc1(v)γ1(uv) + ψc2(v)γ2(uv),

ψ is a non-decreasing symmetric function, and c1 and c2 are chosen constants.
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Definition 5.4. (Smoothed adjusted-Winsorized estimate of correlation) Let

(Xi, Yi), i = 1, 2, · · · , n, be a random sample from a bivariate distribution with loca-

tion parameters µX and µY , and scale parameters σX and σY , respectively. Let θ =

(µX , µY , σX , σY ), and θ̂ = (µ̂X , µ̂Y , σ̂X , σ̂Y ) be an estimate of θ. Denote Ûi = (Xi −
µ̂X)/σ̂X , and V̂i = (Yi − µ̂Y )/σ̂Y . Then, the smoothed adjusted-Winsorized correlation

estimate, r̂S, is defined as

r̂S =

1
n

n∑
i=1

ψS
c (Ûi)ψ

S
c (V̂i)−

(
1
n

n∑
i=1

ψS
c (Ûi)

)(
1
n

n∑
i=1

ψS
c (V̂i)

)

√
1
n

n∑
i=1

{
ψS

c (Ûi)
}2

−
(

1
n

n∑
i=1

ψS
c (Ûi)

)2
√

1
n

n∑
i=1

{
ψS

c (V̂i)
}2

−
(

1
n

n∑
i=1

ψS
c (V̂i)

)2
.

(5.54)

The following theorem states the asymptotic normality of the smoothed adjusted-

Winsorized correlation estimates, provided that the ψ- and χ-functions satisfy the above

conditions, and the location estimates are consistent.

Theorem 5.3. (Asymptotic normality of the smoothed adjusted-Winsorized

estimate) Let (Xi, Yi), i = 1, 2, · · · , n, be a random sample from an elliptically sym-

metric bivariate distribution with location parameters µX and µY , and scale parameters

σX and σY , respectively. Let µ̂X and µ̂Y be consistent estimates of µX and µY , and σ̂X

and σ̂Y are S-estimates of σX and σY with score functions satisfying conditions B1 – B4.

Then,

√
n (r̂S − rS)

d−−−→
n→∞

N (0, AV ),

where r̂w is defined in (5.54) with ψ-functions satisfying conditions A1 – A4,

rS =
E

[
ψS

c

(
X−µX

σX

)
ψS

c

(
Y−µY

σY

)]
√
E

[{
ψS

c

(
X−µX

σX

)}2
]√

E

[{
ψS

c

(
Y−µY

σY

)}2
] ,
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and the variance AV of the limiting distribution is given by

AV = ∇′gΣ∇g,

where Σ
(3×3)

= {σij}, with σij = Cov (Qi, Qj); i = 1, 2, 3; j = 1, 2, 3;

Q1 = ψS
c

(
X − µX

σX

)
ψS

c

(
Y − µY

σY

)
− K9

DX

χ

(
X − µX

σX

)
− K10

DY

χ

(
Y − µY

σY

)
,

Q2 =

{
ψS

c

(
X − µX

σX

)}2

− K17

DX

χ

(
X − µX

σX

)
− K18

DY

χ

(
Y − µY

σY

)
,

Q3 =

{
ψS

c

(
Y − µY

σY

)}2

− K19

DY

χ

(
Y − µY

σY

)
− K20

DX

χ

(
X − µX

σX

)
,

∇g =

(
1√
V W

, − U

2V
√
V W

, − U

2W
√
V W

)
,

with

U = E

[
ψS

c

(
X − µX

σX

)
ψc

(
Y − µY

σY

)]
,

V = E

[{
ψS

c

(
X − µX

σX

)}2
]
,

W = E

[{
ψ2

c

(
Y − µY

σY

)}2
]
,

and the constants used in the above expressions are specified below:

DX = E

[
χ′

(
X − µX

σX

) (
X − µX

σX

)]
, (5.55)

DY = E

[
χ′

(
Y − µY

σY

)(
Y − µY

σY

)]
, (5.56)

K1 =
1

σX

E

[
ψ′c1

(
X − µX

σX

)(
X − µX

σX

)
ψc1

(
Y − µY

σY

)
γ2

1

(
X − µX

σX

Y − µY

σY

)]

+
2

σX

E

[
ψc1

(
X − µX

σX

)
ψc1

(
Y − µY

σY

)
γ1

(
X − µX

σX

Y − µY

σY

)

γ′1

(
X − µX

σX

Y − µY

σY

)(
X − µX

σX

Y − µY

σY

)]
, (5.57)
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K2 is obtained by interchanging X and Y in (5.57), K3 is obtained by replacing c1 by c2,

and γ1 by γ2 in (5.57), K4 is obtained by interchanging X and Y , and replacing c1 by c2,

and γ1 by γ2 in (5.57),

K5 =
1

σX

E

[
ψ′c1

(
X − µX

σX

)(
X − µX

σX

)
ψc2

(
Y − µY

σY

)

γ1

(
X − µX

σX

Y − µY

σY

)
γ2

(
X − µX

σX

Y − µY

σY

)]

+
1

σX

E

[
ψc1

(
X − µX

σX

)
ψc2

(
Y − µY

σY

)
γ′1

(
X − µX

σX

Y − µY

σY

)

(
X − µX

σX

Y − µY

σY

)
γ2

(
X − µX

σX

Y − µY

σY

)]

+
1

σX

E

[
ψc1

(
X − µX

σX

)
ψc2

(
Y − µY

σY

)
γ1

(
X − µX

σX

Y − µY

σY

)

γ′2

(
X − µX

σX

Y − µY

σY

)(
X − µX

σX

Y − µY

σY

)]
, (5.58)

K6 is obtained by interchanging X and Y , and c1 and c2 in (5.58), K7 is obtained by

interchanging c1 and c2 in (5.58), K8 is obtained by interchanging X and Y in (5.58),

K9 = K1 +K3 +K5 +K7, (5.59)

K10 = K2 +K4 +K6 +K8, (5.60)

K11 =
2

σX

E

[
ψc1

(
X − µX

σX

)
ψ′c1

(
X − µX

σX

)(
X − µX

σX

)
γ2

1

(
X − µX

σX

Y − µY

σY

)]

+
2

σX

E

[
ψ2

c1

(
X − µX

σX

)
γ1

(
X − µX

σX

Y − µY

σY

)

γ′1

(
X − µX

σX

Y − µY

σY

)(
X − µX

σX

Y − µY

σY

)]
, (5.61)

K12 =
2

σY

E

[
ψ2

c1

(
X − µX

σX

)
γ1

(
X − µX

σX

Y − µY

σY

)

γ′1

(
X − µX

σX

Y − µY

σY

)(
X − µX

σX

Y − µY

σY

)]
, (5.62)
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K13 and K14 are obtained by replacing c1 by c2, and γ1 by γ2 in (5.61) and (5.62) (re-

spectively),

K15 =
2

σX

E

[
ψ′c1

(
X − µX

σX

)(
X − µX

σX

)
ψc2

(
X − µX

σX

)

γ1

(
X − µX

σX

Y − µY

σY

)
γ2

(
X − µX

σX

Y − µY

σY

)]

+
2

σX

E

[
ψc1

(
X − µX

σX

)(
X − µX

σX

)
ψ′c2

(
X − µX

σX

)

γ1

(
X − µX

σX

Y − µY

σY

)
γ2

(
X − µX

σX

Y − µY

σY

)]

+
2

σX

E

[
ψc1

(
X − µX

σX

)
ψc2

(
X − µX

σX

)
γ′1

(
X − µX

σX

Y − µY

σY

)

(
X − µX

σX

Y − µY

σY

)
γ2

(
X − µX

σX

Y − µY

σY

)]

+
2

σX

E

[
ψc1

(
X − µX

σX

)
ψc2

(
X − µX

σX

)
γ1

(
X − µX

σX

Y − µY

σY

)

γ′2

(
X − µX

σX

Y − µY

σY

)(
X − µX

σX

Y − µY

σY

)]
, (5.63)

K16 =
2

σY

E

[
ψc1

(
X − µX

σX

)
ψc2

(
X − µX

σX

)
γ′1

(
X − µX

σX

Y − µY

σY

)

(
X − µX

σX

Y − µY

σY

)
γ2

(
X − µX

σX

Y − µY

σY

)]

+
2

σY

E

[
ψc1

(
X − µX

σX

)
ψc2

(
X − µX

σX

)
γ1

(
X − µX

σX

Y − µY

σY

)

γ′2

(
X − µX

σX

Y − µY

σY

)(
X − µX

σX

Y − µY

σY

)]
, (5.64)

K17 = K11 +K13 +K15, (5.65)

K18 = K12 +K14 +K16, (5.66)

and, finally, K19 and K20 are obtained by interchanging X and Y in (5.65) and (5.66),

respectively.
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Sketch of the Proof.

The numerator of (5.54) can be written as

N̂S =
1

n

n∑
i=1

ψS
c

(
Xi − µ̂X

σ̂X

)
ψS

c

(
Yi − µ̂Y

σ̂Y

)
− 1

n

n∑
i=1

ψS
c

(
Xi − µ̂X

σ̂X

)
1

n

n∑
i=1

ψS
c

(
Yi − µ̂Y

σ̂Y

)
.

(5.67)

We can express the first term of (5.67) as

1

n

n∑
i=1

ψS
c

(
Xi − µ̂X

σ̂X

)
ψS

c

(
Yi − µ̂Y

σ̂Y

)

=
1

n

n∑
i=1

{
ψc1

(
Xi − µ̂X

σ̂X

)
γ1

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)
+ ψc2

(
Xi − µ̂X

σ̂X

)
γ2

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)}

×
{
ψc1

(
Yi − µ̂Y

σ̂Y

)
γ1

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)
+ ψc2

(
Yi − µ̂Y

σ̂Y

)
γ2

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)}

=
1

n

n∑
i=1

ψc1

(
Xi − µ̂X

σ̂X

)
ψc1

(
Yi − µ̂Y

σ̂Y

)
γ2

1

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)

+
1

n

n∑
i=1

ψc2

(
Xi − µ̂X

σ̂X

)
ψc2

(
Yi − µ̂Y

σ̂Y

)
γ2

2

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)

+
1

n

n∑
i=1

ψc1

(
Xi − µ̂X

σ̂X

)
ψc2

(
Yi − µ̂Y

σ̂Y

)
γ1

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)
γ2

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)

+
1

n

n∑
i=1

ψc2

(
Xi − µ̂X

σ̂X

)
ψc1

(
Yi − µ̂Y

σ̂Y

)
γ1

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)
γ2

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)
.

(5.68)

Let us consider the first term of (5.68). Using Taylor expansion about (µX , σX , µY , σY ),

we can write

1

n

n∑
i=1

ψc1

(
Xi − µ̂X

σ̂X

)
ψc1

(
Yi − µ̂Y

σ̂Y

)
γ2

1

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)
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.
=

1

n

n∑
i=1

ψc1

(
Xi − µX

σX

)
ψc1

(
Yi − µY

σY

)
γ2

1

(
Xi − µX

σX

Yi − µY

σY

)

− 1

nσ̃X

n∑
i=1

ψ′c1

(
Xi − µ̃X

σ̃X

)
Xi − µ̃X

σ̃X

ψc1

(
Yi − µ̃Y

σ̃Y

)
γ2

1

(
Xi − µ̃X

σ̃X

Yi − µ̃Y

σ̃Y

)
(σ̂X − σX)

− 2

nσ̃X

n∑
i=1

ψc1

(
Xi − µ̃X

σ̃X

)
ψc1

(
Yi − µ̃Y

σ̃Y

)
γ1

(
Xi − µ̃X

σ̃X

Yi − µ̃Y

σ̃Y

)

× γ′1
(
Xi − µ̃X

σ̃X

Yi − µ̃Y

σ̃Y

)
Xi − µ̃X

σ̃X

Yi − µ̃Y

σ̃Y

(σ̂X − σX)

− 1

nσ̃Y

n∑
i=1

ψc1

(
Xi − µ̃X

σ̃X

)
ψ′c1

(
Yi − µ̃Y

σ̃Y

)
Yi − µ̃Y

σ̃Y

γ2
1

(
Xi − µ̃X

σ̃X

Yi − µ̃Y

σ̃Y

)
(σ̂Y − σY )

− 2

nσ̃Y

n∑
i=1

ψc1

(
Xi − µ̃X

σ̃X

)
ψc1

(
Yi − µ̃Y

σ̃Y

)
γ1

(
Xi − µ̃X

σ̃X

Yi − µ̃Y

σ̃Y

)

× γ′1
(
Xi − µ̃X

σ̃X

Yi − µ̃Y

σ̃Y

)
Xi − µ̃X

σ̃X

Yi − µ̃Y

σ̃Y

(σ̂Y − σY ),

since the coefficients of (µ̂X − µX) and (µ̂Y − µY ) converge to zero in probability. Thus,

1

n

n∑
i=1

ψc1

(
Xi − µ̂X

σ̂X

)
ψc1

(
Yi − µ̂Y

σ̂Y

)
γ2

1

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)

.
=

1

n

n∑
i=1

ψc1

(
Xi − µX

σX

)
ψc1

(
Yi − µY

σY

)
γ2

1

(
Xi − µX

σX

Yi − µY

σY

)

−K1(σ̂X − σX)−K2(σ̂Y − σY ), (5.69)

where K1 and K2 are as defined in the statement of the theorem. Similarly, the next

three terms of (5.68) can be expressed as

1

n

n∑
i=1

ψc2

(
Xi − µ̂X

σ̂X

)
ψc2

(
Yi − µ̂Y

σ̂Y

)
γ2

2

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)

.
=

1

n

n∑
i=1

ψc2

(
Xi − µX

σX

)
ψc2

(
Yi − µY

σY

)
γ2

2

(
Xi − µX

σX

Yi − µY

σY

)

−K3(σ̂X − σX)−K4(σ̂Y − σY ), (5.70)
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1

n

n∑
i=1

ψc1

(
Xi − µ̂X

σ̂X

)
ψc2

(
Yi − µ̂Y

σ̂Y

)
γ1

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)
γ2

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)

.
=

1

n

n∑
i=1

ψc1

(
Xi − µX

σX

)
ψc2

(
Yi − µY

σY

)
γ1

(
Xi − µX

σX

Yi − µY

σY

)
γ2

(
Xi − µX

σX

Yi − µY

σY

)

−K5(σ̂X − σX)−K6(σ̂Y − σY ), (5.71)

and

1

n

n∑
i=1

ψc2

(
Xi − µ̂X

σ̂X

)
ψc1

(
Yi − µ̂Y

σ̂Y

)
γ1

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)
γ2

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)

.
=

1

n

n∑
i=1

ψc2

(
Xi − µX

σX

)
ψc1

(
Yi − µY

σY

)
γ1

(
Xi − µX

σX

Yi − µY

σY

)
γ2

(
Xi − µX

σX

Yi − µY

σY

)

−K7(σ̂X − σX)−K8(σ̂Y − σY ), (5.72)

respectively, where K3, K4, K5, K6, K7 and K8 are as defined in the statement of the

theorem. Using (5.69), (5.70), (5.71) and (5.72) in (5.68), we have

1

n

n∑
i=1

ψS
c

(
Xi − µ̂X

σ̂X

)
ψS

c

(
Yi − µ̂Y

σ̂Y

)

.
=

1

n

n∑
i=1

ψc1

(
Xi − µX

σX

)
ψc1

(
Yi − µY

σY

)
γ2

1

(
Xi − µX

σX

Yi − µY

σY

)

+
1

n

n∑
i=1

ψc2

(
Xi − µX

σX

)
ψc2

(
Yi − µY

σY

)
γ2

2

(
Xi − µX

σX

Yi − µY

σY

)

+
1

n

n∑
i=1

ψc1

(
Xi − µX

σX

)
ψc2

(
Yi − µY

σY

)
γ1

(
Xi − µX

σX

Yi − µY

σY

)
γ2

(
Xi − µX

σX

Yi − µY

σY

)

+
1

n

n∑
i=1

ψc2

(
Xi − µX

σX

)
ψc1

(
Yi − µY

σY

)
γ1

(
Xi − µX

σX

Yi − µY

σY

)
γ2

(
Xi − µX

σX

Yi − µY

σY

)

−K9(σ̂X − σX)−K10(σ̂Y − σY ), (5.73)

where K9 = K1 +K3 +K5 +K7 and K10 = K2 +K4 +K6 +K8.
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Now, it is straightforward to show that the second term of (5.67) is o(1/
√
n). There-

fore, using (5.73) in (5.67), we have

N̂S
.
=

1

n

n∑
i=1

ψS
c

(
Xi − µX

σX

)
ψS

c

(
Yi − µY

σY

)
−K9(σ̂X − σX)−K10(σ̂Y − σY ). (5.74)

Note that the first 4 terms of the right-hand-side of (5.73) are combined to get a single

term in (5.74).

Since σ̂X and σ̂Y are S-scales, we have (see Alqallaf 2003, page 156)

σ̂X − σX
.
=

n∑
i=1

χ
(

Xi−µX

σX

)
− nb

n∑
i=1

χ′
(

Xi−µX

σX

)(
Xi−µX

σX

) , (5.75)

and

σ̂Y − σY
.
=

n∑
i=1

χ
(

Yi−µY

σY

)
− nb

n∑
i=1

χ′
(

Yi−µY

σY

)(
Yi−µY

σY

) . (5.76)

Using (5.75) and (5.76) in (5.74), we have

N̂S
.
=

1

n

n∑
i=1

ψS
c

(
Xi − µX

σX

)
ψS

c

(
Yi − µY

σY

)

− K9

DX

1

n

n∑
i=1

(
χ

(
Xi − µX

σX

)
− b

)
− K10

DY

1

n

n∑
i=1

(
χ

(
Yi − µY

σY

)
− b

)
, (5.77)

where DX and DY are defined in the statement of the theorem (equations 5.55 and 5.56).

The first term of the denominator of (5.54) can be written as

D̂S
1 =

1

n

n∑
i=1

{
ψS

c

(
Xi − µ̂X

σ̂X

)}2

−
{

1

n

n∑
i=1

ψS
c

(
Xi − µ̂X

σ̂X

)}2

. (5.78)

We can express the first term of (5.78) as

1

n

n∑
i=1

{
ψS

c

(
Xi − µ̂X

σ̂X

)}2
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=
1

n

n∑
i=1

{
ψc1

(
Xi − µ̂X

σ̂X

)
γ1

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)

+ ψc2

(
Xi − µ̂X

σ̂X

)
γ2

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)}2

=
1

n

n∑
i=1

ψ2
c1

(
Xi − µ̂X

σ̂X

)
γ2

1

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)

+
1

n

n∑
i=1

ψ2
c2

(
Xi − µ̂X

σ̂X

)
γ2

2

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)

+
2

n

∑
ψc1

(
Xi − µ̂X

σ̂X

)
ψc2

(
Xi − µ̂X

σ̂X

)
γ1

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)

× γ2

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)
. (5.79)

As in the case of the numerator, by using Taylor expansion about (µX , σX , µY , σY ), the

three terms on the right-hand-side of (5.79) can be expressed as

1

n

n∑
i=1

ψ2
c1

(
Xi − µ̂X

σ̂X

)
γ2

1

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)

.
=

1

n

n∑
i=1

ψ2
c1

(
Xi − µX

σX

)
γ2

1

(
Xi − µX

σ̂X

Yi − µY

σY

)

−K11(σ̂X − σX)−K12(σ̂Y − σY ), (5.80)

1

n

n∑
i=1

ψ2
c2

(
Xi − µ̂X

σ̂X

)
γ2

2

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)

.
=

1

n

n∑
i=1

ψ2
c2

(
Xi − µX

σX

)
γ2

2

(
Xi − µX

σ̂X

Yi − µY

σY

)

−K13(σ̂X − σX)−K14(σ̂Y − σY ), (5.81)

2

n

∑
ψc1

(
Xi − µ̂X

σ̂X

)
ψc2

(
Xi − µ̂X

σ̂X

)
γ1

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)
γ2

(
Xi − µ̂X

σ̂X

Yi − µ̂Y

σ̂Y

)

.
=

2

n

∑
ψc1

(
Xi − µX

σX

)
ψc2

(
Xi − µX

σX

)
γ1

(
Xi − µX

σX

Yi − µY

σY

)
γ2

(
Xi − µX

σX

Yi − µY

σY

)

−K15(σ̂X − σX)−K16(σ̂Y − σY ), (5.82)
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where K11, K12, K13, K14, K15 and K16 are as defined in the statement of the theorem.

Using (5.80), (5.81) and (5.82) in (5.79), we have

1

n

n∑
i=1

{
ψS

c

(
Xi − µ̂X

σ̂X

)}2
.
=

1

n

n∑
i=1

{
ψS

c

(
Xi − µX

σX

)}2

−K17(σ̂X − σX)−K18(σ̂Y − σY ), (5.83)

where K17 = K11 +K13 +K15 and K18 = K12 +K14 +K16. Now, it can be shown that

the second term of (5.78) is o(1/
√
n). Therefore, using (5.83) in (5.78), and using (5.75)

and (5.76), we have

D̂S
1
.
=

1

n

n∑
i=1

{
ψS

c

(
Xi − µX

σX

)}2

− K17

DX

1

n

n∑
i=1

(
χ

(
Xi − µX

σX

)
− b

)

− K18

DY

1

n

n∑
i=1

(
χ

(
Yi − µY

σY

)
− b

)
. (5.84)

Similarly, for the second term of the denominator of (5.54) we have

D̂S
2
.
=

1

n

n∑
i=1

{
ψS

c

(
Yi − µY

σY

)}2

− K19

DY

1

n

n∑
i=1

(
χ

(
Yi − µY

σY

)
− b

)

− K20

DX

1

n

n∑
i=1

(
χ

(
Xi − µX

σX

)
− b

)
. (5.85)

Using (5.77), (5.84) and (5.85), and ignoring the terms which are o(1/
√
n), we can

state that

√
n







1
n

n∑
i=1

ψS
c

(
Xi−µ̂X

σ̂X

)
ψS

c

(
Yi−µ̂Y

σ̂Y

)

1
n

n∑
i=1

{
ψS

c

(
Xi−µ̂X

σ̂X

)}2

1
n

n∑
i=1

{
ψ2

c

(
Yi−µ̂Y

σ̂Y

)}2



−




E
[
ψS

c

(
X−µX

σX

)
ψc

(
Y−µY

σY

)]

E

[{
ψS

c

(
X−µX

σX

)}2
]

E

[{
ψS

c

(
Y−µY

σY

)}2
]







d−−−→
n→∞

N (0, Σ), (5.86)

where Σ is as defined in the statement of the theorem. Finally, we can use the δ-method

(Billingsley 1986) on (5.86) to complete the proof. ¥
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5.7 Conclusion

The main contribution of this chapter is that we established some asymptotic properties

of the adjusted-Winsorized correlation estimate (the new robust correlation estimate

proposed in this thesis). Our estimate is consistent and has bounded influence. We

obtained its asymptotic variance and intrinsic bias. The tuning constants of this estimate

can be chosen such that we have approximate Fisher-consistency. An smoothed version of

this estimate is asymptotically normal. The computing time of this estimate isO(n log n),

the same as that of the univariate-Winsorized correlation estimate, but our estimate is

more resistant to bivariate outliers.

5.8 Chapter Appendix

5.8.1 Proof of Lemma 5.2

We need to show that, for any ε > 0, there exists δm > 0 and δs > 0 such that, for all

u ∈ R,

|m1 −m2| < δm, |s1 − s2| < δs ⇒ |f(u,m1, s1)− f(u,m2, s2)| < ε.

Following Salibián-Barrera (2000), we will first show that there exists a closed and

bounded interval U such that, for any m1,m2 ∈M, s1, s2 ∈ S,

ψ

(
u−m1

s1

)
= ψ

(
u−m2

s2

)
, u 6∈ U . (5.87)

It is given that m ≤ m ≤ m̄ and s ≤ s ≤ s̄. Consider u ≥ m̄ + s̄c. For any m ≤ m̄ and

s ≤ s̄ we have (u−m)/s ≥ c. Now, consider u ≤ m− sc. For any m ≥ m and s ≥ s we
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have (u−m)/s ≤ −c. Thus, for U = [m− sc, m̄+ s̄c], (5.87) holds.

For u ∈ U , ψ is uniformly continuous. Therefore, we only need to show that

∣∣∣∣
u−m1

s1

− u−m2

s2

∣∣∣∣ = |u| |s2 − s1|
s1s2

+
|m2s1 −m1s2|

s1s2

= |u| |s2 − s1|
s1s2

+ |m2| |s2 − s1|
s1s2

+ s2
|m2 −m1|

s1s2

≤ KU
|s2 − s1|

s2
+ m̄
|s2 − s1|

s2
+
|m2 −m1|

s2
,

where KU = sup{|u| : u ∈ U}. Thus,
∣∣u−m1

s1
− u−m2

s2

∣∣ < δ if |m2 −m1| and |s2 − s1| are

sufficiently small. ¥

5.8.2 Influence function: interchanging differentiation and in-

tegration

The first term of the right-hand-side of (5.27) can be expressed as

d

dt

∫ ∞

mX(t)

∫ ∞

mY (t)

ψc1

(
x−mX(t)

sX(t)

)
ψc1

(
y −mY (t)

sY (t)

)
f(x, y) dy dx

∣∣∣∣
t=0

+
d

dt

∫ mX(t)

−∞

∫ mY (t)

−∞
ψc1

(
x−mX(t)

sX(t)

)
ψc1

(
y −mY (t)

sY (t)

)
f(x, y) dy dx

∣∣∣∣
t=0

. (5.88)

The first part of (5.88) can be written as

d

dt

∫ ∞

mX(t)

∫ ∞

mY (t)

ψc1

(
x−mX(t)

sX(t)

)
ψc1

(
y −mY (t)

sY (t)

)
f(x, y) dy dx

∣∣∣∣
t=0

= lim
t→0

1

t

[∫ ∞

mX(t)

∫ ∞

mY (t)

ψc1

(
x−mX(t)

sX(t)

)
ψc1

(
y −mY (t)

sY (t)

)
f(x, y) dy dx

−
∫ ∞

0

∫ ∞

0

ψc1 (x)ψc1 (y) f(x, y) dy dx

]
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= lim
t→0

1

t

[∫ ∞

mX(t)

∫ ∞

mY (t)

{
ψc1

(
x−mX(t)

sX(t)

)
ψc1

(
y −mY (t)

sY (t)

)

− ψc1 (x)ψc1 (y)

}
f(x, y) dy dx

]

− lim
t→0

1

t

∫ mX(t)

0

∫ ∞

0

ψc1 (x)ψc1 (y) f(x, y) dy dx

− lim
t→0

1

t

∫ ∞

0

∫ mY (t)

0

ψc1 (x)ψc1 (y) f(x, y) dy dx

− lim
t→0

1

t

∫ mX(t)

0

∫ mY (t)

0

ψc1 (x)ψc1 (y) f(x, y) dy dx (5.89)

= lim
t→0

[∫ ∞

0

∫ ∞

0

1

t

{
ψc1

(
x−mX(t)

sX(t)

)
ψc1

(
y −mY (t)

sY (t)

)
− ψc1 (x)ψc1 (y)

}

I
(
x−mX(t) > 0

)
I
(
y −mY (t) > 0

)
f(x, y) dy dx

]
, (5.90)

since the last three terms of (5.89) are zero. Now, assuming that ψ(u), ψ′(u) and

ψ′(u)u are bounded for all u ∈ R (under Regularity Condition A4), we can show that

d
dt
ψc1

(
X−mX(t)

sX(t)

)
ψc1

(
Y−mY (t)

sY (t)

)∣∣
t=0

is bounded. Therefore, using Lebesgue’s Dominated

Convergence Theorem (see, for example, Bartle 1995, page 44), we have

d

dt

∫ ∞

mX(t)

∫ ∞

mY (t)

ψc1

(
x−mX(t)

sX(t)

)
ψc1

(
y −mY (t)

sY (t)

)
f(x, y) dy dx

∣∣∣∣
t=0

=

∫ ∞

0

∫ ∞

0

lim
t→0

1

t

{
ψc1

(
x−mX(t)

sX(t)

)
ψc1

(
y −mY (t)

sY (t)

)
− ψc1 (x)ψc1 (y)

}
f(x, y) dy dx

=

∫ ∞

0

∫ ∞

0

d

dt
ψc1

(
x−mX(t)

sX(t)

)
ψc1

(
y −mY (t)

sY (t)

)∣∣∣∣
t=0

f(x, y) dy dx. (5.91)

Similarly,

d

dt

∫ mX(t)

−∞

∫ mY (t)

−∞
ψc1

(
x−mX(t)

sX(t)

)
ψc1

(
y −mY (t)

sY (t)

)
f(x, y) dy dx

∣∣∣∣
t=0

=

∫ 0

−∞

∫ 0

−∞

d

dt
ψc1

(
x−mX(t)

sX(t)

)
ψc1

(
y −mY (t)

sY (t)

)∣∣∣∣
t=0

f(x, y) dy dx. (5.92)
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Combining (5.91) and (5.92), we have

d

dt

[
EH0

{
ψc1

(
X −mX(t)

sX(t)

)
ψc1

(
Y −mY (t)

sY (t)

)
I

(
(X−mX(t))(Y−mY (t)) > 0

)}]

t=0

= EH0

[
d

dt

{
ψc1

(
X −mX(t)

sX(t)

)
ψc1

(
Y −mY (t)

sY (t)

) }∣∣∣∣
t=0

I
(
XY > 0

)]
. (5.93)

We can now write (5.28) from (5.27).

In a similar way, we can show that

d

dt

[
EH0

{
ψ2

c1

(
X −mX(t)

sX(t)

)
I

(
(X −mX(t))(Y −mY (t)) > 0

)}]

t=0

= EH0

[
d

dt

{
ψ2

c1

(
X −mX(t)

sX(t)

) }∣∣∣∣
t=0

I
(
XY > 0

)]
, (5.94)

which gives (5.38).

5.8.3 Asymptotic normality of the adjusted-Winsorized “co-

variance” estimate

The numerator of (5.2) can be written as

N̂ =
1

n

n∑
i=1

ψc

(
Xi − µ̂X

σ̂X

)
ψc

(
Yi − µ̂Y

σ̂Y

)
− 1

n

n∑
i=1

ψc

(
Xi − µ̂X

σ̂X

)
1

n

n∑
i=1

ψc

(
Yi − µ̂Y

σ̂Y

)
.

(5.95)

Now, we can express the first term of (5.95) as

1

n

n∑
i=1

ψc

(
Xi − µ̂X

σ̂X

)
ψc

(
Yi − µ̂Y

σ̂Y

)
=

1

n

n∑
i=1

ψc1

(
Xi − µ̂X

σ̂X

)
ψc1

(
Yi − µ̂Y

σ̂Y

)
Îi(c1)

+
1

n

n∑
i=1

ψc2

(
Xi − µ̂X

σ̂X

)
ψc2

(
Yi − µ̂Y

σ̂Y

)
Îi(c2), (5.96)
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where Îi(c1) = I
(
(Xi − µ̂X)(Yi − µ̂Y ) > 0

)
, and Îi(c2) = I

(
(Xi − µ̂X)(Yi − µ̂Y ) < 0

)
.

Denote Ii(c1) = I
(
(Xi − µX)(Yi − µY ) > 0

)
, and Ii(c2) = I

(
(Xi − µX)(Yi − µY ) < 0

)
.

Let us focus on the cases when Îi(c1) and Ii(c1) take different values. Assuming (without

loss of generality) that µ̂X < µX , we can argue that Îi(c1) 6= Ii(c1) when

µ̂X < Xi < µX .

(Or, µ̂Y < Yi < µY .) Now, µ̂X −µX is O(1/
√
n), which means Îi(c1)− Ii(c1) is O(1/

√
n).

Also, for the Xi’s above, ψc1

(
Xi−µ̂X

σ̂X

)
is O(1/

√
n) since ψ is linear in the neighborhood of

zero, while ψc1

(
Yi−µ̂Y

σ̂Y

)
is bounded. Therefore,

1

n

n∑
i=1

ψc1

(
Xi − µ̂X

σ̂X

)
ψc1

(
Yi − µ̂Y

σ̂Y

) (
Îi(c1)− Ii(c1)

)
= O(1/n). (5.97)

Similarly,

1

n

n∑
i=1

ψc2

(
Xi − µ̂X

σ̂X

)
ψc2

(
Yi − µ̂Y

σ̂Y

) (
Îi(c2)− Ii(c2)

)
= O(1/n). (5.98)

Using (5.97) and (5.98) in (5.96), we have

1

n

n∑
i=1

ψc

(
Xi − µ̂X

σ̂X

)
ψc

(
Yi − µ̂Y

σ̂Y

)

.
=

1

n

n∑
i=1

ψc1

(
Xi − µ̂X

σ̂X

)
ψc1

(
Yi − µ̂Y

σ̂Y

)
Ii(c1)

+
1

n

n∑
i=1

ψc2

(
Xi − µ̂X

σ̂X

)
ψc2

(
Yi − µ̂Y

σ̂Y

)
Ii(c2), (5.99)

where “
.
=” means “asymptotically equivalent”.
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Let us now focus on the second term of (5.95). We can write

1

n

n∑
i=1

ψc

(
Xi − µ̂X

σ̂X

)

=
1

n

n∑
i=1

ψc1

(
Xi − µ̂X

σ̂X

)
Îi(c1) +

1

n

n∑
i=1

ψc2

(
Xi − µ̂X

σ̂X

)
Îi(c2)

=
1

n

n∑
i=1

ψc1

(
Xi − µ̂X

σ̂X

)
Ii(c1) +

1

n

n∑
i=1

ψc2

(
Xi − µ̂X

σ̂X

)
Ii(c2) +O

(
1/
√
n
)
. (5.100)

Using Taylor expansion about (µX , σX) in (5.100), and expressing all the terms that

involve µ̂X − µX or σ̂X − σX as O (1/
√
n), we have

1

n

n∑
i=1

ψc

(
Xi − µ̂X

σ̂X

)

=
1

n

n∑
i=1

ψc1

(
Xi − µX

σX

)
Ii(c1) +

1

n

n∑
i=1

ψc2

(
Xi − µX

σX

)
Ii(c2) +O

(
1/
√
n
)
. (5.101)

Since E
[
ψc1

(
X−µX

σX

)
I(c1)

]
= 0, we have 1

n

n∑
i=1

ψc1

(
Xi−µX

σX

)
Ii(c1) = O (1/

√
n). Similarly,

1
n

n∑
i=1

ψc1

(
Xi−µX

σX

)
Ii(c1) = O (1/

√
n). Using these results in (5.101), we have

1

n

n∑
i=1

ψc

(
Xi − µ̂X

σ̂X

)
= O

(
1/
√
n
)
. (5.102)

Similarly,

1

n

n∑
i=1

ψc

(
Yi − µ̂Y

σ̂Y

)
= O

(
1/
√
n
)
. (5.103)

Therefore, we have

1

n

n∑
i=1

ψc

(
Xi − µ̂X

σ̂X

)
1

n

n∑
i=1

ψc

(
Yi − µ̂Y

σ̂Y

)
= o

(
1/
√
n
)
. (5.104)

Using (5.99) and (5.104) in (5.95), we have

N̂
.
=

1

n

n∑
i=1

ψc1

(
Xi − µ̂X

σ̂X

)
ψc1

(
Yi − µ̂Y

σ̂Y

)
Ii(c1)

+
1

n

n∑
i=1

ψc2

(
Xi − µ̂X

σ̂X

)
ψc2

(
Yi − µ̂Y

σ̂Y

)
Ii(c2). (5.105)
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Now, using Taylor expansion about (µX , σX), we have

ψc1

(
Xi − µ̂X

σ̂X

)
= ψc1

(
Xi − µX

σX

)
− 1

σ̃X

ψ′c1

(
Xi − µ̃X

σ̃X

)
(µ̂X − µX)

− 1

σ̃X

ψ′c1

(
Xi − µ̃X

σ̃X

)(
Xi − µ̃X

σ̃X

)
(σ̂X − σX), (5.106)

for µ̂X < µ̃X < µX and σ̂X < σ̃X < σX .

Similarly,

ψc1

(
Yi − µ̂Y

σ̂Y

)
= ψc1

(
Yi − µY

σY

)
− 1

σ̃Y

ψ′c1

(
Yi − µ̃Y

σ̃Y

)
(µ̂Y − µY )

− 1

σ̃Y

ψ′c1

(
Yi − µ̃Y

σ̃Y

)(
Yi − µ̃Y

σ̃Y

)
(σ̂Y − σY ), (5.107)

for µ̂Y < µ̃Y < µY and σ̂Y < σ̃Y < σY . Using (5.106) and (5.107) in the first part of the

right-hand-side of (5.105), we have

1

n

n∑
i=1

ψc1

(
Xi − µ̂X

σ̂X

)
ψc1

(
Yi − µ̂Y

σ̂Y

)
Ii(c1)

.
=

1

n

n∑
i=1

ψc1

(
Xi − µX

σX

)
ψc1

(
Yi − µY

σY

)
Ii(c1)

− 1

nσ̃Y

n∑
i=1

ψc1

(
Xi − µX

σX

)
ψ′c1

(
Yi − µ̃Y

σ̃Y

)(
Yi − µ̃Y

σ̃Y

)
Ii(c1) (σ̂Y − σY )

− 1

nσ̃X

n∑
i=1

ψc1

(
Yi − µY

σY

)
ψ′c1

(
Xi − µ̃X

σ̃X

)(
Xi − µ̃X

σ̃X

)
Ii(c1) (σ̂X − σX), (5.108)

where the other terms are ignored since they are o(1/
√
n). Using Lemma 5.1, we have

1

nσ̃Y

n∑
i=1

ψc1

(
Xi − µX

σX

)
ψ′c1

(
Yi − µ̃Y

σ̃Y

)(
Yi − µ̃Y

σ̃Y

)
Ii(c1)

P−−−→
n→∞

1

σY

E

[
ψc1

(
X − µX

σX

)
ψ′c1

(
Y − µY

σY

)(
Y − µY

σY

)
I(c1)

]
= Ac1 , (5.109)

143



and

1

nσ̃X

n∑
i=1

ψc1

(
Yi − µY

σY

)
ψ′c1

(
Xi − µ̃X

σ̃X

)(
Xi − µ̃X

σ̃X

)
Ii(c1)

P−−−→
n→∞

1

σX

E

[
ψc1

(
Y − µY

σY

)
ψ′c1

(
X − µX

σX

)(
X − µX

σX

)
I(c1)

]
= Bc1 , (5.110)

where I(c1) = I
(
(X − µX)(Y − µY ) > 0

)
. Therefore,

1

n

n∑
i=1

ψc1

(
Xi − µ̂X

σ̂X

)
ψc1

(
Yi − µ̂Y

σ̂Y

)
Ii(c1)

.
=

1

n

n∑
i=1

ψc1

(
Xi − µX

σX

)
ψc1

(
Yi − µY

σY

)
Ii(c1)− Ac1 (σ̂Y − σY )−Bc1 (σ̂X − σX).

(5.111)

Since σ̂X and σ̂Y are S-scales, using (5.75) and (5.76) in (5.111), we have

1

n

n∑
i=1

ψc1

(
Xi − µ̂X

σ̂X

)
ψc1

(
Yi − µ̂Y

σ̂Y

)
Ii(c1)

.
=

1

n

n∑
i=1

ψc1

(
Xi − µX

σX

)
ψc1

(
Yi − µY

σY

)
Ii(c1)

− Ac1

DY

1

n

n∑
i=1

(
χ

(
Yi − µY

σY

)
− b

)
− Bc1

DX

1

n

n∑
i=1

(
χ

(
Xi − µX

σX

)
− b

)
, (5.112)

where

DX = E

[
χ′

(
X − µX

σX

) (
X − µX

σX

)]
, (5.113)

and

DY = E

[
χ′

(
Y − µY

σY

)(
Y − µY

σY

)]
. (5.114)

Similarly,

1

n

n∑
i=1

ψc2

(
Xi − µ̂X

σ̂X

)
ψc2

(
Yi − µ̂Y

σ̂Y

)
Ii(c2)
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.
=

1

n

n∑
i=1

ψc2

(
Xi − µX

σX

)
ψc2

(
Yi − µY

σY

)
Ii(c2)

− Ac2

DY

1

n

n∑
i=1

(
χ

(
Yi − µY

σY

)
− b

)
− Bc2

DX

1

n

n∑
i=1

(
χ

(
Xi − µX

σX

)
− b

)
, (5.115)

where

Ac2 =
1

σX

E

[
ψc2

(
X − µX

σX

)
ψ′c2

(
Y − µY

σY

)(
Y − µY

σY

)
I(c2)

]
, (5.116)

Bc2 =
1

σY

E

[
ψc2

(
Y − µY

σY

)
ψ′c2

(
X − µX

σX

)(
X − µX

σX

)
I(c2)

]
, (5.117)

and DX and DY are as above. Using (5.112) and (5.115) in (5.105), we have

1

n

n∑
i=1

ψc

(
Xi − µ̂X

σ̂X

)
ψc

(
Yi − µ̂Y

σ̂Y

)
− 1

n

n∑
i=1

ψc

(
Xi − µ̂X

σ̂X

)
1

n

n∑
i=1

ψc

(
Yi − µ̂Y

σ̂Y

)

.
=

1

n

n∑
i=1

ψc

(
Xi − µX

σX

)
ψc

(
Yi − µY

σY

)

− Ac

DY

1

n

n∑
i=1

(
χ

(
Yi − µY

σY

)
− b

)
− Bc

DX

1

n

n∑
i=1

(
χ

(
Xi − µX

σX

)
− b

)
, (5.118)

where Ac = Ac1 + Ac2 , and Bc = Bc1 +Bc2 .

Using (5.118, we can state that

√
n

[
N̂ − E

{
ψc

(
X − µX

σX

)
ψc

(
Y − µY

σY

)}]
d−−−→

n→∞
N (0, Q),

where

Q = Var

[
ψc

(
X − µX

σX

)
ψc

(
Y − µY

σY

)
− Ac

DY

χ

(
Y − µY

σY

)
− Bc

DX

χ

(
X − µX

σX

)]
.

5.8.4 Difficulty with the denominator of (5.2)

Let us focus on the first term in the denominator of (5.2). It can be expressed as

D̂1 =
1

n

n∑
i=1

ψ2
c

(
Xi − µ̂X

σ̂X

)
−

{
1

n

n∑
i=1

ψc

(
Xi − µ̂X

σ̂X

)}2

. (5.119)
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As in the case of the numerator, we can write

1

n

n∑
i=1

ψ2
c

(
Xi − µ̂X

σ̂X

)
=

1

n

n∑
i=1

ψ2
c1

(
Xi − µ̂X

σ̂X

)
Îi(c1) +

1

n

n∑
i=1

ψ2
c2

(
Xi − µ̂X

σ̂X

)
Îi(c2).

(5.120)

Unfortunately, this time we cannot replace Îi(.) by Ii(.). The reason is as follows. When

Îi(c1) 6= Ii(c1), we have either (i) µ̂X < Xi < µX , or (ii) µ̂Y < Yi < µY . In the first

case, as in the case of the numerator (see Section 5.8.3), we can show that the amount

of error due to replacing Îi(.) by Ii(.) is O(1/n). However, in the second case, though

µ̂Y − µY is O(1/
√
n), the term ψ.

(
Yi−µ̂Y

σ̂Y

)
(which is also O(1/

√
n) for the Yi’s above) is

not there to make the product O(1/n). Therefore, the amount of error in replacing the

sample indicator functions by the true ones is O(1/
√
n), and cannot be ignored.
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Chapter 6

Conclusion

In this study, we considered the problem of selecting linear prediction models for large

high-dimensional datasets that possibly contain a fraction of contaminations. Our goal

was to achieve robustness and scalability at the same time. We considered one-step and

two-step model building procedures, the latter consisting of sequencing and segmentation

steps. We will now summarize the main ideas proposed in this thesis, and the main results

obtained.

One-step model building

We proposed robust versions of step-by-step algorithms FS and SW. We expressed these

classical algorithms in terms of sample means, variances and correlations, and replaced

these sample quantities by their robust counterparts to obtain the robust algorithms. We

used robust correlations derived from a simplified version of bivariate M-estimates of the
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scatter matrix. We proposed robust partial F-tests for stopping during the implementa-

tion of robust FS and SW procedures.

Our robust methods have much better performance compared to the standard FS

and SW algorithms. Also, they are computationally very suitable, and scalable to large

dimensions.

Two-step model building

Robust sequencing

We considered time-efficient algorithm LARS to sequence (some of) the d covariates to

form a list such that the good predictors are likely to appear in the beginning. Since LARS

is not resistant to outliers, we proposed two different approaches to robustify LARS. In the

plug-in approach, we replaced the classical correlations in LARS by easily computable

robust correlation estimates. In the data-cleaning approach, we first transformed the

dataset by shrinking the outliers towards the bulk of the data (which we call multivariate-

Winsorization), and then applied standard LARS on the transformed data. The data-

cleaning approach is more time-consuming than the plug-in approach when only some of

the predictors are being sequenced.

For both approaches (plug-in and data-cleaning), we used robust correlations derived

from a simplified version of the bivariate M-estimates of the scatter matrix. We also

proposed correlation estimates using bivariate-Winsorization of the data. We showed

that the latter is faster to compute with important time differences when the number of
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candidate predictors becomes large.

We recommend combining robust LARS with bootstrap to obtain more stable and

reliable results. The reduced sets obtained by bootstrapped robust LARS contain more

of the important covariates than the reduced sets obtained by initial robust LARS.

To obtain a reduced set of m covariates for further investigation, we introduced a

learning curve that plots robust R2 values versus dimension. An appropriate value of m

is the dimension corresponding to the point where the curve starts to level off.

Robust segmentation

We perfromed all possible subsets regression on the reduced set of covariates obtained

in the first step. Since classical selection criteria FPE, AIC, Cp, CV and bootstrap are

sensitive to outliers, we needed robust selection criteria for this purpose. We identified

certain limitations of Robust AIC (Ronchetti 1985) and robust CV (Ronchetti, Field and

Blanchard 1997) methods. We proposed computationally suitable robust CV and robust

bootstrap procedures in this thesis. We evaluated our methods using simulated and real

datasets, and compared them with the classical methods as well as robust FPE proposed

by Yohai (1997). Our robust CV and robust bootstrap methods have better performance

compared to the classical methods and robust FPE.
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Adjusted-Winsorized correlation estimate

For the development of robust LARS, we proposed this new correlation estimate for

bivariate data. The proposed estimate is consistent and has bounded influence. We

obtained its asymptotic variance and intrinsic bias. The tuning constants of this estimate

can be chosen such that we have approximate Fisher-consistency. An smoothed version

of this estimate is asymptotically normal. The computing time of this estimate is the

same (approximately) as that of the univariate-Winsorized correlation estimate, but our

estimate is more resistant to bivariate outliers.
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