Instrumental-Variable

Ruben Zamar Department of Statistics UBC

March 12, 2014

March 12, 2014

• Ordinary linear regression model

$$\mathbf{y} = \mathbf{1}\alpha + X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

• Ordinary linear regression model

$$\mathbf{y} = \mathbf{1}\alpha + X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

• Design Matrix

$$X_{c} = \begin{pmatrix} x_{11} - \bar{x}_{1} & x_{12} - \bar{x}_{2} & \cdots & x_{1p} - \bar{x}_{p} \\ x_{21} - \bar{x}_{1} & x_{22} - \bar{x}_{2} & \cdots & x_{2p} - \bar{x}_{p} \\ x_{31} - \bar{x}_{1} & x_{32} - \bar{x}_{2} & \cdots & x_{3p} - \bar{x}_{p} \\ \vdots & \vdots & & \vdots \\ x_{n1} - \bar{x}_{1} & x_{n2} - \bar{x}_{2} & \cdots & x_{np} - \bar{x}_{p} \end{pmatrix}$$

THE LS ESTIMATOR

Ordinary Least Squares Estimate

$$\widehat{oldsymbol{eta}}_{LS} = \left(X_c'X_c
ight)^{-1}X_c'\mathbf{y}$$
 , $\widehat{lpha}_{LS} = \overline{y} - \overline{\mathbf{x}}'\widehat{oldsymbol{eta}}_{LS}$

THE LS ESTIMATOR

Ordinary Least Squares Estimate

$$\widehat{oldsymbol{eta}}_{LS} = \left(X_c'X_c
ight)^{-1}X_c'\mathbf{y}$$
 , $\widehat{lpha}_{LS} = \overline{y} - \overline{\mathbf{x}}'\widehat{oldsymbol{eta}}_{LS}$

$$\widehat{\Sigma}_{xx} = rac{1}{n} X_c' X_c$$
 (sample covariance matrix)
 $\widehat{\Sigma}_{xy} = rac{1}{n} X_c' \mathbf{y}$

THE LS ESTIMATOR

Ordinary Least Squares Estimate

$$\widehat{oldsymbol{eta}}_{LS} = \left(X_c'X_c
ight)^{-1}X_c'\mathbf{y}$$
 , $\widehat{lpha}_{LS} = \overline{y} - \overline{\mathbf{x}}'\widehat{oldsymbol{eta}}_{LS}$

$$\begin{split} \widehat{\Sigma}_{xx} &= \frac{1}{n} X'_c X_c \quad \text{(sample covariance matrix)} \\ \widehat{\Sigma}_{xy} &= \frac{1}{n} X'_c \mathbf{y} \\ \widehat{\boldsymbol{\beta}}_{LS} = \widehat{\Sigma}_{xx}^{-1} \widehat{\Sigma}_{xy} \end{split}$$

э

• All covariates are **exogenous**

X and ε are independent

KEY ASSUMPTIONS

• All covariates are **exogenous**

X and ε are independent

• Errors have zero mean

 $E(\boldsymbol{\varepsilon}) = \mathbf{0}$

$$E\left\{\widehat{\boldsymbol{\beta}}_{LS}\right\} = E\left\{E\left\{\widehat{\boldsymbol{\beta}}_{LS}|X\right\}\right\}$$

э

(日) (日) (日) (日)

$$E\left\{\widehat{\boldsymbol{\beta}}_{LS}\right\} = E\left\{E\left\{\widehat{\boldsymbol{\beta}}_{LS}|X\right\}\right\}$$
$$= E\left\{\left(X_c'X_c\right)^{-1}X_c' \ E\left\{\mathbf{y}|X\right\}\right\}$$

э

(日) (日) (日) (日)

$$E\left\{\widehat{\boldsymbol{\beta}}_{LS}\right\} = E\left\{E\left\{\widehat{\boldsymbol{\beta}}_{LS}|X\right\}\right\}$$
$$= E\left\{\left(X_c'X_c\right)^{-1}X_c' \quad E\left\{\mathbf{y}|X\right\}\right\}$$
$$= E\left\{\left(X_c'X_c\right)^{-1}X_c' \quad E\left\{\mathbf{1}\alpha + X\boldsymbol{\beta} + \boldsymbol{\varepsilon}|X\right\}\right\}$$

э

(日) (日) (日) (日)

$$E\left\{\widehat{\boldsymbol{\beta}}_{LS}\right\} = E\left\{E\left\{\widehat{\boldsymbol{\beta}}_{LS}|X\right\}\right\}$$
$$= E\left\{\left(X_c'X_c\right)^{-1}X_c' \quad E\left\{\mathbf{y}|X\right\}\right\}$$
$$= E\left\{\left(X_c'X_c\right)^{-1}X_c' \quad E\left\{\mathbf{1}\alpha + X\boldsymbol{\beta} + \boldsymbol{\varepsilon}|X\right\}\right\}$$

$$= E\left\{\overbrace{\left(X_{c}^{\prime}X_{c}\right)^{-1}X_{c}^{\prime}\mathbf{1}}^{=0}\alpha + \overbrace{\left(X_{c}^{\prime}X_{c}\right)^{-1}X_{c}^{\prime}X}^{=0}\beta + \left(X_{c}^{\prime}X_{c}\right)^{-1}X_{c}^{\prime}\overline{E\left\{\varepsilon\right\}}\right\}$$

э

(日) (日) (日) (日)

$$E\left\{\widehat{\boldsymbol{\beta}}_{LS}\right\} = E\left\{E\left\{\widehat{\boldsymbol{\beta}}_{LS}|X\right\}\right\}$$
$$= E\left\{\left(X_c'X_c\right)^{-1}X_c' \quad E\left\{\mathbf{y}|X\right\}\right\}$$
$$= E\left\{\left(X_c'X_c\right)^{-1}X_c' \quad E\left\{\mathbf{1}\alpha + X\boldsymbol{\beta} + \boldsymbol{\varepsilon}|X\right\}\right\}$$

$$= E\left\{\overbrace{(X_c'X_c)^{-1}X_c'}^{=0}\mathbf{1}\alpha + \overbrace{(X_c'X_c)^{-1}X_c'}^{=l}\mathbf{\beta} + (X_c'X_c)^{-1}X_c'\overbrace{E\{\varepsilon\}}^{=0}\right\}$$
$$= \mathbf{\beta}$$

э

Image: A mathematical states of the state

$\widehat{oldsymbol{eta}}_{LS} \ = \ \widehat{\Sigma}_{xx}^{-1}\widehat{\Sigma}_{xy} \quad \longrightarrow \quad \Sigma_{xx}^{-1}\Sigma_{xy}, \qquad { m by \ LLN}$

イロト イ理ト イヨト イヨト 二日

$$\widehat{oldsymbol{eta}}_{LS} \ = \ \widehat{\Sigma}_{xx}^{-1}\widehat{\Sigma}_{xy} \quad \longrightarrow \quad \Sigma_{xx}^{-1}\Sigma_{xy}, \quad \mbox{ by LLN}$$

$$\Sigma_{xx}^{-1}\Sigma_{xy} = \Sigma_{xx}^{-1}Cov(\mathbf{x},y)$$

э

æ

Image: A match a ma

$$\widehat{oldsymbol{eta}}_{LS} \ = \ \widehat{\Sigma}_{xx}^{-1}\widehat{\Sigma}_{xy} \quad \longrightarrow \quad \Sigma_{xx}^{-1}\Sigma_{xy}, \quad \mbox{ by LLN}$$

$$\Sigma_{xx}^{-1}\Sigma_{xy} = \Sigma_{xx}^{-1}Cov(\mathbf{x},y)$$
$$= \Sigma_{xx}^{-1}Cov(\mathbf{x},\alpha + \mathbf{x}'\boldsymbol{\beta} + \varepsilon)$$

3

$$\widehat{oldsymbol{eta}}_{LS} \ = \ \widehat{\Sigma}_{xx}^{-1}\widehat{\Sigma}_{xy} \quad \longrightarrow \quad \Sigma_{xx}^{-1}\Sigma_{xy}, \quad \mbox{ by LLN}$$

$$\Sigma_{xx}^{-1}\Sigma_{xy} = \Sigma_{xx}^{-1} \textit{Cov}(\mathbf{x}, y)$$

$$= \Sigma_{xx}^{-1} Cov \left(\mathbf{x}, \mathbf{\alpha} + \mathbf{x}' \boldsymbol{\beta} + \varepsilon
ight)$$

$$= \Sigma_{xx}^{-1} \overbrace{Cov(\mathbf{x}, \mathbf{x}'\boldsymbol{\beta})}^{\Sigma_{xx}\boldsymbol{\beta}} + \Sigma_{xx}^{-1} \overbrace{Cov(\mathbf{x}, \boldsymbol{\varepsilon})}^{\mathbf{0}}$$

æ

メロト メポト メヨト メヨ

$$\widehat{oldsymbol{eta}}_{LS} \ = \ \widehat{\Sigma}_{xx}^{-1}\widehat{\Sigma}_{xy} \quad \longrightarrow \quad \Sigma_{xx}^{-1}\Sigma_{xy}, \quad \mbox{ by LLN}$$

$$\Sigma_{xx}^{-1}\Sigma_{xy} = \Sigma_{xx}^{-1}Cov(\mathbf{x},y)$$

$$= \Sigma_{xx}^{-1} Cov \left(\mathbf{x}, \alpha + \mathbf{x}' \boldsymbol{\beta} + \varepsilon \right)$$

$$= \Sigma_{xx}^{-1} \underbrace{\overline{Cov}(\mathbf{x}, \mathbf{x}'\boldsymbol{\beta})}^{\Sigma_{xx}\boldsymbol{\beta}} + \Sigma_{xx}^{-1} \underbrace{\overline{Cov}(\mathbf{x}, \boldsymbol{\varepsilon})}^{\mathbf{0}}$$

$$= \beta$$

-

æ

イロン イヨン イヨン イ

• Some covariates (called **endogenous**) are correlated with the error term

- Some covariates (called **endogenous**) are correlated with the error term
- This problem arises in several contexts:

- Some covariates (called **endogenous**) are correlated with the error term
- This problem arises in several contexts:

Errors-in-variables: Some covariates are measured with errors

March 12, 2014

- Some covariates (called **endogenous**) are correlated with the error term
- This problem arises in several contexts:

Errors-in-variables: Some covariates are measured with errors

Omitted covariates: Some model covariates are correlated with unoserved predictors

- Some covariates (called **endogenous**) are correlated with the error term
- This problem arises in several contexts:

Errors-in-variables: Some covariates are measured with errors

Omitted covariates: Some model covariates are correlated with unoserved predictors

Simultaneity: Some covariates simultaneously affect and are affected by the response variable

• The (additive) asymptotic bias due to endogeneity is given by

$$AB = \Sigma_{xx}^{-1} Cov(\mathbf{x},\varepsilon)$$

• The (additive) asymptotic bias due to endogeneity is given by

- 1 - (

$$\begin{array}{lll} AB & = & \Sigma_{xx}^{-1} \operatorname{Cov} \left(\mathbf{x}, \varepsilon \right) \\ & = & \frac{\operatorname{Cov} \left(x, \varepsilon \right)}{\operatorname{Var} \left(x \right)} & \text{(single linear regression)} \end{array}$$

• The (additive) asymptotic bias due to endogeneity is given by

$$\begin{array}{lll} AB &=& \Sigma_{xx}^{-1} Cov \left(\mathbf{x}, \varepsilon \right) \\ &=& \frac{Cov \left(x, \varepsilon \right)}{Var \left(x \right)} \quad \mbox{(single linear regression)} \\ &=& Corr \left(x, \varepsilon \right) \frac{sd \left(\varepsilon \right)}{sd \left(x \right)} \quad \mbox{(single linear regression)} \end{array}$$

A simple example:

$$y_i = 1 + 2v_i + \varepsilon_i, \quad i = 1, 2, ..., n$$

 $x_i = v_i + e_i$ (error-in-variable)

A simple example:

$$y_i = 1 + 2v_i + \varepsilon_i, \quad i = 1, 2, ..., n$$

 $x_i = v_i + e_i$ (error-in-variable)

To fix ideas suppose that

$$v_i, \varepsilon_i$$
 and e_i are independent $v_i \sim N\left(0, 1
ight)$, ε_i , $e_i \sim N\left(0, 0.5
ight)$

EIV (continued)

$$y_i = 1 + 2v_i + \varepsilon_i$$

= 1 + 2 (x_i - e_i) + ε_i
= 1 + 2x_i + (ε_i - 2e_i)
= 1 + 2x_i + Δ_i

$$\Delta_i = \varepsilon_i - 2e_i$$

・ロト ・日本・ ・ 日本

EIV (continued)

$$y_i = 1 + 2v_i + \varepsilon_i$$

= 1 + 2 (x_i - e_i) + ε_i
= 1 + 2x_i + (ε_i - 2e_i)
= 1 + 2x_i + Δ_i

$$\Delta_i = \epsilon_i - 2e_i$$

 $cov(x_i, \Delta_i) = -2 \times 0.5 = -1$ (endogeneity)
 $Var(x_i) = 1.5$

メロト メポト メヨト メヨト

3

EIV (continued)

$$y_i = 1 + 2v_i + \varepsilon_i$$

= 1 + 2 (x_i - e_i) + ε_i
= 1 + 2x_i + (ε_i - 2e_i)
= 1 + 2x_i + Δ_i

$$\Delta_i = \epsilon_i - 2e_i$$

 $cov(x_i, \Delta_i) = -2 \times 0.5 = -1$ (endogeneity)
 $Var(x_i) = 1.5$

$$AB = \frac{cov(x_i, \Delta_i)}{Var(x_i)} = -\frac{1}{1.5} = -0.667$$

→ < ∃ →</p>

3

OMITTED VARIABLES

Suppose that the "true" model is

$$y_i = \alpha + \beta_1 \underbrace{x_{1i}}_{i} + \beta_2 \underbrace{x_{2i}}_{i} + \underbrace{\varepsilon_i}_{\epsilon_i}$$

э

Image: A mathematical states and a mathem

Suppose that the "true" model is

$$y_i = \alpha + \beta_1 \underbrace{x_{1i}}_{i} + \beta_2 \underbrace{x_{2i}}_{i} + \underbrace{\varepsilon_i}_{\varepsilon_i}$$

To fix ideas suppose that

$$Var(x_{1i}) = Var(x_{2i}) = 1$$
, $var(\varepsilon_i) = 0.1$

and

$$Cov(x_{1i}, x_{2i}) = 0.4,$$

Suppose variable x_2 is omitted and we fit the model

$$y_i = \alpha + \beta x_{1i} + \Delta_i$$

March 12, 2014

Suppose variable x_2 is omitted and we fit the model

$$y_i = \alpha + \beta x_{1i} + \Delta_i$$

 $\Delta_i = \beta_2 x_{2i} + \varepsilon_i$

$$cov (\Delta_i, x_{1i}) = 0.4\beta_2$$
 (endogeneity)

March 12, 2014

Suppose variable x_2 is omitted and we fit the model

$$y_i = \alpha + \beta x_{1i} + \Delta_i$$

 $\Delta_i = \beta_2 x_{2i} + \varepsilon_i$

 $cov (\Delta_i, x_{1i}) = 0.4\beta_2$ (endogeneity)

$$\mathsf{AB} = \frac{\mathsf{cov}\left(x_{1i}, \Delta_{i}\right)}{\mathsf{Var}\left(x_{1i}\right)} = 0.4\beta_{2}$$

イロト 不得下 イヨト イヨト 二日

March 12, 2014

SOME EXAMPLES OF ENDOGENEITY

• Risk factors of coronary heart disease

Carrol, Enciclopedy of Biostatistics, 2005: patients's long-term blood pressure may be measured with error (**errors-in-variables**)

SOME EXAMPLES OF ENDOGENEITY

• Risk factors of coronary heart disease

Carrol, Enciclopedy of Biostatistics, 2005: patients's long-term blood pressure may be measured with error (**errors-in-variables**)

• Effect of smoking on birth weight

Permutt and Hebel, Biometrics, 1989: smoking by pregnant mothers may be correlated with unobserved socioeconomic factors which affect their infant birth weight (omitted covariates)

SOME EXAMPLES OF ENDOGENEITY

• Risk factors of coronary heart disease

Carrol, Enciclopedy of Biostatistics, 2005: patients's long-term blood pressure may be measured with error (**errors-in-variables**)

• Effect of smoking on birth weight

Permutt and Hebel, Biometrics, 1989: smoking by pregnant mothers may be correlated with unobserved socioeconomic factors which affect their infant birth weight (omitted covariates)

• Atherosclerotic cardiovascular disease

Holmes et al., PloS ONE, 2010: C-reactive protein (CPR) may cause atherogenesis or may be produced by inflammation within atherosclerotic plaque. Thus CPR may be a cause and a result of atherosclerosis (simultaneity)

THE METHOD OF INSTRUMENTAL VARIABLES

Image: A matrix and a matrix

э

• First introduced in **Appendix B** of a book authored by **Philip G**. **Wright**, "TheTariff on Animal and Vegetable Oils", published in **1928**.

March 12, 2014

15 / 33

- First introduced in Appendix B of a book authored by Philip G.
 Wright, "TheTariff on Animal and Vegetable Oils", published in 1928.
 - Some people attribute the authorship of Appendix B to Philip's eldest son, **Sewal Wright**

- First introduced in **Appendix B** of a book authored by **Philip G**. **Wright**, "TheTariff on Animal and Vegetable Oils", published in **1928**.
 - Some people attribute the authorship of Appendix B to Philip's eldest son, **Sewal Wright**
- The method consists of using "instruments" (variables not included in the model) to consistently estimate the regression coefficients of endogenous covariates

- First introduced in **Appendix B** of a book authored by **Philip G**. **Wright**, "TheTariff on Animal and Vegetable Oils", published in **1928**.
 - Some people attribute the authorship of Appendix B to Philip's eldest son, **Sewal Wright**
- The method consists of using "instruments" (variables not included in the model) to consistently estimate the regression coefficients of endogenous covariates
- Very useful to investigate possible causal relations in observational studies

$$\mathbf{z}_{i} = \begin{pmatrix} z_{1i} \\ z_{2i} \\ \vdots \\ z_{qi} \end{pmatrix} \quad i = 1, 2, \dots n, \qquad q \ge p$$

Image: A mathematical states and a mathem

March 12, 2014

16 / 33

$$\mathbf{z}_{i} = \begin{pmatrix} z_{1i} \\ z_{2i} \\ \vdots \\ z_{qi} \end{pmatrix} \quad i = 1, 2, \dots n, \qquad q \ge p$$

• **z**_i is **correlated** with the endogenous covariates

$$\mathbf{z}_{i} = \begin{pmatrix} z_{1i} \\ z_{2i} \\ \vdots \\ z_{qi} \end{pmatrix} \quad i = 1, 2, \dots n, \qquad q \ge p$$

- z_i is correlated with the endogenous covariates
- **z**_{*i*} is **uncorrelated** with the error term

$$\mathbf{z}_{i} = \begin{pmatrix} z_{1i} \\ z_{2i} \\ \vdots \\ z_{qi} \end{pmatrix} \quad i = 1, 2, \dots n, \qquad q \ge p$$

- z_i is correlated with the endogenous covariates
- **z**_i is **uncorrelated** with the error term
- rank of $Cov(\mathbf{z}_i) = q$

$$\mathbf{z}_{i} = \begin{pmatrix} z_{1i} \\ z_{2i} \\ \vdots \\ z_{qi} \end{pmatrix} \quad i = 1, 2, \dots n, \qquad q \ge p$$

- z_i is correlated with the endogenous covariates
- **z**_i is **uncorrelated** with the error term
- rank of $Cov(\mathbf{z}_i) = q$

• rank of
$$Cov(\mathbf{z}_i, \mathbf{x}_i) = p$$

THE CENTERED INSTRUMENT MATRIX

$$Z_{c} = \begin{pmatrix} z_{11} - z_{1} & z_{12} - z_{2} & \cdots & z_{1p} - \bar{z}_{p} \\ z_{21} - \bar{z}_{1} & z_{22} - \bar{z}_{2} & \cdots & z_{2p} - \bar{z}_{p} \\ z_{31} - \bar{z}_{1} & z_{32} - \bar{z}_{2} & \cdots & z_{3p} - \bar{z}_{p} \\ \vdots & \vdots & & \vdots \\ z_{n1} - \bar{z}_{1} & z_{n2} - \bar{z}_{2} & \cdots & z_{np} - \bar{z}_{p} \end{pmatrix}$$

Image: Image:

• First, project the model covariates on the space generated by the instruments

$$\widehat{X}_{c} = \overbrace{\left[Z_{c}\left(Z_{c}^{\prime}Z_{c}\right)^{-1}Z_{c}^{\prime}\right]}^{\text{projection matrix}} X_{c} = P_{z}X_{c}$$

• First, project the model covariates on the space generated by the instruments

$$\widehat{X}_{c} = \overbrace{\left[Z_{c}\left(Z_{c}^{\prime}Z_{c}\right)^{-1}Z_{c}^{\prime}\right]}^{\text{projection matrix}} X_{c} = P_{z}X_{c}$$

• \widehat{X}_c represents the part of X_c uncorrelated with ε

$$\begin{aligned} \widehat{\boldsymbol{\beta}}_{IV} &= \left(\widehat{X}_c'\widehat{X}_c\right)^{-1}\widehat{X}_c \mathbf{y} \\ &= \left(X_c'P_z X_c\right)^{-1} X_c'P_z \mathbf{y} \\ &= \left(X_c'Z_c \left(Z_c'Z_c\right)^{-1} Z_c' X_c\right)^{-1} X_c'Z_c \left(Z_c'Z_c\right)^{-1} Z_c' \mathbf{y} \end{aligned}$$

$$\begin{aligned} \widehat{\boldsymbol{\beta}}_{IV} &= \left(\widehat{X}_c'\widehat{X}_c\right)^{-1}\widehat{X}_c \mathbf{y} \\ &= \left(X_c'P_z X_c\right)^{-1} X_c'P_z \mathbf{y} \\ &= \left(X_c'Z_c \left(Z_c'Z_c\right)^{-1} Z_c' X_c\right)^{-1} X_c'Z_c \left(Z_c'Z_c\right)^{-1} Z_c' \mathbf{y} \\ &= \left(\widehat{\Sigma}_{xz}\widehat{\Sigma}_{zz}^{-1}\widehat{\Sigma}_{zx}\right)^{-1} \widehat{\Sigma}_{xz}\widehat{\Sigma}_{zz}^{-1}\widehat{\Sigma}_{zy} \end{aligned}$$

$$\begin{aligned} \widehat{\boldsymbol{\beta}}_{IV} &= \left(\widehat{X}_c'\widehat{X}_c\right)^{-1}\widehat{X}_c \mathbf{y} \\ &= \left(X_c'P_z X_c\right)^{-1}X_c'P_z \mathbf{y} \\ &= \left(X_c'Z_c\left(Z_c'Z_c\right)^{-1}Z_c' X_c\right)^{-1}X_c'Z_c\left(Z_c'Z_c\right)^{-1}Z_c' \mathbf{y} \\ &= \left(\widehat{\Sigma}_{xz}\widehat{\Sigma}_{zz}^{-1}\widehat{\Sigma}_{zx}\right)^{-1}\widehat{\Sigma}_{xz}\widehat{\Sigma}_{zz}^{-1}\widehat{\Sigma}_{zy} \quad \Leftarrow \text{KEY OBSERVATION} \end{aligned}$$

• $\hat{\beta}_{IV}$ is **consistent** and **asymptotically normal** under mild regularity assumptions

- $\hat{\boldsymbol{\beta}}_{IV}$ is **consistent** and **asymptotically normal** under mild regularity assumptions
- But data may contain outliers in the
 - response variable *y_i*
 - covariates x_i
 - instruments z_i

• $\hat{\beta}_{IV}$ is **not robust** (sensitive to outliers in the response, covariates and/or instruments)

- $\hat{\beta}_{IV}$ is **not robust** (sensitive to outliers in the response, covariates and/or instruments)
 - $\widehat{oldsymbol{eta}}_{IV}$ has unbounded influence function

- $\hat{\beta}_{IV}$ is **not robust** (sensitive to outliers in the response, covariates and/or instruments)
 - $\widehat{oldsymbol{eta}}_{IV}$ has unbounded influence function
 - $\widehat{oldsymbol{eta}}_{IV}$ has zero breakdown point

- $\hat{\beta}_{IV}$ is **not robust** (sensitive to outliers in the response, covariates and/or instruments)
 - $\widehat{oldsymbol{eta}}_{IV}$ has unbounded influence function
 - $\widehat{oldsymbol{eta}}_{IV}$ has zero breakdown point
 - $\widehat{\boldsymbol{\beta}}_{IV}$ fails robustness-tests in simulations

March 12, 2014

21 / 33

- $\hat{\beta}_{IV}$ is **not robust** (sensitive to outliers in the response, covariates and/or instruments)
 - $\widehat{oldsymbol{eta}}_{IV}$ has unbounded influence function
 - $\hat{\beta}_{IV}$ has zero breakdown point
 - $\hat{\boldsymbol{\beta}}_{IV}$ fails robustness-tests in simulations
 - $\hat{\beta}_{IV}$ has poor performance in some real data examples due to outliers.

APPLICATION OF INSTRUMENTAL VARIABLES IN MEDICAL RESEARCH

A 🖓 h

 Prior work suggests that high blood pressure can increase the size of the left atrial dimension (Vaziri et al., 1995; Milan et al., 2009; Benjamin et al., 1995).

- Prior work suggests that high blood pressure can increase the size of the left atrial dimension (Vaziri et al., 1995; Milan et al., 2009; Benjamin et al., 1995).
- We use IV to measure the effect of *long-term systolic blood pressure* (SBP) on left atrial size (LAD).

- Our sample includes **164** male subjects from the original cohort who underwent their 16th biennial examination and satisfy the inclusion criteria employed by Vaziri et al. (1995):
 - patient doesn't have a history of heart disease,
 - patient is not taking cardiovascular medication
 - patient has complete clinical data

Following Vaziri et al. (1995), we consider the following model:

Variable	Description	Variable Status
LAD	Left atrial dimension	Response
SBP ₁₆	long-term systolic	Main covariate
	blood pressure	Endogenous
	(Examination $\#$ 16)	(measured with error)
BMI	Body mass index	Control covariate
		Exogenous
AGE	Subject's age	Control covariate
		Exogenous
SBP ₁₅	long-term systolic	Instrument
	blood pressure	
	(Examination $\#$ 15)	

SBP BMI AGE COEFF. 0.011 **3.195** 0.023 P-VALUE 0.684 <0.001</td> 0.685

æ

26 / 33

- ∢ ≣ →

March 12, 2014

< □ > < □ > < □

APPLICATION OF INSTRUMENTAL VARIABLES IN LABOR ECONOMICS

э

APPLICATION OF RIV TO LABOR UNIONS DATA

• Our dataset contains 181 industries in the United States for the year 2003.

APPLICATION OF RIV TO LABOR UNIONS DATA

- Our dataset contains 181 industries in the United States for the year 2003.
- Unionization rates are obtained from the Union Membership and Coverage Database

APPLICATION OF RIV TO LABOR UNIONS DATA

- Our dataset contains 181 industries in the United States for the year 2003.
- Unionization rates are obtained from the Union Membership and Coverage Database
- The fraction of male workers comes from the Census Population Survey

APPLICATION OF RIV TO LABOR UNIONS DATA

- Our dataset contains 181 industries in the United States for the year 2003.
- Unionization rates are obtained from the Union Membership and Coverage Database
- The fraction of male workers comes from the Census Population Survey
- The remaining variables are constructed using data from Compustat

APPLICATION OF RIV TO LABOR UNIONS DATA

- Our dataset contains 181 industries in the United States for the year 2003.
- Unionization rates are obtained from the Union Membership and Coverage Database
- The fraction of male workers comes from the Census Population Survey
- The remaining variables are constructed using data from Compustat

EFFECT OF LABOR UNIONS ON FIRMS' PROFITS

Variable Name	Variable Description	Variable Status
ROA	Accounting profits scaled by assets	Response variable
UNION	Fraction of workers that are unionized	Endogenous, main covariate
GROWTH	Sales growth rate	Exogenous, control covariate
CAPEX	Capital expenditures scaled by assets	Exogenous , control covariate

EFFECT OF LABOR UNIONS ON FIRMS' PROFITS

Variable Name	Variable Description	Variable Status
SIZE	Fixed assets (log scale)	Exogenous, control covariate
LEV	Total debt scaled by assets	Exogenous , control covariate
KL	Capital-labor ratio	Exogenous, control covariate
MALE	Fraction of male workers	Instrument

• Why is UNION endogenous?

æ

- Why is UNION endogenous?
- There are two possible reasons

- Why is UNION endogenous?
- There are two possible reasons
 - 1. UNION and ROA are likely to be simultaneously determined

- Why is UNION endogenous?
- There are two possible reasons
 - 1. UNION and ROA are likely to be simultaneously determined
 - Industry higher performance may stimulate unionization to get a better profits share

- Why is UNION endogenous?
- There are two possible reasons
 - 1. UNION and ROA are likely to be simultaneously determined
 - Industry higher performance may stimulate unionization to get a better profits share
 - It is conjectured that higher unionization cause industry performance to decline

- Why is UNION endogenous?
- There are two possible reasons
 - 1. UNION and ROA are likely to be simultaneously determined
 - Industry higher performance may stimulate unionization to get a better profits share
 - It is conjectured that higher unionization cause industry performance to decline
 - 2. There may be unobserved industry features that determine performance and are correlated with unionization

• Why is MALE a reasonable instrument for UNION?

Image: A matrix

э

32 / 33

March 12, 2014

- Why is MALE a reasonable instrument for UNION?
 - males have more permanent attachment to the labor market and to internal job ladders

March 12, 2014

32 / 33

- Why is MALE a reasonable instrument for UNION?
 - males have more permanent attachment to the labor market and to internal job ladders
 - \Rightarrow males derive higher wage/non-wage benefits from unionizing

- Why is MALE a reasonable instrument for UNION?
 - males have more permanent attachment to the labor market and to internal job ladders
 - \Rightarrow males derive higher wage/non-wage benefits from unionizing
 - \Rightarrow males are more likely to become unionized.

UNION GROWTH CAPEX SIZE LEV KL coeff. -0.271 0.126 0.197 0.003 0.094 0.004 0.013 0.000 0.312 0.005 0.313 p-value 0.128

æ

(日) (同) (三) (三)