
Robustification of the sparse K-means clustering algorithm

by

Yumi Kondo

B.S. Economics, American University, 2009

B.A. Business Administration, Ritsumeikan University, 2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Statistics)

The University Of British Columbia

(Vancouver)

August 2011

c© Yumi Kondo, 2011

Abstract

Searching a dataset for the ‘‘natural grouping / clustering’’ is an important explana-

tory technique for understanding complex multivariate datasets. One might expect

that the true underlying clusters present in a dataset differ only with respect to a

small fraction of the features. Furthermore, one might afraid that the dataset might

contain potential outliers.

Through simulation studies, we find that an existing sparse clustering method

can be severely affected by a single outlier. In this thesis, we develop a robust

clustering method that is also able to perform variable selection: we robustified

sparse K-means (Witten and Tibshirani [28]), based on the idea of trimmed K-

means introduced by Gordaliza [7] and Gordaliza [8]. Since high dimensional

datasets often contain quite a few missing observations, we made our proposed

method capable of handling datasets with missing values. The performance of the

proposed robust sparse K-means is assessed in various simulation studies and two

data analyses. The simulation studies show that robust sparse K-means performs

better than other competing algorithms in terms of both the selection of features

and the selection of a partition when datasets are contaminated. The analysis of

a microarray dataset shows that robust sparse K-means best reflects the oestrogen

receptor status of the patients among all other competing algorithms. We also

adapt Clest (Duboit and Fridlyand [5]) to our robust sparse K-means to provide

an automatic robust procedure of selecting the number of clusters. Our proposed

methods are implemented in the R package RSKC.

Revision: ubcdiss.cls r28

ii

Contents

Abstract . ii

Contents . iii

List of Tables . iv

List of Figures . v

Acknowledgments . vi

1 Introduction . 1
1.1 Clustering . 1

2 Literature review of clustering methods 7
2.1 Introduction . 7

2.2 K-means . 9

2.2.1 The method . 9

2.2.2 The standard computing algorithm (Lloyd’s algorithm) and

Hartigan and Wong’s algorithm 11

2.2.3 Measurements of the agreement between two partitions . . 14

2.2.4 Small simulation studies of K-means 16

2.3 Sparse K-means . 17

2.3.1 K-means as a maximization problem 18

2.3.2 The additivity of dissimilarities in each feature 20

2.3.3 The sparse K-means clustering algorithm 22

2.3.4 The L1 tuning parameter values and the sparsity of features 25

iii

2.3.5 A small simulation study of sparse K-means with datasets

generated from the noisy model 28

2.3.6 Simulation studies of sparse K-means with contaminated

datasets . 29

2.3.7 Simulation studies of sparse 3-means with contamintaed

datasets and fixed L1 tuning parameter values 31

2.4 Trimmed K-means . 32

2.4.1 Trimmed K-means computing algorithm 33

3 Robust sparse K-means clustering 35
3.1 The method . 35

3.1.1 Robust Sparse K-means algorithm 36

3.1.2 The choice of l1 . 38

3.2 Simulation studies of robust sparse 3-means with contaminated

datasets . 39

3.3 Simulation studies to compare the performance of K-means, sparse

K-means, trimmed K-means and robust sparse K-means 42

3.4 Robust sparse K-means with missing values 51

4 Selection of K . 53
4.1 Brief literature review . 53

4.2 The gap statistic . 53

4.2.1 Two methods for generating the reference distributions of

the gap statistic . 54

4.3 Clest . 56

4.3.1 The idea . 56

4.3.2 The idea of the clest algorithm 56

4.3.3 The algorithm of Clest with robust sparse K-means 58

4.4 Simulation studies with Clest . 60

5 Data analysis . 66
5.1 Before moving to the data analysis 66

5.1.1 The dissimilarity measure based on Pearson’s correlation . 66

5.1.2 The revised silhouette 68

iv

5.2 The dataset of van’t Veer et al. [27] 69

5.2.1 Selection of K . 70

5.2.2 The comparison of performances 72

6 Conclusion . 82

Bibliography . 83

A Technical Appendix . 86
A.1 The algorithm of Hartigan and Wong 86

A.2 The difference between Silhouette and the revised silhouette . . . 87

A Technical Appendix . 86
A.1 The algorithm of Hartigan and Wong 86

A.2 The difference between Silhouette and the revised silhouette . . . 87

v

List of Tables

Table 2.1 The pair types and corresponding values of the indicator func-

tions, IC (i, i′) and IC̃ (i, i
′). 15

Table 2.2 The simulation results of 3-means on 100 datasets generated

from the clean model. 16

Table 2.3 The simulation results of 3-means on 100 datasets generated

from the noisy model. 17

Table 2.4 The simulation results of sparse 3-means on 100 datasets gen-

erated from the noisy model. 29

Table 2.5 The simulation results of sparse 3-means with the L1 tuning pa-

rameter values chosen by the permutation approach. 30

Table 2.6 The simulation results of sparse 3-means with fixed L1 tuning

parameter values. 32

Table 3.1 The results of models 1 to 3 with robust sparse 3-means and

fixed l1 constraint. 41

Table 3.2 The number of times the single outlier is captured in OW and

OE over 100 datasets generated from Model 1. 41

Table 3.3 The results from robust sparse 3-means with the fixed L1 value

on datasets generated from models 4 to 8. 44

Table 4.1 The trimming proportion α for the simulation studies of Clest. 60

Table 4.2 The conservative trimming proportion values for the simulation

studies of Clest. 62

Table 5.1 The result from sparse 2-means. The ∗ indicates partitions that

agree with each other. 72

vi

Table 5.2 The result from robust sparse 2-means. The ∗ indicates parti-

tions that agree with each other. 73

vii

List of Figures

Figure 1.1 The simulated dataset consists of 2 clustering features. 2

Figure 1.2 The simulated dataset consists of 2 clustering features and 1000

noise. 3

Figure 1.3 The simulated dataset is consists of 2 clustering features and

1000 noise feautres and a single outlier. 4

Figure 1.4 The simulated dataset consists of two clustering features, 1000

noise features and more than 10 outliers. 5

Figure 2.1 Scatter Plots with and without normalization of datasets. . . . 9

Figure 2.2 Regions of L1 and L2 constraints in R2. 26

Figure 3.1 The distributions of weights from robust sparse K-means on a

dataset simulated from Model 2. The x-axis shows the feature

indices and y-axis shows the weights. 38

Figure 3.2 The weights from robust sparse K-means on a dataset gener-

ated from Model 2 v.s. the between clster sum of squares of

the jth feature. 40

Figure 3.3 The simulation results with µ = 1.0. The y-axis shows the

CERs. K = K-means, SK = Sparse K-means, TK = Trimmed

K-means, and RSK = Robust Sparse K-means. 45

Figure 3.4 The simulation results with µ = 1.0. The y-axis shows the

median proportions of weights on the clustering features. . . 46

Figure 3.5 The simulation results with µ = 0.8. The y-axis shows CERs. 47

Figure 3.6 The simulation results with µ=0.8. The y-axis shows the me-

dian proportions of weights on the clustering features. 48

viii

Figure 4.1 The results of Clest on datasets generated from 8 models with

µ = 2. The histogram of the estimated number of clusters from

Clest over 50 generated datasets for each model. 61

Figure 4.2 The results of Clest on datasets generated from 8 models with

µ = 2. The histogram of the estimated number of clusters from

Clest over 50 generated datasets for each model. We use the

conservative trimming proportion values. 62

Figure 4.3 The results of Clest on datasets generated from 8 models with

µ = 1. The histogram of the estimated number of clusters from

Clest over 50 generated datasets for each model. 64

Figure 4.4 The results of Clest on datasets generated from 8 models with

µ = 1. The significance level, β is set to 1. The histogram of

the estimated number of clusters from Clest over 50 generated

datasets for each model. 65

Figure 5.1 Solid circles represent significant p-values. Clest chooses K=2

as a solution for all pairs of α and l1 values. 71

Figure 5.2 The call rate plot of the 4 algorithms. The results of the sparse

2-means and robust sparse 2-means with α = 1/78,5/78 and

10/78. The results of sparse methods with l1=6 are shown. . . 75

Figure 5.3 The silhouettes of the partition returned by the robust sparse

2-means clustering. The L1 tuning parameter value is 6. . . . 77

Figure 5.4 The weighted squared Euclidean distances between all cases

and their cluster centers from the result of robust sparse 2-

means with l1 = 6. 78

Figure 5.5 The weighted squared Euclidean distances between the cases

and their cluster centers for the result of sparse 2-means with

l1 = 6. 79

Figure 5.6 The nonzero weights from robust sparse 2-means for selected

l1 values. The three rows show the results of robust sparse

2-means with α=1/78, 5/78 and 10/78, respectively. 80

Figure 5.7 The nonzero weights from sparse 2-means for selected l1 val-

ues. 81

ix

Figure A.1 The example of negative Silhouette. 89

Figure A.1 The example of negative Silhouette. 89

x

Acknowledgments

I would like to express my gratitude to my supervisors, Professor Matias Salibian-

Barrera and Professor Ruben H. Zamar. Your patient teaching, encouragement and

guidance were absolutely necessary to complete this thesis. I am very thankful that

you let me think about problems throughly and taught me how to approach to them.

You made Statistics very interesting to me. I also express my gratitude to Professor

John Petkau to be the second reader of this thesis.

I would like to thank every single friend of mine at UBC Statistics department.

The discussions with you at LSK office late night inspired me and enriched my

understanding in Statistics. Without all of you, I could not have enjoyed the process

of learning this much nor could I push myself for learning. I will never forget this

intense two years at UBC and I am proud of completing MSc in Statistics with you.

xi

Chapter 1

Introduction

1.1 Clustering
Searching for ‘‘natural’’ groups of objects is an important exploratory technique

for understanding complex data. The origins of clustering can be traced back to

taxonomy where it is necessary that different people assign similar objects to the

same group. Clusterings or groupings were traditionally done by taxonomists who

picked important grouping variables based on their rich knowledge of species. To-

day, the principal function of clustering is to name, display, summarize and to elicit

an explanation for the resulting partitions of the dataset (Hartigan [10]).

In Statistics and Computer Science, clustering means automatic (computer

aided) grouping of similar cases based on some dissimilarity measure. Cluster-

ing is sometimes refereed to as ‘‘numerical taxonomy’’.

For example, a DNA microarray is a type of dataset to which clustering algo-

rithms are applied. A microarray is a rectangular array of N rows, one for each case

(e.g. a patient or a tumor) and p columns, one for each feature (e.g. genes, SNP’s).

A reliable, precise and robust classification of tumors is essential for successful

diagnosis of cancer. In a clinical application of microarray-based cancer diagnos-

tics, the definition of new tumor classes can be based on the partitions produced

by clustering. The clusters would then be used to build predictors for new tumor

samples (Duboit and Fridlyand [5]).

Current applications of clustering algorithms often include a large number of

1

(a) True cluster labels (b) The partition from 2-means

Figure 1.1: The simulated dataset consists of 2 clustering features.

features and visualizing such datasets is difficult. Typically, only a relatively small

number of features are important to determine the class memberships of the cases.

If thousands of potential clustering features must be considered, the traditional

taxonomists’ approach of hand picking important features becomes difficult and

impractical. Instead, we need a method that automatically chooses the important

clustering variables. Furthermore, large datasets may contain outliers, which are

defined as cases that do not belong to any of the given clusters. Then we may wish

to use a wise algorithm that identifies the important features and outliers together

with the clusters.

As a motivating example, we generate 100 independent cases from a bivariate

normal distribution. Fifty cases are from a bivariate normal distribution with mean

(0,0)T and the remaining 50 cases have mean (3,3)T . In this thesis, the features

whose means vary over clusters are called ‘‘clustering features’’. Non-clustering

features are called ‘‘noise features’’. The first panel of Figure 1.1 shows the dis-

tribution of the generated sample marked by true cluster labels. From the second

panel, we see that 2-means successfully identifies the two clusters. In the first and

the second panels of Figure 1.2, we show the clustering result when 1000 noise

2

(a) The partition from 2-means (b) The partition from sparse 2-means

Figure 1.2: The simulated dataset consists of 2 clustering features and 1000
noise.

features are added to the original bivariate data. The noise features are all indepen-

dent standard normal variables. In this new setting, 2-means fails to identify the

two clusters (first panel in Figure 1.2). Sparse 2-means, however, automatically

identifies the two clustering features and manages to distinguish the given clusters

(second panel in Figure 1.2).

Now, we examine the effect of adding some outliers to this dataset. A single

extreme value is added to the clustering feature 1. Figure 1.3 shows the partition

results: sparse 2-means fails to identify the two clusters.

Sparse 2-means returns a cluster with a single outlier and a cluster with all the

rest of the cases. However, our proposed robust sparse 2-means automatically finds

the outlier and correctly identifies the two clusters.

As another motivating example, 10 outliers are added to the clustering features

1 and 2. The first panel of Figure 1.4 shows the true cluster labels with respect to the

marginal bivariate distribution of the two clustering features. Outliers are marked

with a symbol ‘‘+’’. The second panel shows the partition result of sparse 2-means.

Again, sparse 2-means returns a cluster which contain only the outliers. The third

panel shows the partition result of robust 2-means. It successfully captures all the

3

(a) The true cluster labels (b) The partition from sparse 2-means

(c) The partition from robust sparse 2-means

Figure 1.3: The simulated dataset is consists of 2 clustering features and 1000
noise feautres and a single outlier.

4

(a) The true cluster labels (b) The partition from sparse 2-means

(c) The partition from robust sparse 2-means

Figure 1.4: The simulated dataset consists of two clustering features, 1000
noise features and more than 10 outliers.

outliers and identifies the two true clusters.

The rest of this thesis is organized as follows. In Chapter 2, we review some

existing clustering methods: K-means, sparse K-means and trimmed K-means

are discussed there. In Chapter 3, robust sparse K-means is proposed. The per-

formance of the proposed algorithm is assessed using several simulated datasets.

5

Chapter 4 discusses methods to select the appropriate number of clusters. Chapter

5 contains the application of the robust sparse K-means method to a microarray

dataset. The conclusion is in Chapter 6.

6

Chapter 2

Literature review of clustering
methods

2.1 Introduction
In this chapter we review three clustering methods which provide the foundation

for our proposed robust sparse procedure: K-means, sparse K-means and trimmed

K-means. Let X ∈ RN×p denote the data matrix with N cases and p features and

let xi ∈ Rp denote the ith row of X (i = 1, · · · ,N). Moreover, let X j ∈ RN denote

the jth column of X (j = 1, · · · , p). That is:

X = [X1 · · ·Xp] =

xT

1
...

xT
N

=

x11 · · · x1p
...

...

xN1 · · · xN p

 .
A cluster can be described as a group of ‘similar’ cases. The cases within a clus-

ter should be more ‘similar’ to each other than to cases from other clusters. It is

immediately clear that partitions depend on the definition of ‘dissimilarity’. Se-

ber [21] defines a function d : Rp×Rp→ R+ to be a dissimilarity if d(a,a) = 0,

d(a,b) ≥ 0 and d(a,b) = d(b,a) for all a and b ∈ Rp. It measures how different

a and b are. Note that all distance measures are dissimilarity measures. The most

intuitive choice for a dissimilarity measure is the Euclidean distance or the squared

7

Euclidean distance. The Euclidean distance between two cases is the length of the

line segment connecting them. The Euclidean distance between vectors xi and xi′

is defined as:

||xi−xi′ ||=
√

(xi−xi′)T (xi−xi′) (2.1)

=
√

(xi1− xi′1)2 + · · ·+(xip− xi′p)2

=

√√√√ p

∑
j=1

(xi j− xi′ j)2.

This distance takes into account the differences between xi and xi′ directly, based on

the magnitude of the coordinates in the difference vector. The squared Euclidean

distance is simply ||xi− xi′ ||2. The squared Euclidean distance is additive in the

features. This additivity will play a central role for sparse K-means clustering (see

Section 2.3). For this reason, we mostly employ the squared Euclidean distance as

a dissimilarity measure in this thesis.

The squared Euclidean distance between two cases assigns equal weights to all

the squared differences along features:

||xi−xi′ ||2 = 1 · (xi1− xi′1)
2 + · · ·+1 · (xip− xi′p)

2.

It implicitly assumes that units of all the features are the same. That is, with-

out appropriate normalization of a dataset, the variable with the largest scale may

dominate the distance. Let X∗= [X∗1 · · ·X∗p] = [x∗i j]∈RN×p denote a nonnormalized

dataset. From here, let X ∈ RN×p denote the normalized dataset:

xi, j =
x∗i j− x̄∗j

sd j
, (2.2)

where

x̄∗j =
∑

N
i=1 x∗i j

N
, and sd j =

√
∑

N
i=1(x

∗
i j− x̄∗j)2

N−1
.

Then clearly, all the features of X have unit sample standard deviation. One can

8

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

−20 −10 0 10 20

−
20

−
10

0
10

20

Clustering feature

N
oi

se
 fe

at
ur

e

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Clustering feature

N
oi

se
 fe

at
ur

e

Figure 2.1: Scatter Plots with and without normalization of datasets.

see the necessity of normalization of the dataset by a simple simulated example

in Figure 2.1. It shows 60 cases from two clusters, generated from two bivariate

normal distributions. The two clusters are separated only by a clustering feature.

The marginal variance of clustering feature is 1 while the marginal variance of the

noise feature is set to 40. The left panel shows a nonnormalized raw dataset and

the right panel shows its normalized dataset. Since the scale of the noise feature

is
√

40 times larger, the two clusters are almost hidden in the left panel. However,

after the normalization, one can see the two clusters more clearly.

For these reasons, normalization is critical for the squared Euclidean dissimi-

larity measure. Throughout this paper, we assume that the dataset X has already

been normalized.

2.2 K-means
The term ‘K-means’ was first used by MacQueen [16] in 1967 but the idea goes

back to Steinhaus [23] in 1956.

9

2.2.1 The method

K-means partitions N cases into a predetermined number, K, of clusters (1≤ K ≤
N). The goal of K-means is to find the partition of cases which minimizes the sum

of the dissimilarities between cases within each cluster.

Let Ck denote the set of the case indices in the kth cluster and set |Ck| = nk,

where |A| is the number of elements in set A. Then C = {C1, ..,CK} is a partition

of the dataset into K clusters. For any partition C and dissimilarity d, we can define

the overall within cluster dissimilarity:

OWCD(C) =
K

∑
k=1

∑
i,i′∈Ck

d(xi,xi′).

An issue may arise if one looks for the partition C that minimizes OWCD(C):

partitions C with same cluster sizes, n1 = · · · = nK , may be favored even if there

is a clear cluster structure with different cluster sizes. To see this, if the ĩth case is

clustered in Ck̃, then there are 2nk̃ distance components in the sum of OWCD(C)

associated with the ĩth case. This is because each distance is counted twice and

the distance of itself, d(xĩ,xĩ), is also counted. Suppose there is another cluster

Ck′ whose cluster size is considerably smaller than the cluster size of Ck̃: nk̃� nk′ .

Then even if the cases in Ck′ are more dissimilar to the ĩth case than the cases

in Ck̃, the partition that minimizes OWCD(C) would prefer to have the ĩth to be

clustered in Ck′ . This is because by doing so the number of distance components

decreases in OWCD(C). In order to solve this issue, we can define the within

cluster dissimilarity as:

WCD(C) =
K

∑
k=1

1
2nk

∑
i,i′∈Ck

d(xi,xi′).

The goal of K-means is to find a partition C ∗ that minimizes WCD(C). That is:

C ∗ = argmin
C ; |C |=K

WCD(C). (2.3)

When the dissimilarity measure is the squared Euclidean distance, WCD(C) is

10

called within cluster sum of Squares:

WSS(C) =
K

∑
k=1

1
2nk

∑
i,i′∈Ck

||xi−xi′ ||2.

Interestingly, WSS(C) can be rewritten in terms of the distances to the kth cluster

center if one defines a center of the kth cluster as the average vector over the cases

within the kth cluster:

x̄k =
1
nk

∑
i∈Ck

xi.

WSS(C) can be expressed in terms of the cluster centers as follows:

WSS(C) =
K

∑
k=1

1
2nk

∑
i,i′∈Ck

||xi−xi′ ||2

=
K

∑
k=1

1
2nk

∑
i,i′∈Ck

||xi− x̄k + x̄k−xi′ ||2

=
K

∑
k=1

1
2nk

(
nk ∑

i∈Ck

||xi− x̄k||2

+ ∑
i∈Ck

(xi− x̄k)
T

∑
i′∈Ck

(x̄k−xi′)+nk ∑
i′∈Ck

||x̄k−xi′ ||2
)

=
K

∑
k=1

∑
i∈Ck

||xi− x̄k||2. (2.4)

Then K-means with squared Euclidean distance solves the minimization problem:

min
C ; |C |=K

WSS(C) = min
C ; |C |=K

K

∑
k=1

∑
i∈Ck

||xi− x̄k||2. (2.5)

Use of the expression in (2.5) with the mean term facilitates the computation. This

is one of the reasons why the squared Euclidean distance is a popular choice for

the dissimilarity measure.

11

2.2.2 The standard computing algorithm (Lloyd’s algorithm) and
Hartigan and Wong’s algorithm

No analytic solution is available for (2.3). One might calculate the values of the

objective functions for all the partitions. However, even with K=2 one has to con-

sider ∑
bN/2c
i=1

(N
i

)
possible partitions. The number of partition grows rapidly with

the sample size, N. Various algorithms have been proposed to achieve a local

optimum of (2.3). The most popular ones are due to Lloyd [14], Hartigan and

Wong [11], MacQueen [16] and Forgy [6]. All these algorithms adopt the squared

Euclidean distance as a dissimilarity measure. MacKay [15] stated that the most

commonly used standard iterative algorithm was that proposed by Lloyd [14]. The

trimmed K-means algorithm, introduced in Section 2.4, robustifies this method.

The kmeans command in the R package stat uses Hartigan and Wong’s al-

gorithm by default. This algorithm made Lloyd’s algorithm (Lloyd [14]) more

efficient and generally achieves better local optima than other methods. Sparse K-

means, introduced later, uses Hartigan and Wong’s algorithm. First, we introduce

Lloyd’s algorithm then we will introduce Hartigan and Wong’s algorithm, which is

substantially more complicated.

2.2.2.1 The standard computing algorithm (Lloyd’s algorithm)

Here, we use another notation, IC1(i), to describe a partition C . IC1(i) represents

the index of the cluster to which the ith case belongs. That is, IC1(i) = k is equiv-

alent to i ∈ Ck. Randomly choose K cases to serve as initial cluster centers and

assign each case to its closest initial cluster center. Repeat 1 and 2 below until

convergence.

• Step (a): Given a cluster assignment, update new cluster centers equal to the

cluster means, x̄k for k = 1, · · · ,K.

• Step (b): Given cluster centers, update a class assignment by assigning each

case to its closest cluster center. The index of the cluster to which the ith case

belongs is denoted by IC1(i) = argmin
1≤k≤K

||xi− x̄k||2 ∀i ∈ {1, · · · ,N}.

Since each iteration minimizes the objective function, the algorithm converges to a

local minimum. The solutions can differ from each other depending on the random

12

selection of initial cluster centers. The user of the K-means algorithm should try

several initial cluster centers and choose the partition that corresponds to the local

minimum with the smallest objective function, WSS(C), among all the local min-

imums. Also, this algorithm can return a partition with less than K clusters. This

may happen when some cluster centers do not have any case that is closest to them.

2.2.2.2 Hartigan and Wong’s algorithm

Hartigan and Wong’s algorithm differs from Lloyd’s algorithm mainly in three

ways. First, they differ in the reassignment criteria. Lloyd’s algorithm reassigns

a case from the kth
1 cluster to the kth

2 cluster if it is closer to the kth
2 cluster center.

Therefore, Step (b) of Lloyd’s algorithm compares the distances:

||xi− x̄k2 ||
2 < ||xi− x̄k1 ||

2. (2.6)

However, Hartigan and Wong’s algorithm uses a different criterion. Sparks (1973)

proposed that it is more effective to reassign the case if the squared Euclidean

distance from the center of the kth
2 cluster is less than that from the center of the

kth
1 cluster, even when the cluster centers are simultaneously repositioned (Sparks

[22]). That is, when:

nk2

nk2 +1
||xi− x̄k2 ||

2 <
nk1

nk1−1
||xi− x̄k1 ||

2. (2.7)

Criterion (2.6) is a sufficient condition for criterion (2.7) because
nk2

nk2+1 < 1<
nk1

nk1−1 .

Therefore, reassignments of cases occur less frequently with (2.6) than with (2.7).

Second, Hartigan and Wong’s algorithm is more efficient. The Lloyd’s algo-

rithm is inefficient in the sense that it computes the squared Euclidean distances

between all cases and all cluster centers until convergence. Consider the situation

when K=4 and cluster C1 and C2 are clearly defined while remaining clusters, C3

and C4, have a large overlap. Then the cases in C1 and C2 would stop switching be-

tween clusters at an early stage while the cases in C3 and C4 would keep switching

clusters. Lloyd’s algorithm, however, calculates the squared Euclidean distances

of all cases, including the cases in C1 and C2, to all cluster centers until all cases

stop switching between clusters (convergence). Hartigan and Wong’s algorithm re-

13

computes the squared Euclidean distances between a case and cluster centers that

have the potential to be its new cluster centers. Hartigan and Wong define a set, the

‘‘live set’’, that contains all the clusters whose cluster centers have the potential to

change. By treating the cases in clusters that belong to the live set differently from

others, Hartigan and Wong’s algorithm became computationally more efficient.

Third, Hartigan and Wong’s algorithm achieves a better local optimum. In

Lloyd’s algorithm, when each case is examined to see if it should be reassigned to

a different cluster at Step (b), only the closest cluster center is used to check for the

possible reallocation. However, Hartigan and Wong’s algorithm examine not only

the closest cluster center but also the second closest center. The details of how they

examine the two cluster centers and the algorithm are described in Appendix A.1.

Hartigan and Wong [11] showed that their algorithm achieves a better local

optimum than Lloyd’s algorithm in general. Therefore, we will use Hartigan and

Wong’s algorithm to compute K-means and sparse K-means throughout this thesis.

2.2.3 Measurements of the agreement between two partitions

In order to assess the performance of different cluster algorithms we need to mea-

sure how well two given partitions C and C̃ agree. For instance, in a simulation

study we would like to compare the partitions produced by the different clustering

algorithms with the ‘‘true partition’’ generated by the model. Given two cases and

two partitions C and C̃ , there are four possible scenarios (Hubert [12]):

Type 1: the two cases belong to a single cluster in both C and C̃ ,

Type 2: the two cases belong to different clusters in both C and C̃ ,

Type 3: the two cases belong to different clusters in C but to the same cluster

in C̃ ,

Type 4: the two cases belong to the same cluster in C but to different clusters

in C̃ .

Cases of types 1 and 2 suggest agreement of the two partitions while cases of

types 3 and 4 suggest disagreement. This definition is used in the famous Rand

index (Rand [19]), as well as in the classification error rate (CER) (Chipman and

14

IC (i, i′) IC̃ (i, i
′) |IC (i, i′)− IC̃ (i, i

′)|
Type 1 1 1 0
Type 2 0 0 0
Type 3 0 1 1
Type 4 1 0 1

Table 2.1: The pair types and corresponding values of the indicator functions,
IC (i, i′) and IC̃ (i, i

′).

Tibshirani [2]). The CER is simply the proportion of pairs of cases that are together

in one partition and apart in the other partition, i.e., Type 3 or Type 4 pairs of cases.

On the other hand, the Rand Index is the proportion of Type 1 or Type 2 pairs of

cases. Therefore, CER = 1 - Rand index. Throughout this thesis, we will use

CER as a measurement of agreement of two partitions. The calculation of CER is

described in the following section.

2.2.3.1 The calculation of CER

CER was first proposed by Chipman et al. [3] in the context of decision trees. Later,

Chipman and Tibshirani [2] applied this measurement for clustering. Let IC be an

indicator function, IC : {1, · · · ,N}×{1, · · · ,N} → {0,1}. Given the pair of case

indices, (i, i′), the indicator function returns 1 if the ith case and the i′th case are

paired in partition C and returns 0 if they are apart:

IC (i, i′) =

{
1 if i and i′ belong to the same cluster in partition C ,

0 otherwise.

Given two partitions C and C̃ , the four types of the pairs can be represented by

the output of two indicator functions IC (i, i′) and IC̃ (i, i
′) as in Table 2.1. Then the

absolute difference of the two indicator functions, IC and IC̃ is zero if the pairs of

cases are apart or together in both partitions while it is one if the pair is apart in

one partition and together in another.

15

CER is the percentage of the pairs of cases that are Type 3 or Type 4:

CER(C ,C ′) =
∑i>i′ |IC (i, i′)− IC̃ (i, i

′)|(N
2

) .

Note that there are
(N

2

)
pairs of cases and this factor scales the range of CER to

be between zero and one. CER(C , C̃) equals zero if the two partitions perfectly

agree and becomes one if the two partitions completely disagree (Chipman and

Tibshirani [2]). For example, if C contains a single cluster, |C | = 1, while C̃

contains as many clusters as sample size, |C̃ |= N, then all the pairs of clusters are

Type 4 and CER becomes 1.

2.2.4 Small simulation studies of K-means

Since K-means is easy to understand (minimizes a simple objective function) and

readily available in many statistical packages, this algorithm has been a popular

choice in many fields. In fact, K-means performs well to identify clusters when

the datasets do not contain noise features. To see this, we report on a small sim-

ulation study with the following simulation model. We will refer to this model

as ‘‘clean model’’. A dataset generated from the clean model contains 60 cases

xi = [xi1, · · · ,xi50]
T (i = 1, · · · ,60). The cases are generated from 3 clusters as

xi j = µi + εi j, with εi j
i.i.d∼ N(0,1) where:

µi =

µ if 1≤ i≤ 20,

0 if 21≤ i≤ 40,

−µ if 41≤ i≤ 60.

Note that all the 50 features are clustering features. We consider different val-

ues for µ in our simulations (µ = 1 and 0.8). The magnitude of µ controls how

close the clusters are. In this simulation model, the true partition of cases is C ′ =

{C1,C2,C3} where C1 = {1, · · · ,20},C2 = {21, · · · ,40} and C3 = {41, · · · ,60}.
We generate 100 datasets from the clean model for each µ . Then K-means

with K=3 is performed on each dataset. K-means with K predetermined to be 3 is

called 3-means. Harigan and Wong’s algorithm is used, as implemented in the R

16

µ CER
1.0 0.00 (0.003)
0.8 0.01 (0.016)

Table 2.2: The simulation results of 3-means on 100 datasets generated from
the clean model.

package stat as a default method. The performance of 3-means is assessed by

CER between the true partition C ′ and the partition returned by the algorithm.

The average and the standard deviation of CERs over 100 simulations are re-

ported in Table 2.2. The CERs are nearly 0 for both µs, indicating that 3-means

can recover the true cluster structure nearly perfectly.

A drawback of K-means is that it uses all p features to obtain partitions re-

gardless of their importance for clustering. Since K-means does not automatically

perform feature selection, the user must decide by himself which features are the

clustering features. To illustrate this issue, we examine the performance of 3-means

in a dataset generated from a ‘‘noisy model’’. The dataset generated from the noisy

model consists of 60 cases, xi = [xi1, · · · ,xi500]
T and 500 features (i = 1, · · · ,60).

The first 50 features are clustering features, generated as in the clean model. The

last 450 features are noise features. That is for j = 51, · · · ,500, xi j is defined as

xi j = εi j.

µ CER
1.0 0.02 (0.020)
0.8 0.10 (0.061)

Table 2.3: The simulation results of 3-means on 100 datasets generated from
the noisy model.

We generate 100 datasets from the noisy model for each µ (µ = 1 or 0.8)

and perform 3-means on each dataset, using Harigan and Wong’s algorithm. The

average CER values are reported in Table 2.3. The result is shown in Table 2.3.

The performance of 3-means becomes poorer on datasets from the noisy model

than on datasets from the clean model.

17

2.3 Sparse K-means
Our small simulation study above shows that the performance of K-means may

deteriorate when datasets contain many noise features. To address this problem,

Witten and Tibshirani [28] proposed the sparse K-means algorithm which clusters

the cases using an adaptively chosen subset of the features. Sparse K-means is

based on the fact that the problem of K-means can be viewed as a maximization

problem. Moreover, it hinges critically on the assumption that the dissimilarity is

additive in each feature. Before moving onto the discussion of sparse K-means, we

introduce this different representation of the problem of K-means in Section 2.3.1.

We will explain that some dissimilarities can be decomposed by each feature in

Section 2.3.2.

2.3.1 K-means as a maximization problem

We will show below that minimizing the overall within cluster dissimilarity is the

same as maximizing the overall between cluster dissimilarity. The overall between

cluster dissimilarity is defined as:

OBCD(C) =
K

∑
k=1

∑
i∈Ck

∑
i′ /∈Ck

d(xi,xi′).

Moreover, we define the overall total cluster dissimilarity to be the sum of the

dissimilarities of all the pairs of cases:

OTCD =
N

∑
i=1

N

∑
i′=1

d(xi,xi′). (2.8)

Therefore, OTCD does not depend on a partition, C .

Now we will show that OBCD(C) is simply the difference between the overall

total cluster dissimilarity and the overall within cluster dissimilarity:

OBCD(C) = OTCD−OWCD(C).

18

To see this:

OTCD =
N

∑
i=1

N

∑
i′=1

d(xi,xi′)

=
K

∑
k=1

∑
i∈Ck

N

∑
i′=1

d(xi,xi′)

=
K

∑
k=1

∑
i∈Ck

(
∑

i′ /∈Ck

d(xi,xi′)+ ∑
i′∈Ck

d(xi,xi′)

)

=
K

∑
k=1

∑
i∈Ck

∑
i′ /∈Ck

d(xi,xi′)+
K

∑
k=1

∑
i∈Ck

∑
i′∈Ck

d(xi,xi′)

= OWCD(C)+OBCD(C). (2.9)

As in (2.8), the total cluster dissimilarity can be defined as:

TCD =
1

2N

N

∑
i=1

N

∑
i′=1

d(xi,xi′).

Then it is natural from (2.9) to define the between cluster dissimilarity:

BCD(C) = TCD−WCD(C)

=
1

2N

N

∑
i=1

N

∑
i′=1

d(xi,xi′)−
K

∑
k=1

1
2nk

∑
i,i′∈Ck

d(xi,xi′).

With the definition of WCD(C), BCD(C) and TCD, now we can show that

the minimization problem of K-means (2.3) can be rewritten as a maximization

problem:

C ∗ = argmin
C ; |C |=K

WCD(C)

= argmin
C ; |C |=K

{TCD−BCD(C)}

= argmin
C ; |C |=K

{−BCD(C)} (since TCD does not depend on C)

= argmax
C ; |C |=K

BCD(C). (2.10)

19

For the squared Euclidean dissimilarity measure, the total cluster dissimilarity

is called the total cluster sum of squares (TSS) and the between cluster dissimilarity

is called the between cluster sum of square (BSS). Then we have:

T SS =
1

2N

N

∑
i=1

N

∑
i′=1
||xi−xi′ ||2,

BSS(C) = T SS−WSS(C). (2.11)

As WSS(C),T SS(C) can also be expressed in terms of the distances to the cluster

centers:

T SS =
1

2N

N

∑
i=1

N

∑
i′=1
||xi− x̄+ x̄−xi′ ||2

=
1

2N

(
N

N

∑
i=1
||xi− x̄||2 +

N

∑
i=1

(xi− x̄)T
N

∑
i′=1

(x̄−xi′)+N
N

∑
i′=1
||x̄−xi′ ||2

)

=
N

∑
i=1
||xi− x̄||2. (2.12)

Therefore, BSS(C) can be also expressed in terms of the distances to the cluster

centers:

BSS(C) =
N

∑
i=1
||xi− x̄||2−

K

∑
k=1

∑
i∈Ck

||xi− x̄k||2.

Then the minimization problem of K-means with the squared Euclidean dissimi-

larity measure (2.5) is equivalent to the maximization problem:

C ∗ = argmax
C

BSS(C). (2.13)

This maximization approach to the K-means problem is used in the sparse K-means

algorithm.

20

2.3.2 The additivity of dissimilarities in each feature

Sparse K-means hinges critically on the assumption that the dissimilarity measures

can be represented as a sum of terms which depend on a single feature each. In

other words, sparse K-means assumes that BCD(C) can be decomposed as follows:

WCD(C) =
p

∑
j=1

WCD j(C),

TCD =
P

∑
j=1

TCD j,

BCD(C) =
p

∑
j=1

BCD j(C).

where WCD j(C),TCD j and BCD j(C) depend only on the jth column of X ∈
RN×p. This assumption is satisfied if the dissimilarity measure is additive in the

features:

d(xi,xi′) =
p

∑
j=1

d j(xi,xi′).

Note that d j(xi,xi′) is the dissimilarity between xi and xi′ along the jth feature.

Our derivations below show that this assumption holds for the squared Euclidean

distances:

WSS(C) =
K

∑
k=1

∑
i∈Ck

||xi− x̄k||2 (From (2.4))

=
K

∑
k=1

∑
i∈Ck

p

∑
j=1

(xi j− x̄k, j)
2 where x̄k, j =

1
nk

∑
i∈Ck

xi j

=
p

∑
j=1

{
K

∑
k=1

∑
i∈Ck

(xi j− x̄k, j)
2

}

=
p

∑
j=1

WSS j(C)

21

T SS =
N

∑
i=1
||xi− x̄||2 (From (2.12))

=
N

∑
i=1

p

∑
j=1

(xi j− x̄ j)
2 where x̄ j =

1
N

N

∑
i=1

xi j

=
p

∑
j=1

{
N

∑
i=1

(xi j− x̄ j)
2

}

=
p

∑
j=1

T SS j.

Finally,

BSS(C) =WSS−T SS (From (2.11))

=
p

∑
j=1

{
T SS j−WSS j(C)

}
=

p

∑
j=1

BSS j(C).

Notice that BSS j(C), can be interpreted as the contribution of the jth feature to

the separation between the given K clusters. We can expect clustering features to

have large values of BSS j(C) while noise features should have small values. In

Section 2.3.3, we will introduce the sparse K-means with the squared Euclidean

dissimilarity measure.

2.3.3 The sparse K-means clustering algorithm

Now we are ready to introduce sparse K-means. More precisely, sparse K-means

is defined as the solution to the problem:

max
C ,w; |C |=K

p

∑
j=1

w jBSS j(C) s.t. ||w||1 ≤ l1, ||w||2 ≤ 1,w j ≥ 0 ∀ j, (2.14)

22

where w = [w1, · · · ,wp]
T . Note that ||a||1 represents the L1 norm of the vector

a. The idea is that the algorithm returns sparse weights such that only clustering

features receive nonzero weights. The L1 penalty on w results in sparsity for small

values of the tuning parameter l1. The L1 tuning parameter value should be selected

between 1 and
√

p to have sparse weights. The L2 penalty also serves an important

role, since without it, at most one element of w would be nonzero in general. This

point is discussed in Section 2.3.4.

Witten and Tibshirani [28] proposed an algorithm to solve (2.14): the algorithm

simply maximizes (2.14) over C and w iteratively.

Initially choose equal weights for all features, i.e. let w = 1/p1 where 1 =

[1, · · · ,1]T ∈ Rp. Repeat steps (a) and (b) below until convergence.

• Step (a): For a given w, maximize (2.14) with respect to C . That is, perform

K-means on the transformed dataset, Y:

argmin
C ; |C |=K

WSSY(C). (2.15)

where WSSY(C) represents the within cluster sum of squares calculated on

the dataset Y ∈ RN×p. The columns of Y are the columns of X multiplied

by the corresponding weights. The transformation of the dataset into Y is

explained in Section 2.3.3.1.

• Step (b): For a given C , maximize (2.14) with respect to w:

max
w

wT D s.t. ||w||2 ≤ 1, ||w||1 ≤ l1,w j ≥ 0 ∀ j, (2.16)

where D = [BSS1(C), · · · ,BSSp(C)]T . The analytic solution for this opti-

mization problem, given by Witten and Tibshirani [28], is w(4∗) where:

w(4) =
(D−41)+
||(D−41)+||

, (2.17)

23

and

4∗ =

{
0 if ||w(0)||1 ≤ l1,

root of ||w(4)||1− l1 = 0 otherwise .

Note that a+ = a if a≥ 0 and a+ = 0 if a < 0.

2.3.3.1 The transformation of the dataset X into Y

Sparse K-means aims at finding clusters and weights that simultaneously maximize

the sum of the dissimilarity measures across clusters. If weights were fixed, then

(2.14) becomes the objective function of K-means with weighted within cluster

sum of squares:

argmax
C ; |C |=K

p

∑
j=1

w jBSS j(C) = argmin
C ; |C |=K

p

∑
j=1

w jWSS j(C). (2.18)

One can see this problem as a K-means problem on a transformed dataset Y ∈
RN×p. We transform the dataset, X, into Y by scaling the jth feature of the dataset

X j by√w j. Specifically, let:

Y =

y11 · · · y1p
...

...

yN1 · · · yN p

=

√

w1x11 · · · √wpx1p
...

...
√

w1xN1 · · · √wpxN p

=[
√

w1X1 · · ·
√

wpXp].

The within cluster sum of squares calculated on the transformed dataset Y can be

expressed as:

WSSY(C) =
K

∑
k=1

1
2nk

∑
i,i′∈Ck

||yi−yi′ ||2, (2.19)

24

and is equivalent to the objective function on the left hand side in (2.18). To see

this:

WSSY(C) =
K

∑
k=1

1
2nk

∑
i,i′∈Ck

p

∑
j=1

(yi j− yi′ j)
2

=
K

∑
k=1

1
2nk

∑
i,i′∈Ck

p

∑
j=1

(
√

w jxi j−
√

w jxi′ j)
2

=
K

∑
k=1

1
2nk

∑
i,i′∈Ck

p

∑
j=1

w j(xi j− xi′ j)
2

=
p

∑
j=1

w j

K

∑
k=1

∑
i,i′∈Ck

1
2nk

(xi j− xi′ j)
2

=
p

∑
j=1

w jWSS j(C).

Therefore, for fixed weights, the problem of (2.14) becomes the problem of K-

means on the transformed dataset Y:

argmax
C ; |C |=K

p

∑
j=1

w jBSS j(C) = argmin
C ; |C |=K

WSSY(C).

The R package sparcl contains the function KMeanSparseCluster, which

performs sparse K-means. Although we can apply any standard implementation of

K-means on the transformed dataset Y at Step (a), KMeanSparseCluster uses

Hartigan and Wong’s algorithm to run K-means on a transformed dataset Y at Step

(a).

2.3.4 The L1 tuning parameter values and the sparsity of features

Sparse K-means requires users to prespecify the value of the tuning parameter l1.

The lasso-type penalty on w results in sparsity when the value of the L1 tuning pa-

rameter value is sufficiently small. In Step (b), the objective function is maximized

over the domain of the vector w. Figure 2.2 shows the admissible region for w for

different values of the upper bound l1 for p=2. The L2 constraint is the area inside

of the unit circle and the L1 constraint is the area inside of the diamond with y

intercepts l1 and −l1. Since w j ≥ 0 for all j, the shaded region in Figure 2.2 is the

25

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

W1

W
2

-1.0 -0.5 0.0 0.5 1.0

L2=1

L1<l1

(a) l1 ≤ 1

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

W1

W
2

-1.0 -0.5 0.0 0.5 1.0

L2=1

L1<l1

(b) 1≤ l1 ≤
√

2

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

W1

W
2

-1.0 -0.5 0.0 0.5 1.0

L2=1

L1<l1

(c)
√

2 < l1

Figure 2.2: Regions of L1 and L2 constraints in R2.

admissible region of w.

The L1 tuning parameter value should be selected between 1 and
√

p. When

l1 ≤ 1, the diamond is inside of the unit circle and the L2 constraint become redun-

dant in the presence of the L1 constraint. Therefore we can think of the problem of

Step (b) (2.16) without the L2 constraint (e.g. see the panel (a) of Figure 2.2). As a

26

result, the feature with the largest BSS j(C) receives all the weight: w= l1e j0 where

BSS j0(C) ≥ BSS j(C) for all j = 1, · · · , p and ek is a standard vector in Rp To see

this, without the L2 constraint, the optimization problem at Step (b) becomes:

max wT D s.t. ||w||1 = w1 + · · ·+wp ≤ l1.

Without loss of generality, assume that BSS1(C)≥ ·· · ≥ BSSp(C), then:

wT D = w1BSS1(C)+ · · ·+wpBSSp(C)

≤ w1BSS1(C)+ · · ·+wpBSS1(C)

≤ (w1 + · · ·+wp)BSS1(C)

= l1BSS1(C)

= l1[1 0 · · ·0]D

= l1eT
1 D.

Therefore, when l1 ≤ 1, Step (b) of the sparse K-means algorithm returns the

weights w = l1e1. That is, 100% of the weight will be on the feature with the

largest BSS j(C).

If l1 ≥
√

p, then the L1 constraint becomes redundant in the presence of the

L2 constraint (the panel (c) in Figure 2.2). As a result, all the features receive

nonzero weights. Furthermore,the jth feature receives the weight proportional to

BSS j(C). To see this, without the L1 constraint, the optimization problem at Step

(b) becomes:

max wT D s.t. ||w||2 = w2
1 + · · ·+w2

p ≤ 1.

Since wT D is an increasing function of w j for all j, the optimum is attained at the

boundary. Let h(w) = wT D−λ (||w||− 1) where λ is a Lagrange multiplier. Set

the gradient vector to be zero, then:

5h = [BSS1(C)−2λw1 · · ·BSSp(C)−2λwp]
T = 0.

⇒ w j =
BSS j(C)

2λ
∀ j.

27

Since the L2 constraint is 1:

||w||22 = w2
1 + · · ·+w2

p

=

(
BSS1(C)

2λ

)2

+ · · ·+
(

BSSp(C)

2λ

)2

= 1.

⇒ λ =±1
2

√√√√ p

∑
j=1

BSS j(C)2.

Since w j and BSS j(C) are all nonnegative, it follows that:

w j =
BSS j(C)√

∑
p
j=1 BSS j(C)2

.

Therefore, the jth feature weight is proportional to the dissimilarity along the jth

feature, BSS j(C). One thing to note is that even with a large L1 tuning parameter

value sparse K-means does not act the same as K-means. Although with l1 ≥
√

p

sparse K-means returns nonzero weights for all the features, the weight on each

feature is not constant as in K-means but proportional to the BSS j(C) of the feature.

Depending on the degree of the desired sparsity in feature weights, the user

must choose l1 ∈ [1,
√

p]. Further details on the lasso-type penalty is given in

Tibshirani [24]. See Witten and Tibshirani [28] for the details for the automatic

procedure for selecting the L1 tuning parameter value, called the permutation ap-

proach.

2.3.5 A small simulation study of sparse K-means with datasets
generated from the noisy model

We perform sparse 3-means on the datasets generated from the noisy model (see

Section 2.2.4). The L1 tuning parameter values are chosen by the permutation

approach. The reported values in Table 2.4 are the averages (and standard devi-

ations) over 100 simulations. In comparison with the partitions from 3-means in

Table 2.3, the partitions from sparse 3-means are more desirable: CER reduces to

0 and 0.03 from the 0.02 and 1.00, returned by 3-means. On average, about 80% of

28

% weights on
µ CER Clustering features l1

1.0 0.00 (0.007) 84.24 (3.54) 8.01 (0.63)
0.8 0.03 (0.029) 79.38 (6.87) 8.15 (0.87)

Table 2.4: The simulation results of sparse 3-means on 100 datasets generated
from the noisy model.

the weights are on the clustering features for both values of µ and the CERs stay

low. In other words, sparse K-means returns a desirable selection of features which

results in desirable partitions.

2.3.6 Simulation studies of sparse K-means with contaminated
datasets

The simulation study in Table 2.4 showed that when datasets are not contaminated,

sparse 3-means was able to choose the clustering features and produce better par-

titions than 3-means. Now, we examine the performance of sparse 3-means with

contaminated data in various settings. In models 1, 2, and 3, a single case of the

dataset generated from the noisy model is replaced by an outlier.

• Model 1: The value of a single noise feature for a single case, x1,500, is

replaced by the value, out.

• Model 2: The value of a single clustering feature for a single case, x1,1, is

replaced by the value, out.

• Model 3: A single case, x1, is replaced by one generated from a multivariate

normal distribution with µ = (5, · · · ,5)T ∈ R500 and an identity variance

covariance matrix.

We examine different magnitudes of out in models 1 and 2: 15, 25 and 500. We

generated 100 contaminated datasets from each simulation setting: i.e., all the pos-

sible combination of Model and µ (and out, for models 1 and 2).

29

% of Weights on
µ out CER Clustering features Contaminated feature l1

Model 1

1.0
15 0.00 (0.007) 77.73 (7.72) 0.28 (0.19) 9.25 (1.45)
25 0.34 (0.125) 42.14 (28.77) 50.43 (25.53) 2.45 (1.11)
500 0.50 (0.012) 0.08 (0.02) 99.56 (0.03) 1.20 (0.00)

0.8
15 0.07 (0.126) 61.65 (18.1) 5.26 (18.97) 9.52 (2.75)
25 0.40 (0.114) 26.38 (21.8) 51.49 (23.51) 2.35 (0.89)
500 0.50 (0.012) 0.06 (0.01) 99.57 (0.02) 1.20 (0.00)

Model 2

1.0
15 0.03 (0.099) 87.38 (11.35) 9.42 (20.36) 7.35 (2.46)
25 0.27 (0.042) 71.21 (4.65) 21.81 (2.32) 5.07 (0.77)
500 0.41 (0.034) 99.64 (0.01) 99.34 (0.08) 1.20 (0.00)

0.8
15 0.20 (0.175) 89.15 (16.36) 36.07 (36.9) 5.01 (3.75)
25 0.35 (0.053) 63.08 (5.82) 30.34 (4.58) 3.63 (0.61)
500 0.43 (0.032) 99.64 (0.02) 99.47 (0.05) 1.20 (0.00)

Model 3
1.0 – 0.25 (0.021) 20.33 (6.52) – 19.88 (1.73)
0.8 – 0.26 (0.020) 16.94 (0.54) – 20.12 (0.00)

Table 2.5: The simulation results of sparse 3-means with the L1 tuning pa-
rameter values chosen by the permutation approach.

Table 2.5 shows the average and standard deviations of CERs (the 4th column), per-

centages of weights on clustering features (the 5th column), percentages of weights

on contaminated features (the 6th column) and l1 tuning parameter values over the

100 generated datasets for each simulation setting. We calculated CERs without

the contaminated cases. Note that we do not report the percentage of weights on

contaminated features for the simulation result with Model 3, because all the 500

features of Model 3 are contaminated.

In Model 1 and Model 2, a small increase in the outlier value from 15 to 25,

causes CER to jump from about 0 to about 0.3 for µ=1. Sparse 3-means fails to

produce the desired partition in the presence of a single outlier in a noise feature.

This failure is probably due to the algorithm failing to select the appropriate fea-

tures. The 5th and the 6th columns of Table 2.5 show the average percentage of

weights on the clustering features and the contaminated noise features. It shows

that for Model 1 the weights shift from the clustering features to the contaminated

noise feature as out increases for both values of µ . For Model 2, the contaminated

clustering feature takes up all the weight as out increases. CERs of Model 3 are

over 0.25 for both µ .

30

In this simulation study, we applied the permutation approach (Witten and Tib-

shirani [28]) to choose the L1 tuning parameter value. It becomes almost 1 as out

increases from 15 to 500 for models 1 and 2. It is a reasonable explanation that the

single outlier affects the permutation approach of the L1 tuning parameter selection

and the weights become too sparse. As a result, the weights shift to the single con-

taminated feature as out increases. In Model 3, the permutation approach is also

affected by the outlier: L1 tuning parameter value becomes nearly 20 and weights

become nonsparse. From these simulation results, we find that the permutation

approach of the L1 tuning parameter value selection is very vulnerable to outliers.

2.3.7 Simulation studies of sparse 3-means with contamintaed
datasets and fixed L1 tuning parameter values

One might argue that the poor performance of sparse 3-means in models 1, 2 and

3 are due to the too small / too large L1 tuning parameter values, which were

selected by the permutation approach. The user of sparse K-means has his / her own

preference on how many features to be used for partitioning: say, one might want to

use 20% of the features for clustering. Then this 20% is the preference of sparsity

for this user. In this sense, the sparsity is interpretable and can be predetermined by

the user of the algorithm. The same models as above are then examined with fixed

L1 tuning parameters: 7.959 for µ = 1 and 8.055 for µ = 0.8. These values were

obtained as follows: for each µ , we generated 30 datasets from the noisy model.

For each generated dataset, we performed the permutation approach to select a

L1 tuning parameter value. Then we use the averages of the estimated L1 tuning

parameter values for each µ .

In both models 1 and 2 (Table 2.6), the weight of the single contaminated feature

becomes dominant as out increases. The partition becomes undesirable as out

increases from 15 to 500. These results are consistent with the results of models 1

and 2 with l1 chosen by the permutation method. In Model 3, CERs from the fixed

L1 method are as high as those from the non-fixed L1 method. This shows that the

clustering is still affected by the contaminated case.

31

% of Weights on
µ out CER Clustering features The contaminated feature

Model 1

1.0
15 0.00 (0.008) 84.01 (0.79) 0.33 (0.24)
25 0.25 (0.023) 51.57 (1.63) 19.61 (0.71)
500 0.50 (0.018) 0.08 (0.03) 99.56 (0.04)

0.8
15 0.05 (0.072) 76.88 (8.89) 1.24 (2.59)
25 0.29 (0.064) 38.54 (8.38) 24.92 (3.85)
500 0.51 (0.011) 0.06 (0.01) 99.58 (0.02)

Model 2

1.0
15 0.00 (0.008) 83.56 (0.89) 3.04 (0.67)
25 0.28 (0.022) 69.92 (1.52) 22.09 (1.27)
500 0.41 (0.039) 99.64 (0.02) 99.33 (0.09)

0.8
15 0.04 (0.063) 77.63 (5.20) 3.95 (2.06)
25 0.34 (0.052) 61.32 (3.43) 28.21 (2.81)
500 0.42 (0.035) 99.63 (0.02) 99.46 (0.05)

Model 3
1 – 0.25 (0.019) 65.96 (3.33) –

0.8 – 0.26 (0.019) 49.27 (4.16) –

Table 2.6: The simulation results of sparse 3-means with fixed L1 tuning pa-
rameter values.

From these simulation studies, we conclude that sparse K-means itself is severely

affected by a single outlier. In fact, sparse K-means performed poorly with less

than 2% (1 out of 60) of contamination in the dataset.

2.4 Trimmed K-means
Our robustification of sparse K-means (discussed in Chapter 3) uses the idea of

‘‘trimmed K-means’’ introduced by Gordaliza [7] and Gordaliza [8]. Trimmed

K-means uses squared Euclidean distances as a similarity measure. Once cluster

centers are defined, cases are assigned to their closest cluster centers in squared

Euclidean distance. In this sense, clusters are determined by cluster centers. The

idea of the trimmed K-means is that the outliers should be discarded or trimmed in

the calculation of cluster centers. If O is the set of outliers to be trimmed, then the

robust cluster center is:

tm(O)k =
1

|Ck \O| ∑
i∈Ck\O

xi ∈ Rp.

where, A \B is a set of elements that are contained in a set A and not in a set B.

Therefore Ck \O represents the set of cases that are in the kth cluster and are not

32

outliers. Note that if O = /0, then tm(O)k = x̄k. The robust within cluster sum of

squares is:

WSS(C ,O) =
K

∑
k=1

∑
i∈Ck\O

||xi− tm(O)k||2.

Note that WSS(C , /0) =WSS(C). Since we do not know which cases are outliers in

practice (if we knew, we could simply discard the cases from the dataset), trimmed

K-means trims the cases which have the largest bαNc squared Euclidean distances

to their cluster centers, where bac is the largest integer smaller than a. Here, α is a

predetermined trimming proportion of a dataset. Therefore, the trimmed K-means

clustering is the solution, C , to the problem:

argmin
C ; |C |=K

WSS(C ,O).

where:

O ={The cases with the bαNc largest squared Euclidean distances

to their cluster centers}. (2.20)

The asymptotic and robustness properties of trimmed K-means are studied by

Cuesta-Albertos et al. [4].

2.4.1 Trimmed K-means computing algorithm

The trimmed K-means algorithm essentially robustifies Lloyd’s algorithm. As in

the notation of the K-means algorithms, let IC1(i) denote the cluster to which the

ith case belongs. Denote tm(O)IC1(i) as the kth cluster center to which the ith case

belongs.

Randomly choose K cases as initial cluster centers. Set O = /0. Repeat 1, 2 and

3 until convergence.

• Step (a): Given cluster centers, update the class assignment by assigning

each case to the closest cluster center:

33

For all i = 1, · · · ,N

IC1(i) = argmin
1≤k≤K

||xi− tm(O)k||2.

• Step (b): Select the bαNc cases with the largest squared Euclidean distances

to their cluster centers. Let O be specified as in (2.20).

• Step (c): Given the cluster assignments IC1(i) (i = 1, · · · ,N), and the set of

trimmed cases O, update the cluster centers, tm(O)k, k = 1, · · · ,K.

Since the cases with extreme values are trimmed when the updated cluster cen-

ters are evaluated, the extreme values do not affect the defined K clusters. The

algorithm is implemented in the R package trimcluster.

In this algorithm, there are two ways in which some of the Ck’s could become

empty sets. First, in the standard K-means algorithm, it could happen that there is

no case that has the closest distance to some of the K cluster centers at Step 1 of

algorithm. Second, all the cases of some clusters could be trimmed in Step (b). If

one of the Ck’s becomes an empty set, trimcluster chooses the most outlying

case relative to its cluster center to form a cluster of a single element.

34

Chapter 3

Robust sparse K-means clustering

3.1 The method
From simulation studies of sparse K-means, we found that outliers may affect two

steps of the sparse K-means algorithm: the selection of a partition and the selection

of feature weights. Combining ideas from sparse K-means and trimmed K-means,

we propose our robust sparse K-means.

Robust sparse K-means trims cases in both squared Euclidean and weighted

squared Euclidean distances. By replacing Step (a) of the sparse K-means algo-

rithm, which performs standard K-means on a transformed dataset Y, by trimmed

K-means, cases are trimmed in weighted distances. We denote the set of trimmed

cases in the weighted squared Euclidean distances as OW . This step is intended to

eliminate the effect of outliers from the selection of a partition.

Before executing Step (b), we introduce a second robustifing Step: Step (a-

2). We trim cases in the nonweighted squared Euclidean distances, intended to

eliminate outliers ‘‘surviving’’ Step (a) because of small weights. We notice that

Step (a) of robust sparse K-means would not be enough to eliminate the effect

of outliers. In fact, features including outlying observations tend to be assigned

high weights by the classical sparse K-means algorithm. Step (a) would fail to

downweight cases that have outlying observations on noise features if such features

are assigned a negligible weight. Therefore, the second robustifying Step (a-2) is

necessary to identify outliers in noise features and prevent them from getting a high

35

weight in Step (b). We denote the cases trimmed in squared Euclidean distance in

Step (a-2) by OE . However cases in OE are not excluded in the calculation of

cluster centers in Step (a). In Step (b) of sparse K-means, the cases in both OE and

OW are eliminated so that the effects of outliers are eliminated from the selection

of weights. Robust sparse K-means considers only the squared Euclidean distance

as a dissimilarity measure.

We define robust sparse K-means clustering as the solution set (C ,w) to the

problem:

max
C ,w; |C |=K

p

∑
j=1

w jBSS j(C ,OEW) s.t. ||w||1 ≤ l1, ||w||2 ≤ 1,w j ≥ 0 ∀ j, (3.1)

where OEW is the set of potential outliers being trimmed: OEW = OW ∪OE . The L1

tuning parameter value l1 and the number of clusters K must be predetermined. The

trimming proportion value, α , is the proportion of cases trimmed in the squared Eu-

clidean distances and in the weighted squared Euclidean distances. This trimmed

proportion must also be predetermined. Note that BSS j(C ,OEW) is a between clus-

ter sum of squares along the jth feature, calculated without the cases in OEW .

We propose an iterative algorithm for this optimization problem:

3.1.1 Robust Sparse K-means algorithm

Let w = [1/
√

p, · · · ,1/√p]T , OE = /0 and OW = /0 and repeat steps (a), (a-2) and

(b) below until the stopping rule is satisfied.

• Step (a): For a given w, perform trimmed K-means on the transformed

dataset Y:

argmin
C

WSSY(C ,OW).

Step (a) returns the partition, C , and the set of trimmed cases denoted as OW .

36

• Step(a-2): For a fixed w and C , trim cases in the squared Euclidean distance:

OE = {the cases with the bαNc largest squared Euclidean distances

to their cluster centers}.

Given the partition C and the trimmed cases OW from Step (a), the cluster

centers, tm(OW)k,based on the non-weighted data matrix, X, are calculated

without the trimmed cases OW . The cases with the bαNc largest squared

Euclidean distances to their cluster centers tm(OW)k are contained in the set

OE . Let OEW = OW ∪OE .

• Step(b): For fixed C , OEW , maximize (3.1) with respect to w. That is:

max
w

wT D(OEW) s.t. ||w||2 ≤ 1, ||w||1 ≤ l1,w j ≥ 0 ∀ j,

where D(OEW) = (BSS1(C ,OEW), · · · ,BSSp(C ,OEW))T . The analytic solu-

tion for this optimization problem, given by Witten and Tibshirani [28], is

w(4∗) where:

w(4) =
(D(OEW)−41)+
||(D(OEW)−41)+||

, (3.2)

and

4∗ =

{
0 if ||w(0)||1 ≤ l1,

root of ||w(4)||1− l1 = 0 otherwise .

As a price for robustification, the algorithm no longer monotonely increases the

objective function, ∑
p
j=1 w jBSS j(C ,OEW), from the qth iteration of Step (b) to the

q+ 1st iteration of Step (b). This is because the set of trimmed cases at the qth

iteration, Oq
EW is not necessarily the same as the set of trimmed cases at the q+1st

iteration, Oq+1
EW . However, in the high-dimentional datasets that we have examined,

the first iterations do increase the objective function evaluated at Step (b). For

this reason, we use the following stopping rule: When the objective function at the

q+1st Step (b) stops increasing, the algorithm terminates and the partition from the

q+1st Step (a) and feature weights from the qth Step (b) are returned as a solution.

37

(a) l1=2 (b) l1=4

(c) l1=6 (d) l1=22

Figure 3.1: The distributions of weights from robust sparse K-means on a
dataset simulated from Model 2. The x-axis shows the feature indices
and y-axis shows the weights.

3.1.2 The choice of l1

In robust sparse K-means, the L1 tuning parameter is one of the arguments to be

predetermined. Since sparsity is interpretable and the sparsity preference varies

according to the purpose for clustering, we will assume that the sparsity parameter

is chosen by the user of robust sparse K-means. The user should choose a L1 tuning

parameter value in [1,
√

p].

In order to examine how the spread of weights from robust sparse K-means

38

changes with respect to L1 tuning parameter values, we generate a dataset from

Model 2 with µ=0.8 and out=25 and robust sparse 3-means is performed with

different L1 tuning parameter values. Figure 3.1 shows the weights from robust

sparse 3-means with four different L1 tuning parameter values between 1 and 22 (≈√
500). Since the first 50 features in this simulation dataset are clustering features

and the rest are noise features, all the L1 tuning parameter values return larger

weights on the first 50 features than on the remaining 450 features. As l1 increases,

the number of nonzero weights increases and when l1 ≈
√

500 all the features

receive nonzero weights.

Section 2.3.4 showed that the feature weights become proportional to the cor-

responding dissimilarity measures across clusters when l1 ≥
√

p and only the fea-

ture with the largest dissimilarity across clusters receives a nonzero weight when

l1 ≤ 1 in sparse K-means. These relationships hold for robust sparse K-means ex-

cept that the dissimilarities across clusters are now calculated without the set of

potential outliers. When 0 < l1 <
√

p, the features become sparse: features with

‘large’ dissimilarities across clusters receive weights while the rest of the features

receive zero weights in sparse K-means and robust sparse K-means. We can see

this relationship between the feature weights and the corresponding BSS j(C ,OEW)

for the generated dataset in Figure 3.2. The same simulation results as Figure 3.1

are used. The users of robust sparse K-means (and also sparse K-means) should

know that the weights are not assigned either zero or one. Even among the nonzero

weighted features, the contribution for separating clusters, i.e., the magnitude of

BSS j(C ,OEW) varies: the interpretation is that the features with larger weights are

contributing more to the separation of clusters.

Robust sparse K-means is implemented in the R package RSKC. The package

will be made publicly available at http://cran.r-project.org/.

3.2 Simulation studies of robust sparse 3-means with
contaminated datasets

The performance of robust sparse 3-means is examined on datasets generated from

models 1, 2 and 3. The L1 tuning parameter values are fixed to 7.959 for µ = 1.0

and 8.055 for µ = 0.8. We fixed the percentage of cases to be trimmed, α , to

39

(a) l1=2 (b) l1=4

(c) l1=6 (d) l1=22

Figure 3.2: The weights from robust sparse K-means on a dataset generated
from Model 2 v.s. the between clster sum of squares of the jth feature.

1/60 to choose one case as an outlier in squared Euclidean and weighted squared

Euclidean distances. We generate 100 datasets for each combination of Model

and µ (and out for models 1 and 2), and perform robust sparse K-means for each

dataset.

Table 3.1 shows the results. We calculated CERs without the contaminated

cases as in the simulation summaries of sparse K-means with the contaminated

models.

For Model 1, when µ = 1.0, the CERs remain almost 0 for all the generated

40

% of Weights on
µ out CER Clustering features Contaminated features

Model 1

1.0
15 0.00 (0.008) 83.80 (0.81) 0.035 (0.07)
25 0.00 (0.007) 83.76 (0.77) 0.029 (0.06)

500 0.00 (0.009) 83.90 (0.96) 0.038 (0.07)

0.8
15 0.06 (0.084) 78.18 (4.81) 0.249 (1.49)
25 0.03 (0.060) 79.23 (1.64) 0.037 (0.09)

500 0.06 (0.108) 76.64 (13.6) 3.010 (17)

Model 2

1.0
15 0.00 (0.008) 83.92 (0.87) 1.680 (0.51)
25 0.00 (0.008) 83.91 (0.81) 1.640 (0.52)

500 0.00 (0.008) 83.80 (0.81) 1.658 (0.56)

0.8
15 0.04 (0.067) 79.08 (2.72) 1.701 (1.13)
25 0.04 (0.077) 78.98 (2.38) 1.881 (2.38)

500 0.05 (0.079) 78.90 (1.91) 1.559 (0.67)

Model 3
1.0 – 0.00 (0.008) 83.77 (0.86) –
0.8 – 0.05 (0.070) 78.87 (3.94) –

Table 3.1: The results of models 1 to 3 with robust sparse 3-means and fixed
l1 constraint.

The number of times the outlier is captured
µ out in OW in OE

1.0
15 8 99
25 13 100
500 44 100

0.8
15 12 99
25 15 100
50 30 100

Table 3.2: The number of times the single outlier is captured in OW and OE

over 100 datasets generated from Model 1.

datasets and over 83% of the weights are on the clustering features for all the

values of outliers. For this reason, we can say that the value of the outlier does not

affect the performance of robust sparse 3-means when the clusters are reasonably

separated. Even when the true 3 clusters become closer to each other (µ=0.8), the

algorithm still assigns over 76% of the weights on clustering features and the CER

stays as low as 0.06.

Table 3.2 shows the number of times that robust sparse 3-means trims the sin-

gle contaminated case in the squared Euclidean distances or the weighted squared

41

Euclidean distances. In Model 1, the outlier is in one of the noise features, so it

is trimmed only in the squared Euclidean distance most of the times. As long as

the contaminated case is captured in either OE or OW , the contaminated case does

not affect the selection of features: the potential outliers do not affect Step (b) of

robust sparse K-means algorithm.

In Model 2, one of the clustering features contains an outlier value. Again,

when µ = 1.0, the CERs stay almost zero for all the generated datasets and for all

the values of out. When µ=0.8, the CERs stay as low as 0.05 for all out. In fact,

both OW and OE capture the contaminated case for all the generated datasets (the

results are not shown). The contaminated feature receives 1.7 % of weights unlike

Model 1 where it receives almost no weight. This is because the contaminated

feature in Model 2 is a clustering feature. Since 50 out of 500 features are clustering

features, it is ideal to assign the nonzero weights to all the 50 clustering features.

Then each clustering feature should receive 100%/50 = 2% weight on average.

Therefore, the 1.7% weight on this contaminated noise feature is reasonable.

Model 3 has a single case whose features are all contaminated: both clustering

features and noise features. The CERs are as low as 0.00 (µ = 1.0) and 0.06

(µ = 0.8), and about 80% of the weight is on the 50 clustering features. Again,

OW and OE successfully capture the outlier case in all the generated datasets (the

results are not shown).

3.3 Simulation studies to compare the performance of
K-means, sparse K-means, trimmed K-means and
robust sparse K-means

The simulation results of models 1 to 3 show that robust sparse 3-means clustering

improves the selection of a partition and the selection of features for these types

of models. In addition to models 1 to 3, the performance of the robust sparse

3-means clustering is examined with contaminated datasets with more than one

outlier. Datasets generated from the noisy model are contaminated as follows:

• Model 4: Two cases from each cluster are contaminated in a single noise

feature by adding noise with a large variance. In total 6 cases (10% of cases

are contaminated) and 6 noise features are contaminated. Specifically, xi j ∼

42

N(0,152) for (i, j)=(1,51), (2,52), (21,53), (22,54), (41,55), (42,56).

• Model 5: Two cases from each cluster are contaminated in a single clus-

tering feature each by adding noise with a large variance. In total 6 cases

(10% of cases are contaminated) and 6 clustering features are contaminated.

Specifically, xi j ∼ N(0,152) for (i, j)=(3,1), (4,2), (23,3), (24,4), (43,5),

(44,6).

• Model 6: Outlier values are generated from both models 4 and 5. In total

12 cases (20% of cases are contaminated), 6 clustering features and 6 noise

features are contaminated.

• Model 7: Two cases from each cluster are replaced by ones generated from

a multivariate normal distribution with large variance. Specifically, x1, x2,

x21, x22, x41 and x42 are generated from N500(0,52I). In total 6 cases (10%

of cases are contaminated) and all the features are contaminated.

• Model 8: Twenty-five clustering features of the 1st case are replaced with 25

clustering features of the 60th case.

In Model 8, outlier values are ‘hidden’, that is, the outlier values are not extreme

from the univariate point of view. The projection of all the cases onto a single

feature would not show the contaminated cases as outliers. It is, however, an outlier

if one takes into account the direction of the extreme value created by more than

one feature.

The datasets are generated 100 times from all the possible combinations of Model

and µ . Simulation results of the robust sparse 3-means on the datasets are in Ta-

ble 3.3. The reported values are the averages and standard deviations of CERs (the

3rd column), percentages of weights on clustering features (the 4th column) and

percentages of weights over contaminated features (the 5th column) over the 100

generated datasets for each simulation setting. Note that we do not report the av-

erage percentage of weights on contaminated features of models 7 and 8 because

all the features are contaminated in Model 7 and half of the clustering features (i.e.

43

% weights on
µ CER Clustering features Contaminated features

Model 4
1.0 0.01 (0.012) 83.07 (1.02) 0.257 (0.21)
0.8 0.05 (0.066) 77.48 (3.42) 0.341 (0.32)

Model 5
1.0 0.01 (0.013) 83.26 (0.97) 9.92 (1.35)
0.8 0.08 (0.094) 77.66 (2.34) 9.053 (1.57)

Model 6
1.0 0.01 (0.024) 82.01 (1.18) 10.148 (1.34)
0.8 0.12 (0.120) 74.26 (9.70) 9.311 (2.38)

Model 7
1.0 0.01 (0.015) 83.35 (0.88) –
0.8 0.11 (0.105) 72.51 (16.86) –

Model 8
1.0 0.01 (0.001) 83.25 (0.97) –
0.8 0.07 (0.086) 77.87 (2.13) –

Table 3.3: The results from robust sparse 3-means with the fixed L1 value on
datasets generated from models 4 to 8.

25 features) are contaminated in Model 8. The proportion of weights on clustering

features are all greater than 70% and CERs are almost zero for all the models with

µ = 1.0.

Now we compare the performances of the 3-means, sparse 3-means, trimed

3-means and robust sparse 3-means for all models. Again, L1 tuning parameter

values are fixed to 7.959 for µ = 1.0 and 8.055 for µ = 0.8 for the sparse methods.

The trimming proportion α is set to the true proportion of contaminated cases for

the robust methods. The results are shown in figures 3.3 and 3.4 for µ = 1.0 and

figures 3.5 and 3.6 for µ = 0.8.

Figures 3.3 and 3.5 show the boxplots of CERs for each method and for each

simulation model with µ = 1.0 and 0.8 respectively. It is clear that robust sparse

3-means returns the best CERs among all the clustering methods for all models.

In our simulation models, all the clustering features contribute equally for sep-

arating the three clusters, because all the clustering features are generated from

the same mixture model (see the description of the clean model in Section 2.2.4).

Therefore, it would be ideal if all the clustering features receive equal nonzero

weights while noise features receive no weight. Then each clustering feature should

receive about 2% (=100×1/50) of the weight. We measure how evenly the weights

are spread over the clustering features by the median proportion of the weights on

44

(a) Model 1 out=15 (b) Model 1 out=25 (c) Model 1 out=500

(d) Model 2 out=15 (e) Model 2 out=25 (f) Model 2 out=500

(g) Model 3 (h) Model 4 (i) Model 5

(j) Model 6 (k) Model 7 (l) Model 8

Figure 3.3: The simulation results with µ = 1.0. The y-axis shows the CERs.
K = K-means, SK = Sparse K-means, TK = Trimmed K-means, and
RSK = Robust Sparse K-means.

45

(a) Model 1 out=15 (b) Model 1 out=25 (c) Model 1 out=500

(d) Model 2 out=15 (e) Model 2 out=25 (f) Model 2 out=500

(g) Model 3 (h) Model 4 (i) Model 5

(j) Model 6 (k) Model 7 (l) Model 8

Figure 3.4: The simulation results with µ = 1.0. The y-axis shows the median
proportions of weights on the clustering features.

46

(a) Model 1 out=15 (b) Model 1 out=25 (c) Model 1 out=500

(d) Model 2 out=15 (e) Model 2 out=25 (f) Model 2 out=500

(g) Model 3 (h) Model 4 (i) Model 5

(j) Model 6 (k) Model 7 (l) Model 8

Figure 3.5: The simulation results with µ = 0.8. The y-axis shows CERs.

47

(a) Model 1 out=15 (b) Model 1 out=25 (c) Model 1 out=500

(d) Model 2 out=15 (e) Model 2 out=25 (f) Model 2 out=500

(g) Model 3 (h) Model 4 (i) Model 5

(j) Model 6 (k) Model 7 (l) Model 8

Figure 3.6: The simulation results with µ=0.8. The y-axis shows the median
proportions of weights on the clustering features.

48

the clustering features. Figures 3.4 and 3.6 show the median proportion of the

weight on the 50 clustering features for each method and each simulation Model

for µ=1.0 and 0.8 respectively. The dashed line shows 0.02; methods with desir-

able selection of weights should have their boxplots around the 0.02 line. Since

trimmed 3-means and 3-means do not have the feature selection property, the me-

dian proportion of the weight on the clustering features are 0.002 (=1/500) for all

models. From both figures 3.4 and 3.6, we can see that the boxplots from robust

sparse 3-means stay the closest to the 0.02 line among the four clusterings for all

models.

We find that the relative performance of the clustering methods are almost the

same between the simulation models with µ=1.0 and with µ = 0.8 except that

the boxplots of CERs and median proportion of the weight from µ = 0.8 have

larger variation than those from µ = 1.0. That is, clustering methods that perform

relatively well in a model with µ = 1.0 in terms of CER / median proportion of

the weight on clustering features also perform relatively well in the same model

with µ = 0.8. Now we list the overall summaries for both µ=1.0 and 0.8 for each

Model.

• Model 1 and Model 2

– The boxplots of CERs from the four algorithms are almost the same

when the outlier value out is 15 except for trimmed 3-means. Its CERs

are worse than other algorithms. Since trimmed 3-means robustifies

3-means, one might think that it should perform at least as well as

3-means. We think that this relatively poor performance of trimmed 3-

means is due to its algorithm: trimmed K-means in R essentially robus-

tifies Lloyd’s algorithm while K-means of R uses Hartigan and Wong’s

algorithm of Hartigan and Wong [11]. The CERs from trimmed 3-

means are worse than those from 3-means probably because Hartigan

and Wong’s algorithm achieves better local optimum than Lloyd’s al-

gorithm. The boxplots of the median proportion of the weight from the

sparse methods stay high.

– As a value of out increases, the boxplots of CERs of sparse 3-means

shift to the highest among all. Interestingly, sparse 3-means performs

49

even worse than 3-means. This is because the single contaminated

noise feature receives almost all the weight (see Table 2.6). On the

other hand, the boxplots of CERs and the median proportion of the

weight from the robust methods do not change according to the value

of out.

• Model 3

– The boxplots show that CERs from robust sparse 3-means are zero for

almost all the generated datasets. The CERs from trimmed 3-means

tend to be lower than ones from sparse 3-means although sparse 3-

means assigns more weights to clustering features than trimmed 3-

means.

• Model 4 and Model 5

– The boxplots of CERs from all methods show large spread except that

from robust sparse 3-means. The CERs from robust sparse 3-means are

zero for almost all the generated datasets. The large spreads in the box-

plots of CERs (and boxplots of median proportion of the weight from

sparse 3-means) are probably because the outlier values of models 4

and 5 are generated from a distribution with large variation, N(0,152).

• Model 6

– The boxplots of the median proportion of the weight from robust sparse

3-means stay the highest among all. The boxplots of CERs from robust

sparse 3-means stay the lowest among all.

• Model 7

– CERs from nonrobust methods are 0.7 for all the generated datasets.

This is because the nonrobust methods produce a cluster with a single

contaminated case.

– Sparse 3-means assigns less weight to clustering features than the non-

sparse methods.

50

– CERs from robust sparse 3-means are almost 0 for almost all the gen-

erated datasets.

• Model 8

– The results for Model 8 are very similar to the ones for Model 1 with

out = 15.

3.4 Robust sparse K-means with missing values
In large datasets, we often encounter the problem of missing values. Microarray

gene expression datasets (which will be analyzed in Chapter 5), in particular, often

contain missing values that occur for diverse reasons, including insufficient reso-

lution of gene expressions, image corruption or simply due to dust or scratches on

the slide (Troyanskaya et al. [26]). Since cases may come from different clusters,

one might not want to simply replace missing values with the feature means. One

might argue that we can simply drop all cases with missing values. In high dimen-

sional datasets, the sample size, N, is usually far smaller than the dimension p.

Therefore, it is not unusual that all cases have at least one missing feature. Then

we cannot simply drop cases with missing values. Moreover, dropping cases po-

tentially makes the sample biased: for example, it could happen that all cases from

a cluster are dropped.

In this section, we introduce an adjustment to robust sparse K-means for miss-

ing values. Instead of using the squared Euclidean distance as a dissimilarity mea-

surement of two cases, the algorithm uses an adjusted squared Euclidean distance.

The idea of the missing value adjustment is as follows. If some cases in the kth

cluster contain missing values along the jth feature, then it is natural to calculate

the kth cluster center along the jth feature without such cases. Denote MC j the set

of case indices such that the corresponding cases do not have missing values in the

jth feature. The missing value-adjusted kth cluster center along the jth feature is:

x̄k, j =
1

|Ck∩MC j| ∑
i′∈Ck∩MC j

xi′ j.

Note that Ck ∩MC j contain the case indices for the cases that belong to the kth

51

cluster for which the jth feature is not missing. If there was no weight, the distance

between a case with missing values, xi ∈ Rp and the kth cluster center, x̄k, should

be scaled by the ratio of the number of features p to the number of non-missing

features in the vector xi− x̄k contains. Let MF(x) denote the set of feature indices

for non-missing features in the vector x. The adjusted squared Euclidean distance,

dAE , between xi and x̄k is:

dAE(xi, x̄k) =
p

|MF(xi− x̄k)| ∑
j∈MF(xi−x̄k)

(xi j− x̄k, j)
2. (3.3)

Applying this idea, the weighted squared Euclidean distance between a case

vector and the kth cluster center should be adjusted in terms of the weights. The

adjusted weighted Euclidean distance dAW is defined as:

dAW (xi, x̄k) = Si,k ∑
j∈MF(xi−x̄k)

w j(xi j− x̄k, j)
2,

(3.4)

where

Si,k =
∑

p
j=1 w j

∑ j∈MF(xi−x̄k) w j
. (3.5)

The robust sparse K-means is adjusted for missing values by replacing all the

squared Euclidean distance measures by (3.3) and all the weighted squared Eu-

clidean distance measures by (3.5). Note that this missing value adjusted algorithm

does not work when a L1 tuning parameter value is small. If a L1 tuning parameter

value is small, only a few features receive nonzero weights. Then it could happen

that all the nonzero weighted features of some cases are missing. In this case, the

algorithm cannot adjust the weighted distance for such cases. This adjustment,

however, works fine with moderately large L1 tuning parameter values.

52

Chapter 4

Selection of K

4.1 Brief literature review
Nonhierarchical procedures usually require users to specify the number of clusters

before any clustering can be accomplished. There are data-dependent automatic

procedures to select K where the user does not have to subjectively specify it. In

this section, we discuss two procedures that can be adopted with robust sparse K-

means: the gap statistic (Tibshirani et al. [25]) and Clest (Duboit and Fridlyand

[5]). Since the simulation study of Duboit and Fridlyand [5] showed that Clest

performs better than the gap statistic, we adapt Clest to robust sparse K-means. We

will still introduce the gap statistic because some techniques of the gap statistic are

applied in Clest (Section 4.3.2). We later show the results of a simulation study

assessing the performance of Clest with robust sparse 3-means (Section 4.4).

4.2 The gap statistic
Tibshirani et al. [25] proposed the gap statistic method. The gap statistic method

formalized a heuristic approach that experimenters had been using. In order to se-

lect the appropriate number of clusters, experimenters often considered the within

cluster sum of squares, WSS(C), as an error measure of clustering. This WSS(C)

is a decreasing function of K: clearly, for K = 1, WSS(C) = T SS while for K = N,

WSS(C) = 0. If the true number of clusters is K∗, then the rate of decrease of

53

WSS(C) should decrease dramatically for K > K∗, because we are essentially

adding unnecessary cluster centers in the middle of a cluster. The location of such

an elbow decline in the plot of WSS(C) against K indicates the appropriate num-

ber of clusters and experimenters have chosen such K as estimate of the number of

clusters.

A problem arises in this heuristic procedure: it assumes that there is a cluster

structure (K > 1). The idea of gap statistic is to standardize WSS(C) by compar-

ing it to its expectation under an appropriate reference distribution (K = 1) of the

dataset (See Section 4.2.1 for more detail about the reference distribution). The gap

statistic wishes to screen all the evidence of K > 1 against K = 1 and selects the K

which has the strongest evidence against the null hypothesis K = 1 after taking the

sampling distribution into account. In order to estimate the expectation of WSS(C)

under an appropriate reference distribution (K = 1) of the dataset, Tibshirani et al.

[25] proposed that we should generate B0 Monte Carlo samples from the reference

distribution. Performing clustering with all the possible numbers of clusters, K, on

each Monte Carlo sampling leads to B0 within cluster sum of squares of reference

datasets for each K. Tibshirani et al. [25] use their mean as an estimate of the ex-

pectation of WSS(C) under the reference distribution and their standard deviation

to take the sampling distribution into account.

4.2.1 Two methods for generating the reference distributions of the
gap statistic

If all observed cases were from a cluster, then they are from a reference distribution.

Then an appropriate reference distribution should form a cluster and reflect the

sampling distribution of the observed cases. Tibshirani et al. [25] proposed two

methods to find such a reference distribution (see Section 4.2.1). We will explain

the two methods in detail because they are also used in Clest.

1. Simple reference distribution: generate each reference feature uniformly and

independently over the range of the observed values for that feature.

2. PCA reference distribution: generate the reference features from a uniform

distribution over a box aligned with the principal components of the data.

54

Given the normalized data matrix X ∈RN×p, the variance covariance matrix

is:

SX =
1

N−1
XT X.

Then SX is orthogonally diagonalized as:

SX = PDPT .

where:

• D is a diagonal matrix with the eigenvalues, λ1, ..,λp of SX on the di-

agonal entries, arranged such that λ1 ≥ ·· · ≥ λp ≥ 0.

• P is an orthogonal matrix whose columns are the corresponding unit

eigenvectors u1, ..,up ∈ RP of SX.

We transform X via X∗ = XP. Then the transformed data is no longer corre-

lated. To see this:

SX∗ =
1

N−1
X∗′X∗

= P′SXP

= P′PDP′P

= D.

Then we draw uniform features Z∗ over the range of the columns of X∗ as in

method 1 with X. Finally we back-transform via Z = Z∗P′ to give reference

data set Z. By applying PCA, the reference distribution takes into account

the shape of the data distribution, or the angle created by sampled features.

Before the gap statistic was proposed, Milligan and Cooper [18] conducted

an extensive Monte Carlo evaluation of 30 criteria for selecting the number of

clusters. Tibshirani et al. [25] carried out a comparative Monte Carlo study of the

gap statistic and some of the 30 criteria which were examined by Milligan and

Cooper [18]. Their simulation studies showed that the gap statistic performs better

than the 30 criteria.

55

4.3 Clest

4.3.1 The idea

Duboit and Fridlyand [5] proposed a prediction-based resampling method for esti-

mating the number of clusters in a dataset. Clest uses an idea of supervised learning

in the context of clustering, which is an unsupervised learning method. In unsuper-

vised learning, partitions are unknown and need to be discovered from a dataset. In

supervised learning, partitions are predefined and the task is to build a classification

rule. Then the user of a supervised learning method applies the classification rule

for predicting the cluster labels on future dataset. In unsupervised learning, once

clustering procedures identify the new clusters and cluster labels are assigned to

the cases, the next step is often to build a classifier for predicting the cluster labels

of future cases. Duboit and Fridlyand [5] argue that the classifier built from the

clustering algorithm with the true number of clusters should have the most stable

predictability. If we had a future dataset, the stability in the prediction via the clas-

sifier can be assessed by comparing the predicted partition and the partition from

the clustering algorithm on the future dataset. Clest uses a resampling method to

generate ‘‘future’’ datasets from the original dataset.

Their simulation study compares the performance of Clest, the gap statistic

method and other criteria for selecting the number of clusters. Duboit and Fridlyand

[5] concluded that for their simulation model, Clest was the most robust and accu-

rate. For this reason and because Clest is applicable to any clustering algorithm,

we apply Clest to robust sparse K-means.

4.3.2 The idea of the clest algorithm

Given a clustering algorithm, Clest returns the estimated number of clusters K̂ that

produces the most ‘‘stable’’ predictability in the clustering procedure. Since it is

impossible to obtain future datasets, in order to assess predictability, Dudoit and

Fridlyand used a resampling technique. The idea of Clest algorithm with arbitrary

clustering algorithm is explained as follows.

First, randomly partition the dataset X into a learning set L∈RNL×p, containing

NL cases and a testing set T ∈ RNT×p, containing NT cases. Given the learning set

56

L and a number of clusters K′, a clustering algorithm partitions the cases into K′

clusters. It returns a classifier as well as a partition of cases in L. In K-means,

for example, the classifier can be cluster centers: one can classify future cases by

assigning them to their closest cluster centers.

We wish to assess the prediction power of the classifiers. Given the testing

set, T, the classifier is used to partition the cases of T into K′ clusters. The clus-

tering algorithm can also partition the cases of T into K′ clusters. Then we have

two partitions of the training set T: one from the classifier and another from the

clustering algorithm. If K′ is the true number of clusters, the prediction accuracy

of the ‘‘classifiers’’ should be good, i.e., the two partitions of the T should agree

well. Given a measure of the agreement of these two partitions, we can assess how

well they agree. This measure can be, for example, CER.

If we repeat the above two procedures for all the potential number of clusters,

say k = 2, · · · ,M, one can obtain M-1 observed measures of agreement of the re-

sulting pairs of partitions. Then one might think that one can choose the number

of clusters corresponding to the best observed measure of agreement of partition.

However, this strategy ignores the fact that there could be no cluster structure.

When a clustering algorithm is applied to a dataset, a partition of the dataset is

returned whether or not the dataset has the true cluster structure. Therefore, we

should standardize the observed measure of agreement by comparing it to its ex-

pected value under a null hypothesis: K=1. In order to estimate the expected value

of the observed measure of agreement under K=1, Clest generates B0 Monte Carlo

reference datasets from the reference distribution as in the gap statistic. Then re-

peat the procedure above to obtain the B0 reference measures of agreement of the

two partitions under K=1. The median of the B0 reference measures is used as

the estimate. Then the percentage of the reference measures of agreement that are

better than the observed measures of agreement can serve a role of p-values: the es-

timate of the probability of observing observed measure or more extreme measure

under the null hypothesis K = 1. Now, we have two measurements of agreement of

partitions: one from the observed dataset and another from the reference dataset.

The standardized measurement of agreement is calculated by comparing the ob-

served measurement of agreement to the reference measurement of agreement for

each k = 2, · · · ,M. Finally Clest chooses the number of clusters that returns the

57

strongest ‘‘significant’’ evidence against the hypothesis H0 : K = 1.

4.3.3 The algorithm of Clest with robust sparse K-means

We introduce the algorithm adapting Clest to robust sparse K-means. We use CER

to assess the agreement of two partitions. Since there should be more cases to de-

termine classifiers in the learning set than to assess the predictability of classifiers

in the testing set, 2/3 of cases are used in the learning set. The clest algorithm

needs the following parameters to be predetermined:

M: the maximum number of clusters that you suspect;

B: the number of times that an observed dataset X is randomly partitioned

into a learning set and a training set;

B0: the number of times that the reference distribution is generated;

β : the ‘‘significance level’’ (this ‘‘significance level’’ will be explained

along with the algorithm later.);

In addition, for the robust sparse K-means algorithm, the following parameters

must be predetermined:

α: the proportion of cases to be trimmed;

l1: the L1 tuning parameter value, determining the sparsity of weights.

Given the above parameter values, the clest algorithm proceeds as follows:

Repeat Step (a) and Step (b) for each k′ ∈ {2, ...,M}.

• Step (a):

– Repeat Step (a-1) and Step (a-2) B times (b = 1, · · · ,B).

∗ Step (a-1):

· Randomly partition a dataset, X, into two sets, Lb and Tb,

where Lb has 2/3 of the cases.

· Apply robust sparse k′-means to the learning set Lb; return k′

cluster centers and p weights.

58

∗ Step (a-2):

· Apply the classifiers to the training set Tb; return cluster la-

bels Cc,Tb .

That is, given weights and cluster centers from Step (a-1), the

weighted distances between each case and every cluster cen-

ter are calculated. Then the cases in T b are assigned to the

cluster whose cluster center is the closest in weighted squared

Euclidean distance.

· Apply robust sparse k′-means to the training set Tb; return

cluster labels Cr,Tb .

· Compute CERk′,b=CER(Cc,Tb ,Cr,Tb).

– Obtain CERk′,1,...,CERk′,B. Let CERk′=median{CERk′,1,...,CERk′,B}.

• Step (b):

– Generate B0 samples under the reference distribution.

– Repeat Step (a) for each sample with B=1 and compute:

∗ CER0
k′ = median{CER∗1k′ . . .CER∗B

0

k′ }.
CER0

k′ is the estimate of expected value of CER under the null

hypothesis that all the cases are from the same cluster, k′=1.

∗ pk′ = |{CER∗ik′ ;CER∗ik′ < CERk′}|/B0.

This pk′ is a p-value; it is the probability of observing CER more

extreme (small) than the observed CER under the null hypothesis.

∗ Return dk standardized measurement of agreement:

dk = CERk−CER0
k .

After performing Step (a) and Step (b) for all the k′ ∈ {1, · · · ,M}, finally we esti-

mate of the number of clusters:

k̂ =

 argmin
k∈{k;pk≤β}

dk if {k; pk ≤ β} 6= /0

1 otherwise

59

Model
1 (out=500) 2 (out=500) 3 4 5 6 7 8

α 1/20 1/20 1/20 0.1 0.1 0.2 0.1 1/20

Table 4.1: The trimming proportion α for the simulation studies of Clest.

In the algorithm described above, there is a minor modification from the origi-

nal clest algorithm. In the original clest algorithm, each reference dataset is parti-

tioned into a learning set and a testing set B times. However, we set B to be 1 for

the reference dataset to ease the computational cost. We found that even if we par-

tition the reference dataset more than one time and compute the reference CERs of

training sets, the CERs on the training sets were very similar, because the reference

dataset forms a uniform cloud. The user still has to predetermine the number of

times B that the observed dataset X is partitioned into a learning set and a testing

set.

4.4 Simulation studies with Clest
Now we examine the performance of Clest with robust sparse K-means in the 8

simulation models (see sections 2.3.6 and 3.3). In this simulation study, we find

that it is very challenging to find the true number of clusters when the clusters

have considerable overlap (µ = 1). Therefore, we examine the performance of the

algorithm on datasets generated from models with µ = 1 and 2. We implemented

the code for Clest in the R package RSKC and we use it for the simulation study.

Table 4.1 shows the values of the trimming proportion, α , that were used in each

simulation Model. The true percentage of contaminated cases are used for α values

for models 4, 5, 6 and 7. For models 1, 2, 3 and 8, α levels are set so that at least

one case is trimmed in the testing set. The L1 tuning parameter value is set to 7.862

for models with µ = 2 and for models with µ = 1. These values are obtained as in

Section 2.3.7. Clest parameters are set to (B,B0,β ,M)=(10, 20, 0.05, 5). We use

PCA reference distribution to generate the reference dataset.

Figure 4.1 shows the histogram of the estimates of the number of clusters over

50 datasets generated from each Model with µ = 2. The modes of the histogram are

60

(a) Model 1 out=500 (b) Model 2 out=500 (c) Model 3 (d) Model 4

(e) Model 5 (f) Model 6 (g) Model 7 (h) Model 8

Figure 4.1: The results of Clest on datasets generated from 8 models with
µ = 2. The histogram of the estimated number of clusters from Clest
over 50 generated datasets for each model.

at K̂ = 3 for all the models except Model 7. In particular, Clest does an excellent job

for Models 1 and 2: Clest provides K̂=3 for all 50 generated datasets of each Model.

This indicates that the estimate of Clest is reliable for these types of datasets. In

Model 7, Clest returns K̂ = 4 most frequently. This could be because the α value

is too small. Since Model 7 contains 6 contaminated cases, if all the 6 cases are

randomly selected in the testing set, it has over 30% (=6/20) contamination. Then

α = 0.1 of robust sparse K-means is too small to capture all the contaminated cases.

We performed Clest with larger, or more ‘‘conservative’’ α levels on datasets

generated from the 8 models with µ = 2. The αs are set so that robust sparse 3-

61

Model
1 (out=500) 2 (out=500) 3 4 5 6 7 8

α 1/20 1/20 1/20 6/20 6/20 12/20 6/20 2/20

Table 4.2: The conservative trimming proportion values for the simulation
studies of Clest.

(a) Model 1 out=500 (b) Model 2 out=500 (c) Model 3 (d) Model 4

(e) Model 5 (f) Model 6 (g) Model 7 (h) Model 8

Figure 4.2: The results of Clest on datasets generated from 8 models with
µ = 2. The histogram of the estimated number of clusters from Clest
over 50 generated datasets for each model. We use the conservative
trimming proportion values.

62

means can capture all the outliers when they are all in the testing set. Table 4.2

shows the conservative α level for each Model. The results are in Figure 4.2.

The results for models 1 to 3 are almost the same as ones from Figure 4.1, which

makes sense because the α levels are the same for these Models. The performances

of Clest in Models 4, 5, 7, and 8 improve in that Clest returns K̂ = 3 in more

generated datasets. However, the performance of Clest in Model 6 become worse.

Since Model 6 contains 12 contaminated cases, the α level must be set to at least

60% (=12/(N/3)) to capture all the contaminated cases in case all of them are in

the testing set. Since only 40% of the cases are used to define the cluster centers

in the testing set, Clest performs poorly. From these results, it is not recommended

to use Clest algorithm if one suspects that more than 50% of the cases in a testing

set could be contaminated. That is, one should not use Clest to select the number

of clusters if one suspects that more than 17% (=1/6 = 50% of the 1/ 3 of the total

number of the cases) of the original datasets are contaminated.

Figure 4.3 shows the simulation results of the models with µ=1 when the trim-

ming proportion, α levels are set as in Table 4.1. In this case, the clusters overlap

more and are harder to distinguish. The histograms of the estimated number of

clusters for all models except Model 8 have modes at K̂ = 1. This means that none

of the observed CER of K = 2, 3 , 4 or 5 is significantly smaller than the reference

CER for the models. When clusters overlap more, Clest tends to underestimate the

true number of clusters.

If we know that there is a cluster structure, i.e., K > 1, then we should rather

choose the K̂, which minimizes the test statistics, dk. That is, the significance level

β should be 1.00. Figure 4.4 shows the simulation results of Clest with significance

levels, β=1.00 and α as in Table 4.1 on the datasets generated from the models with

µ = 1. The performance of Clest with β = 1.00 improves substantially over the

performance of Clest when β = 0.05 on them: now the modes of all models are at

K̂ = 3. This indicates that if we know that and there is a cluster structure and the

clusters are substantially overlapping, then we should rather use significance level

β= 1.

The simulations showed that Clest with robust sparse K-means could identify

the number of clusters when the clusters are reasonably well separated. Since in

the clest algorithm robust sparse K-means is performed on subsets of dataset (i.e.,

63

(a) Model 1 out=500 (b) Model 2 out=500 (c) Model 3 (d) Model 4

(e) Model 5 (f) Model 6 (g) Model 7 (h) Model 8

Figure 4.3: The results of Clest on datasets generated from 8 models with
µ = 1. The histogram of the estimated number of clusters from Clest
over 50 generated datasets for each model.

learning set or testing set), the trimming proportion, α should be selected close

to the potential proportion of outliers in the training subset of dataset. Due to the

random partitioning of observed datasets or reference datasets into the learning and

testing sets, the proportion of outliers in the subset of the dataset could be larger

than in the observed dataset. Therefore, we recommend that the user of Clest

choose the conservative values of α levels. It was necessary to know that there

were more than two clusters if clusters were not well separated.

Lastly, Clest with robust sparse K-means is not suitable in the following situa-

tions:

• The user does not know if a dataset has a cluster structure and if it does, the

64

(a) Model 1 out=500 (b) Model 2 out=500 (c) Model 3 (d) Model 4

(e) Model 5 (f) Model 6 (g) Model 7 (h) Model 8

Figure 4.4: The results of Clest on datasets generated from 8 models with
µ = 1. The significance level, β is set to 1. The histogram of the esti-
mated number of clusters from Clest over 50 generated datasets for each
model.

clusters might overlap considerably.

• The dataset contains quite a few outliers. A rule of the thumb is that if one

suspects that the proportion of outliers in the dataset is greater than 17% then

one should not use Clest with robust sparse K-means.

65

Chapter 5

Data analysis

5.1 Before moving to the data analysis

5.1.1 The dissimilarity measure based on Pearson’s correlation

We will examine a microarray dataset in this chapter. Until now, our discussions

are mostly based on the squared Euclidean dissimilarity measure. In microarray

datasets, however, the dissimilarity measure most commonly used is based on Pear-

son’s correlation across features (Hardin et al. [9]). Let x̄i denote the average over

the features of the ith case:

x̄i =
1
p

p

∑
j=1

xi j.

Pearson’s correlation coefficient across features is defined as:

r(xi,xi′) =
(xi− x̄i1)T (xi′− x̄i′1)
||xi− x̄i1||||xi′− x̄i′1||

.

Pearson’s correlation can be converted to dissimilarities, dr(xi,xi′), for instance, by

setting:

dr(xi,xi′) = 1− r(xi,xi′) ∈ [0,2]. (5.1)

66

With this formula, cases with a high positive correlation receive a dissimilarity co-

efficient close to zero, whereas cases with a strongly negative correlation will be

considered very dissimilar. This however produces the odd result that for a com-

pletely uncorrelated pair we have dr(xi,xi′) = 1. For this reason, some prefer to

use dr∗ = 1−|r(xi,xi′)|, in which case also variables with a strongly negative cor-

relation will be assigned a small dissimilarity. Lance and Williams [13] compared

these formulas by means of real data, and concluded that (5.1) was unequivocally

the best. Therefore, we will use (5.1) as Pearson’s correlation dissimilarity mea-

sure. One of the reasons for its popularity is that the correlation is scale invariant.

It captures the similarity in ‘shape’ of two cases.

Now we illustrate the difference between the squared Euclidean dissimilarity

measure and Pearson’s correlation dissimilarity measure with a simple example.

Consider the two cases:

x∗1 = [1,2,3]T and x∗2 = [4,5,6]T .

In order to calculate their squared Euclidean dissimilarity measure, we first nor-

malize x∗1 and x∗2:

x1 = [−0.7,−0.7,−0.7]T and x2 = [0.7,0.7,0.7]T .

Then their dissimilarity is ||x1−x2||2 = 2.42 6= 0. On the other hand, since x∗1 and

x∗2 have the same shape, their Pearson’s correlation dissimilarity is dr(x∗1,x∗2) = 0.

Maitra and Ramler [17] introduced the relationship between Pearson’s corre-

lation dissimilarity measure and the squared Euclidean distance dissimilarity mea-

sure between standardized profiles. Pearson’s correlation dissimilarity measure is

incorporated in a clustering algorithm as follows. The raw dataset X∗ is trans-

formed into X̃ = [x̃i j] ∈ RN×p as:

x̃i j =
x∗i j− x̄∗i√
∑ j(x∗i j−x̄∗i)2

p

=
√

p
x∗i j− x̄∗i
||x∗i − x̄∗i 1||

. (5.2)

67

Notice that in the normalization (2.2), the columns of the data matrix are centered

then scaled while in the transformation (5.2), the rows of the data matrix are cen-

tered then scaled. Then the squared Euclidean distance between two transformed

vectors, x̃i and x̃i′ , becomes proportional to Pearson’s correlation dissimilarity be-

tween the two original vectors, x∗i and x∗i′ .

||x̃i− x̃i′ ||2 = p || x∗i − x̄∗i 1
||x∗i − x̄∗i 1||

−
x∗i′− x̄∗i′1
||x∗i′− x̄∗i′1||

||2

= p
(
||x∗i − x̄∗i 1||2

||x∗i − x̄∗i 1||2
−2

(x∗i′− x̄∗i′1)
′(x∗i′− x̄∗i′1)

||x∗i′− x̄∗i′1||||x∗i − x̄∗i 1||
+
||x∗i′− x̄∗i′1||2

||x∗i′− x̄∗i′1||2

)
= 2p(1− r(x∗i ,x

∗
i′))

= 2p d(x∗i ,x
∗
i′).

After the raw dataset is transformed as in (5.2), we can perform clustering

algorithms on the transformed dataset. This transformation can be coded simply in

R as t(scale(t(data))).

5.1.2 The revised silhouette

In the data analysis of this chapter, we will assess how well each case is clustered

by various clustering methods. Intuitively, if a case is placed ‘‘deep’’ in its cluster

then it should be considered to be well clustered and if a case is placed at the edge

between its cluster and its second closest cluster then it should not be considered

so well clustered. Therefore, we use the following simple measure to assess how

well cases are clustered. We call this measure the revised silhouette, because it is

very similar to the silhouette proposed by Rousseeuw [20]. We explain the differ-

ence between the two measures and the reason why we choose to use the revised

silhouette in Appendix A.2.

The revised silhouette compares the distance from a case to its cluster centers.

Let X̃ denote the transformed dataset as in (5.2). We define a′(i) to be the squared

Euclidean distance between the ith case and its cluster center. Denote the cluster to

which the ith case belongs by IC1(i). Then the closest cluster center vector from

68

the ith case is ¯̃xIC1(i), j and:

a′(i) =
p

∑
j=1

(x̃i j− ¯̃xIC1(i), j)
2.

We also define b′(i) to be the squared Euclidean distance between the ith case and

its second closest cluster center. Denote the cluster such that its cluster center is the

second closest from the ith case by IC2(i). Then the second closest cluster center

vector from the ith case is ¯̃xIC2(i), j and:

b′(i) =
p

∑
j=1

(x̃i j− ¯̃xIC2(i), j)
2.

We will use the following ‘‘revised silhouette width’’ to assess how well the ith

case is clustered:

rev.silhouette(i) =
b′(i)−a′(i)

b′(i)
.

The revised silhouette width takes values between 0 and 1. One can see that

rev.silhouette(i) =1 when a′(i) = 0, meaning that the case is placed ‘‘deep’’ in

its cluster and perfectly well clustered. This occurs only if the ith case itself forms

the cluster center. If the ith case is placed at the middle of the two clusters, then

b′(i)= a′(i), and rev.silhouette(i) is 0. Note that to assess partitions from the sparse

methods, the weighted squared Euclidean distances are used to calculate b′(i) and

a′(i) by simply weighting the jth feature component of the squared Euclidean dis-

tance by the corresponding weight w j.

5.2 The dataset of van’t Veer et al. [27]
In this section we analyze a microarray dataset. The data consists of 4751 gene

expressions for 78 primary breast tumors, and were previously analyzed by van’t

Veer et al. [27]. The dataset is available at:

http://www.nature.com/nature/journal/v415/n6871

/suppinfo/415530a.html.

The authors applied a supervised classification method and found a subset of

70 genes that identified the two groups according to whether the patient developed

69

distant metastasis within 5 years or not. However, the threshold ‘within 5 years’

appears to be somewhat arbitrary. Experimentalists are also interested in the oe-

strogen receptor (ER) status of patients because the ER status is essential clinical

information for the treatment of metastatic disease. There is a clinical consensus

that if the ER status of a patient is positive then treatment tends to work better

(Barnes et al. [1]). In this section we will try to identify features that can cluster

patients according to the partition based on oestrogen receptor (ER) status. We

represent the ER status as the true biological partition C ER.

Throughout our analysis, we use a transformed dataset so that the clustering

algorithm based on the squared Euclidean distance uses Pearson’s correlation dis-

similarity measure. The outline of our analysis is as following. First we select the

number of clusters, K, via Clest with robust sparse K-means and sparse K-means.

Since we have no information about potential outliers nor the number of clustering

features, we run Clest with various sets of (α, l1) values. Then given the estimate of

the number of clusters, K′, we run the 4 clustering algorithms: K′-means, trimmed

K′-means, sparse K′-means, and robust sparse K′-means. Again, various α and l1
values are examined. We compare CERs between partitions from algorithms and

the partition according to the ER status C ER. In order to facilitate the comparison

between the robust sparse K′-means and sparse K′-means, we pick one partition re-

sult for each method. We select a partition which is formed by the smallest number

of features and reflects the ER status well from each sparse method. We use a call

rate plot and the revised silhouette as the main tools for the comparison. Finally

we provide a conclusion.

5.2.1 Selection of K

We run Clest with robust sparse K-means and sparse K-means on the dataset to

choose the number of clusters. We have no information about potential outliers nor

the number of clustering features. Therefore, we run Clest with all possible combi-

nations of α = (0,1/78,5/78,10/78) and l1 = (4,6,8). Clest has four parameters:

B the number of times observed data is partitioned into learning set and testing set,

B0 the number of times reference datasets are generated, β the significance level

and the maximum number M of clusters that are present. They are set to (B, B0, β ,

70

M)= (10, 20, 0.05, 5). Since there are no missing values in the dataset, we employ

the PCA reference distribution. For this analysis we use the function Clest in

package RSKC.

(a) α=0/78 (b) α=1/78

(c) α=5/78 (d) α=10/78

Figure 5.1: Solid circles represent significant p-values. Clest chooses K=2 as
a solution for all pairs of α and l1 values.

The circles in Figure 5.1 show the standardized measure of agreement, dk given

α , l1 and k. We indicate the dk values that correspond to significant p-values with

71

solid circles and insignificant p-values with open circles. One run of Clest returns

one line in the plot. It is clear that K = 2 is chosen for all the combinations of l1
and α . From this result, we fix K to be 2 and perform all the clustering algorithms.

5.2.2 The comparison of performances

We now perform 2-means, sparse 2-means, trimmed 2-means and our proposed

robust sparse 2-means and compare the resulting partition with the partition ac-

cording to the ER status of the cases via CER. We used the function kmeans (in

package stat) and KMeansSparseCluster in package sparcl to perform

2-means and sparse 2-means respectively. We use our function RSKC in the pack-

age RSKC to perform trimmed 2-means and robust sparse 2-means. Since there is

no information about the clustering features nor outliers, we examine the following

L1 tuning parameter values: l1 = 1.05,1.5,2,4,6,8,12,20,30,50, and 70 for sparse

methods and the following trimming proportion: α = 1/78,5/78, and 10/78 for

the robust methods. That is, we performed 2-means, trimmed 2-means, sparse

2-means and robust sparse 2-means 1, 3, 11, and 33 (=11× 3) times, respectively.

l1 CER # non zero weights
1.05 0.21 3
1.50 0.14 5
2 0.12 8
4 0.12 36
6 0.10 ∗ 74
8 0.10 ∗ 127

12 0.10 ∗ 378
20 0.10 ∗ 1397
30 0.10 ∗ 4751
50 0.10 ∗ 4751
70 0.10 ∗ 4751

Table 5.1: The result from sparse 2-means. The ∗ indicates partitions that
agree with each other.

The 2-means algorithm returns a CER of 0.12. Trimmed 2-means with α =

1/78,5/78 and 10/78 returns CERs of 0.12, 0.10 and 0.12, respectively. As for

72

CER # nonzero weight
l1\α 1/78 5/78 10/78 1/78 5/78 10/78
1.05 0.23 0.19 0.19 2 2 2
1.5 0.14 0.14 0.14 4 3 4
2 0.12 0.12 0.14 7 6 6
4 0.12 0.12 0.12 31 29 28
6 0.10∗ 0.10∗ 0.10∗ 72 72 66
8 0.10∗ 0.10∗ 0.10∗ 130 131 126

12 0.10∗ 0.10∗ 0.10∗ 379 366 365
20 0.10∗ 0.10∗ 0.10∗ 1397 1386 1333
30 0.10∗ 0.10∗ 0.10∗ 4301 4081 3906
50 0.10∗ 0.10∗ 0.10∗ 4751 4751 4751
70 0.10∗ 0.10∗ 0.10∗ 4751 4751 4751

Table 5.2: The result from robust sparse 2-means. The ∗ indicates partitions
that agree with each other.

the sparse methods, sparse 2-means and robust sparse 2-means both return CERs

of 0.10 for reasonably large L1 tuning parameter values: l1 ≥ 6 (Table 5.1 and

Table 5.2). On the other hand, the sparse methods return poor CERs when the L1

tuning parameter values are too small. This is probably because feature weights are

too sparse (For example, when the L1 tuning parameter value is 4, there are only 36

features with non-zero weights for sparse 2-means). However, for all reasonably

large L1 tuning parameter values, the sparse methods consistently return as good

or better partition compared to the nonsparse methods.

Interestingly all the partitions from robust sparse 2-means (regardless of the

α levels) and sparse 2-means are exactly the same for l1 ≥ 6. We denote these

partitions by ‘‘∗’’ in Table 5.1 and Table 5.2. When the L1 tuning parameter is

set to 6, sparse 2-means and robust sparse 2-means return partitions using about

70 features. The partitions resulting from larger values of the L1 tuning parameter

use substantially more features. If the performance of the partition is the same,

then the experimenters would want to use fewer features, because 70 features are

much easier to interpret than 4751 features. For this reason, we will compare the

performance of sparse 2-means and robust sparse 2-means with l1 = 6.

We wonder if there are any outliers in the dataset. We cannot simply treat the

73

trimmed cases as outliers, because robust sparse K-means trims a predetermined

number of cases, regardless of the existence of outliers. Moreover, in this way, it

would be impossible to find outliers via sparse K-means simply because it does not

trim cases. For these reasons, we use the following rule based on ‘‘cut off’’ values

to find the potential outliers. The cut off value is calculated as follows. Given a

partition result, the median m̃ and MAD τ̃ of all the weighted squared Euclidean

distances to their cluster centers are calculated. Then the cut off value is defined

as:

cut off = m̃+ threshold τ̃,

where we choose threshold values between 1 and 5. The cases that are greater than

this cut off value are considered as potential outliers.

CERs are again calculated, excluding the potential outliers. Note that the first

bαNc cases that are excluded from the CER calculation between the robust sparse

2-means partition and the C ER are the trimmed cases. This is because the bαNc
trimmed cases have the top bαNc largest weighted squared Euclidean distances to

their cluster centers.

Figure 5.2 is the call rate plot for four algorithms: sparse 2-means with l1=6

and robust sparse 2-means with (l1,α)=(6,1/78), (6,3/78), (6,10/78). One can see

that for large value of the threshold, the CERs from the four algorithms are almost

the same. This makes sense because the partitions of all four algorithms agree.

As the threshold value decreases, robust sparse 2-means with moderately large α ,

(α = 5/78 and 10/78), returns smaller CERs than sparse 2-means. This means

that some cases excluded from the CER calculation of the robust sparse 2-means

are, indeed, misclassified cases. In fact, robust sparse 2-means with α = 5/78 and

10/78 trim 1 and 2 misclassified cases, respectively. Therefore the misclassified

cases end up placed far from the cluster centers and found as potential outliers.

However, sparse 2-means fails to find the misclassified cases as potential outliers.

Robust sparse 2-means trimmed some of the cases that are misclassified by

other algorithms. Now, we wonder how well the misclassified cases and trimmed

cases are clustered in the partitions from the sparse methods. Figure 5.3 shows the

revised silhouette widths of all cases. The black lines are the revised silhouette

74

Figure 5.2: The call rate plot of the 4 algorithms. The results of the sparse 2-
means and robust sparse 2-means with α = 1/78,5/78 and 10/78. The
results of sparse methods with l1=6 are shown.

75

widths of the trimmed cases. The red digits show the case indices of misclassi-

fied cases. Robust sparse 2-means with α = 5/78 and α = 10/78 capture 1 (the

28th case) and 2 (the cases 28th and the 73th) misclassified cases, respectively. In-

terestingly, the revised silhouette widths of most trimmed cases are almost zero,

which means that they lie at the border of the two clusters. In this example, ro-

bust sparse 2-means trims the cases whose class memberships are ‘‘ambiguous’’

and defines the cluster centers without such cases. The misclassified cases are ex-

cluded in the definition of the cluster centers and placed ‘‘far’’ from their cluster

centers and identified as potential outliers. As a result, the partition from the robust

sparse 2-means without the potential outliers becomes more desirable than the par-

tition from the sparse 2-means without the potential outliers. Figures 5.4 and 5.5

show the weighted distances between the cases, including trimmed cases, and their

cluster centers from the result with l1 = 6.

Lastly, figures 5.6 and 5.7 show the spread of the feature weights over the 4751

features from robust sparse 2-means and sparse 2-means for selected l1 values.

The x-axis shows the feature indices. The distributions are very similar among the

different algorithms for each l1 level.

In summary, we have two conclusions:

• The sparse methods perform better than the nonsparse methods to identify

the ER status of each case. The sparse methods find small subsets of about

70 features which create the two clusters of ER status. The performances of

the sparse methods with about 70 subset features are as good as the perfor-

mances of the sparse methods with the full set of features.

• Robust sparse 2-means trims some of the cases that are misclassified by

sparse 2-means. The misclassified cases are excluded from the calculation of

cluster centers. As a result, the misclassified cases are placed far from their

cluster centers and the call rate plot is able to identify them as potential out-

liers. Robust sparse 2-means found a partition more similar to the partition

based on ER status by excluding potential outliers than sparse 2-means did.

76

(a
)

α
=1

/7
8

(b
)

α
=5

/7
8

(c
)

α
=1

0/
78

Fi
gu

re
5.

3:
T

he
si

lh
ou

et
te

s
of

th
e

pa
rt

iti
on

re
tu

rn
ed

by
th

e
ro

bu
st

sp
ar

se
2-

m
ea

ns
cl

us
te

ri
ng

.T
he

L 1
tu

ni
ng

pa
ra

m
et

er
va

lu
e

is
6.

77

(a) α=1/78

(b) α=5/78

(c) α=10/78

Figure 5.4: The weighted squared Euclidean distances between all cases and
their cluster centers from the result of robust sparse 2-means with l1 = 6.

78

Figure 5.5: The weighted squared Euclidean distances between the cases and
their cluster centers for the result of sparse 2-means with l1 = 6.

79

(a) l1=6 (b) l1=12 (c) l1=70

(d) l1=6 (e) l1=12 (f) l1=70

(g) l1=6 (h) l1=12 (i) l1=70

Figure 5.6: The nonzero weights from robust sparse 2-means for selected l1
values. The three rows show the results of robust sparse 2-means with
α=1/78, 5/78 and 10/78, respectively.

80

(a) l1=6 (b) l1=12 (c) l1=70

Figure 5.7: The nonzero weights from sparse 2-means for selected l1 values.

81

Chapter 6

Conclusion

We developed a robust clustering method that is also able to perform variable selec-

tions. Our proposed method can handle datasets with missing values. We adapted

Clest to our robust sparse K-means method to provide an automatic way of select-

ing the number of clusters. We implemented our proposed method in the R package

RSKC.

Our simulation studies show that our proposed robust sparse K-means cluster-

ing was robust against various kinds of contaminated datasets. They also show that

Clest with robust sparse K-means could identify the number of clusters when the

clusters were reasonably well separated. It was necessary to know that there were

more than two clusters if clusters were not well separated and the dataset is con-

taminated. The application of robust sparse K-means on the microarray datasets

of van’t Veer et al. [27] showed that our proposed method could identify the ER

status of 78 breast tumors better than other methods. The cases which were mis-

classified by other algorithms were trimmed by robust sparse 2-means. Therefore,

the misclassified cases ended up far from their cluster centers defined by robust

sparse K-means and we could find them as potential outliers.

As future research, an automatic robust method of selecting the L1 tuning pa-

rameter values is of interest. Since both current robust clustering R packages,

trimcluster and RSKC, apply Lloyd’s algorithm, one might implement them

with Hartigan and Wong’s algorithm, which is computationally more intense but

tends to achieve a better local optima.

82

Bibliography

[1] D. Barnes, R. Millis, L. Beex, S. Thorpe, and R. Leake. Increased use of
immunohistochemistry for oestrogen receptor measurement in mammary
carcinoma: the need for quality assurance. European Journal of Cancer, 34,
1998.

[2] H. Chipman and R. Tibshirani. Hybrid hierarchical clustering with
applications to microarray data. Biostatistics, 7(2):286–301, 2005.

[3] H. A. Chipman, E. I. George, and R. E. Mcculloch. Making sense of a forest
of trees. In Proceedings of the 30th Symposium on the Interface, pages
84–92, 1998.

[4] J. A. Cuesta-Albertos, A. Gordaliza, and C. Matran. Trimmed k-means: An
attempt to robustify quantizers. The Annals of Statistics, 25(2):553–576,
1997.

[5] S. Duboit and J. Fridlyand. A prediction-based resampling method for
estimating the number of clusters in a dataset. Genome Biology, 3(7), 2002.

[6] E. W. Forgy. Cluster analysis of multivariate data: efficiency vs
interpretability of classifications. Biometrics, 21:768769, 1965.

[7] A. Gordaliza. Best approximations to random variables based on trimming
procedures. Journal of Approximation Theory, 64, 1991a.

[8] A. Gordaliza. On the breakdown point of multivariate location estimators
based on trimming procedures. Statistics & Probability Letters, 11, 1991b.

[9] J. Hardin, A. Mitani, L. Hicks, and B. VanKoten. A robust measure of
correlation between two genes on a microarray. BMC Bioinformatics, 8:220,
2007.

[10] J. A. Hartigan. Clustering Algorithm. John Wiley and Sons, Inc., 1975.

83

[11] J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. Applied
Statistics, 28:100–108, 1979.

[12] L. Hubert. Comparing partitions. Journal of Classification, 2:193–218,
1985.

[13] G. N. Lance and W. T. Williams. Inver: A program for the computation of
distance-measures between attributes of mixed types. Australian Computer
Journal, 11(1):27–28, 1979.

[14] S. P. Lloyd. Least squares quantization in pcm. IEEE Transactions on
information theory, 28(2):129–136, 1982.

[15] D. MacKay. Chapter 20. An Example Inference Task: Clustering.
Cambridge University Press, 2003.

[16] J. MacQueen. Some methods for classification and analysis of multivariate
observations. Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, eds. L.M. LeCam and J. Neyman, 1967.

[17] R. Maitra and I. P. Ramler. A k-mean-directions algorithm for fast clustering
of data on the sphere. Journal of Computational and Graphical Statistics,
19:377–396, 2010.

[18] G. Milligan and M. Cooper. An examination of procedures for determining
the number of clusters in a data set. Psychometrika, 2(50):159–179, 1985.

[19] W. M. Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association, 66:846–850, 1971.

[20] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Computational and Applied Mathematics, 20,
1987.

[21] G. A. F. Seber. Multivariate Observations. Wiley, 2004.

[22] D. Sparks. Algorithm AS 58. Euclidean cluster analysis. Euclidean cluster
analysis, 22:126–130, 1973.

[23] H. Steinhaus. Sur la division des corps matriels en parties. Bull. Acad.
Polon. Sci, 4(12):801–804, 1956.

[24] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society., 58(11), 1996.

84

[25] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters
in a data set via the gap statistic. Journal of Royal Statistical Society, Series
B, 63, 2000.

[26] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani,
D. Botstein, and R. B. Altman. Missing value estimation methods for DNA
microarrays. Bioinformatics, 17(6):520–525, 2000.

[27] L. J. van’t Veer, H. Dal, M. J. van de Vijver, Y. D. He, A. A. M. Hart,
M. Mao, H. L. Peterse, K. van der Kooy, M. J. Marton, A. T. Witteveen, G. J.
Schreiber, R. M. Kerkhoven, C. Roberts, P. S. Linsley, R. Bernards, and
S. H. Friend. Gene expression profiling predicts clinical outcome of breast
cancer. Nature, 415, 2002.

[28] D. M. Witten and R. Tibshirani. A framework for feature selection in
clustering. Journal of the American Statistical Association, 105(490):
713–726, 2010.

85

Appendix A

Technical Appendix

A.1 The algorithm of Hartigan and Wong
This Appendix explains the technical details of Hartigan and Wong’s algorithm. To

simplify the notation, define a function:

R2(i,k) =
nk

nk +1
||xi− x̄k||2.

Then R2(i,k2) is the left hand side of the inequality in (2.7). Let LIV E denote a

live set.

Randomly choose K cases to serve as initial cluster centers. Perform the first

and the second step of Lloyd’s algorithm. Let all clusters belong to the live set:

C1, · · · ,CK ∈ LIV E. Repeat 1,2 and 3 until the live set becomes empty.

1. This is the optimal-transfer (OPTRA) stage. In this stage, calculations and

reallocations are made with regard to all cases relative to clusters in the live

set. For all the cases, i = 1, · · · ,N, perform:

(a) If CIC1(i) ∈ LIV E

i. Denote k1 = IC1(i). Compare the criterion (2.7) where k2 is the

cluster which returns the smallest R2(i,k) among all clusters ex-

cept the kth
1 cluster. If (2.7) holds, then allocate the ith case into Ck2

and set IC1(i) = k2 and IC2(i) = k1. Otherwise, keep the ith case

86

in Ck1 and set IC1(i) = k1 and IC2(i) = k2.

ii. Given a cluster assignment IC1(i) for all i from Step i, cluster

centers x̄k’s are updated. The two clusters that are involved in the

transfer of cases, i’s, at this step are now in the live set.

(b) if CIC1(i) /∈ LIV E

This step is the same as Step 1(a), except that the minimum R2(i,k) is

computed only over clusters in the live set.

2. Stop if the live set is empty.

3. This is the quick transfer (QTRAN) stage. This stage only checks for the

memberships of recently reallocated clusters and updates the clusters.

i. Let k1 = IC1(i) and k2 = IC2(i) and compare the criterion (2.7).

If the criterion is satisfied then switch IC1(i) and IC2(i). The

clusters that are involved in the transfer of cases at this step are

now in the live set.

ii. Given a cluster assignment IC1(i) for all i from Step i, cluster

centers x̄k’s are updated. The two clusters that are involved in the

transfer of cases at this step are now in the live set.

4. If no reallocation took place in the quick transfer stage, then go to the optimal-

transfer stage, Otherwise go to the quick transfer stage.

A.2 The difference between Silhouette and the revised
silhouette

In our data analyses, we used the revised silhouette to assess if a case is well clus-

tered. In fact, this measure is very similar to the famous measure, Silhouette, pro-

posed by Rousseeuw [20]. In this section, we explain the difference between Sil-

houette and the revised silhouette and explain why we decided to use the revised

silhouette.

Silhouette is based on a measure, called the silhouette width, which assesses

how well a case is assigned. The author defined a ‘‘neighbor’’ of a case to be the

cluster to which the case could have been assigned if the first choice cluster had not

87

been available. The author argued that if the ith case is well clustered, the average

dissimilarity between the ith case and the others in the same cluster, denoted as

a(i), should be considerably smaller than the average dissimilarity between the ith

case and the cases in its neighbor, denoted as b(i). The silhouette width of the ith

case, silhouette(i), was defined to be the standardized difference of b(i) and a(i).

Although similar, this silhouette width introduced by Rousseeuw [20] is differ-

ent from our proposed revised silhouette width above. Intuitively, Silhouette tends

to ‘‘favor’’ clusters with low variation when the squared Euclidean dissimilarity

measure is used.

We can measure the variation within the kth cluster by the contribution from

the kth cluster, WSSk, to WSS:

WSSk = ∑
l∈Ck

||x̃l− ¯̃xk||2.

One can see that b(i) and a(i), defined above, are increasing functions of the vari-

ation within the ith neighbor and the variation within the cluster to which the ith

case belongs, respectively. To see this, let dis(i,Ck) be the average dissimilarity of

the ith case to all cases in Ck. Then b(i) is the minimum of dis(i,Ck) over Ck such

that k is not IC1(i). This dis(i,Ck) is not only a function of the distance from the

ith case to the kth cluster center but also a function of WSSk:

dis(i,Ck) = average dissimilarity of the ith case to all cases in Ck

=
1
|Ck| ∑

l∈Ck

||x̃i− x̃l||2

=
1
|Ck|

(
∑

l∈Ck

||x̃i− ¯̃xk||2 +(x̃i− ¯̃xk)
T

∑
l∈Ck

(¯̃xk− x̃l)+ ∑
l∈Ck

|| ¯̃xk− x̃l||2
)

= ||x̃i− ¯̃xk||2 +
1
|Ck|

WSSk.

One can also show that a(i) is a function of both WSS(−i)
k /(|Ck| − 1) and ||x̃i−

¯̃x(−i)
k ||2, where WSS(−i)

k and ¯̃x(−i)
k represent the WSSk and ¯̃xk calculated without the

ith case, respecitvely. Therefore b(i) could be smaller than a(i) even if the ith case

is clustered in the closest cluster center when the variation of the closest cluster

88

is considerably large. Then Silhouette suggests to change the cluster belonging of

the ith case to its neighbor. This situation can be seen in the simple example in

-1 0 1 2 3

-1
0

1
2

True clusters

d[,1]

d[
,2
]

-1 0 1 2 3

-1
0

1
2

Clusters from K-means

d[,1]

d[
,2
]

-1 0 1 2 3

-1
0

1
2

Clusters from K-means
 with Silhouette width

d[,1]

d[
,2
]

X

X

X
X

X

X

Figure A.1: The example of negative Silhouette.

Figure A.1. The first panel shows the generated cases from two clusters. The cases

are colored by true cluster labels. Clearly one cluster has much larger variation

than another. The second panel and the third panel show the same cases colored by

the partition from 2-means. In the third panel, the cases with negative silhouette

widths are indicated by ‘‘X’’. The circles indicate the cluster centers from 2-means.

Although the cases are clustered in the clusters with the closest cluster centers,

Silhouette suggests that they should rather be placed in the neighbor.

We think that it is odd to favor the cluster with less variation to measure how

well cases are clustered. A direct comparison of the distance between a case to

its cluster center and the distance between the case to its second closest cluster

might be better to measure how well cases are clustered. For this reason, we use

rev.silhouette for the data analyses in Chapter 5.

89

	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	1.1 Clustering

	2 Literature review of clustering methods
	2.1 Introduction
	2.2 K-means
	2.2.1 The method
	2.2.2 The standard computing algorithm (Lloyd's algorithm) and Hartigan and Wong's algorithm
	2.2.3 Measurements of the agreement between two partitions
	2.2.4 Small simulation studies of K-means

	2.3 Sparse K-means
	2.3.1 K-means as a maximization problem
	2.3.2 The additivity of dissimilarities in each feature
	2.3.3 The sparse K-means clustering algorithm
	2.3.4 The L1 tuning parameter values and the sparsity of features
	2.3.5 A small simulation study of sparse K-means with datasets generated from the noisy model
	2.3.6 Simulation studies of sparse K-means with contaminated datasets
	2.3.7 Simulation studies of sparse 3-means with contamintaed datasets and fixed L1 tuning parameter values

	2.4 Trimmed K-means
	2.4.1 Trimmed K-means computing algorithm

	3 Robust sparse K-means clustering
	3.1 The method
	3.1.1 Robust Sparse K-means algorithm
	3.1.2 The choice of l1

	3.2 Simulation studies of robust sparse 3-means with contaminated datasets
	3.3 Simulation studies to compare the performance of K-means, sparse K-means, trimmed K-means and robust sparse K-means
	3.4 Robust sparse K-means with missing values

	4 Selection of K
	4.1 Brief literature review
	4.2 The gap statistic
	4.2.1 Two methods for generating the reference distributions of the gap staitsitc

	4.3 Clest
	4.3.1 The idea
	4.3.2 The idea of the clest algorithm
	4.3.3 The algorithm of Clest with robust sparse K-means

	4.4 Simulation studies with Clest

	5 Data analyses with clustering methods
	5.1 Before moving to the data analyses
	5.1.1 The dissimilarity measure based on Pearson's correlation
	5.1.2 The revised silhouette
	5.1.3 The dataset of Perou
	5.1.4 The selection of the number of clusters, K
	5.1.5 The comparison of the performance of non-hierarchical clustering

	5.2 The dataset of vant
	5.2.1 Selection of K

