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Outline

➤ Grouping by linear patterns

➤ Our basic building block (LGA)

➤ The number of random starting points

➤ The number of groups

➤ The generalized LGA (GLGA)

➤ Application to Biology (Allometry data )

➤ Application to sport (hockey data)

➤ Application to Genomics (SNP data)
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Clustering Goals
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Clustering Goals

➤ Homogeneous subgroups in a dataset
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Clustering Goals

➤ Homogeneous subgroups in a dataset

➤ Interesting patterns in a dataset
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Clustering Algorithms

Clustering algorithms are effective when the clusters are
separated groups of points

☞ JJ J � I II ×



4

But some patterns cannot be found this way ...
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Tilted Pi Pattern
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Our Goal
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Our Goal

➤ To find groups clustered around hyperplanes of
different dimensions

0 ≤ li ≤ d− 1 i = 1, 2, ..., N
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Example d = 3 and N = 3

• l1 = 1 points clustering around a line .

• l2 = 0 points clustering around a point .

• l3 = 2 points clustering around plane .
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Formulating the Problem
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Formulating the Problem

➤ In general, a d− j dimensional hyperplane (j ≤ d) is given by the
equation

Ax = B

• A is an orthogonal j × d matrix
• B is a j-dimensional vector.
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Formulating the Problem

➤ In general, a d− j dimensional hyperplane (j ≤ d) is given by the
equation

Ax = B

• A is an orthogonal j × d matrix
• B is a j-dimensional vector.

➤ Therefore we search for N groups with “central hyperplanes”

(A1,B1), (A2,B2), ..., (AN,BN)
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Generalized LGA

GLGA = LGA + GAP

• LGA finds the “best” partition of the data around k
hyperplanes of dimension d-1.
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Generalized LGA

GLGA = LGA + GAP

• LGA finds the “best” partition of the data around k
hyperplanes of dimension d-1.

• GAP sequentially considers the possibility of increasing the
number of clusters by one and stops when the addition of a
cluster doesn’t provide a significant improvement.
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Simple Example

d = 2 and N = 3
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Finding 1-d Hyperplanes (Lines)
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Projecting on the Lines and Finding 0-d Hyperplanes (Points)
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The Final Result
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The Basic LGA

Goal : to find k groups around hyperplanes of
dimension d− 1
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The Basic LGA

Goal : to find k groups around hyperplanes of
dimension d− 1

Some proposed methods to find linear groups :
• Murtagh and Raftery (1984)

• Gawrysiak et al. (2000)

• Spath (1982,1985)

• Desarbo, Oliver and Rangaswamy (1989)

• Wedel and Kistemaker (1989)

• Kamgar-Parsi, Kamgar-Parsi and Wechsler (1990)

• Gawrysiak, Okoniewski and Rybinski (2000)
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The Basic LGA

Goal : to find k groups around hyperplanes of
dimension d− 1

Some proposed methods to find linear groups :
• Murtagh and Raftery (1984)

• Gawrysiak et al. (2000)

• Spath (1982,1985)

• Desarbo, Oliver and Rangaswamy (1989)

• Wedel and Kistemaker (1989)

• Kamgar-Parsi, Kamgar-Parsi and Wechsler (1990)

• Gawrysiak, Okoniewski and Rybinski (2000)

These methods assume a specified output variable.
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Unsupervised Learning Setup

➤ Clustering and linear grouping are often used in the
context of unsupervised learning .
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Unsupervised Learning Setup

➤ Clustering and linear grouping are often used in the
context of unsupervised learning .

➤ Unsupervised learning is characterized by the
absence of a specified output variable .

➤ Moreover, different linear groups may involve different
subsets of variables .
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Example
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Response Variable = Y

☞ JJ J � I II ×



18

Response Variable = Z
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Orthogonal Regression

Linear Residual = Vertical distance
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Orthogonal Regression

Linear Residual = Vertical distance

Orthogonal Residual = Euclidean distance
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Orthogonal Residuals
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Orthogonal Regression
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Orthogonal Regression

Given z1, z2, ..., zn in Rd, the fitting (d− 1)-dimensional hyperplane

(α̂, β) = {z : α̂′z = β̂, ‖α̂‖ = 1}

is defined as the solution to the problem:

Minimize ‖α‖=1,β

∑
(α′zi − β)2
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Orthogonal Regression

z̄ =
1
n

∑
zi (Sample Mean)

S =
1
n

∑
(zi − z̄)(zi − z̄)′ (Sample Covariance)

The OR estimates are:

α̂ = normalized first eigenvector of S

β̂ = α̂′z̄

☞ JJ J � I II ×



23

The LGA Algorithm
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The LGA Algorithm

INPUT: d-dimensional data points z1, z2, ..., zn and the desired
number k of groups
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The LGA Algorithm

INPUT: d-dimensional data points z1, z2, ..., zn and the desired
number k of groups

OUTPUT: The “best partition” of the dataset into k groups
centered around hyperplanes of dimension d− 1
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LGA Step-by-Step

1) Initialization: Initial hyperplanes are defined by the exact
fitting of k sub-samples of size d
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LGA Step-by-Step

1) Initialization: Initial hyperplanes are defined by the exact
fitting of k sub-samples of size d

2) Forming k groups: Each data point is assigned to its closest
hyperplane using Euclidean distances.
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LGA Step-by-Step

1) Initialization: Initial hyperplanes are defined by the exact
fitting of k sub-samples of size d

2) Forming k groups: Each data point is assigned to its closest
hyperplane using Euclidean distances.

3) Computing k Hyperplanes: New hyperplanes are computed
applying orthogonal regression to each group.
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LGA Step-by-Step

1) Initialization: Initial hyperplanes are defined by the exact
fitting of k sub-samples of size d

2) Forming k groups: Each data point is assigned to its closest
hyperplane using Euclidean distances.

3) Computing k Hyperplanes: New hyperplanes are computed
applying orthogonal regression to each group.

4) Steps 2) and 3) are repeated several times
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The Number of Random Starts

p =

 n1

d

  n2

d

 · · ·

 nk

d


 n1 + n2 + · · ·nk

dk


0.95 = 1 − (1 − p)

m

m =
log (0.05)

log (1 − p)
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The Number of Random Starts
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The Number of Random Starts

The needed number m of random starts depends on:

• The the number k of groups,

• The relative size of the groups,

• The dimension d of the data.
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The Number of Random Starts

The needed number m of random starts depends on:

• The the number k of groups,

• The relative size of the groups,

• The dimension d of the data.

• m doesnt depend much on the data size, n.
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The Number of Groups
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The Number of Groups

➤ The number k of groups is an input of our algorithm
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The Number of Groups

➤ The number k of groups is an input of our algorithm

• k may be suggested by additional subject field
information (species, gender, location, etc.)
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The Number of Groups

➤ The number k of groups is an input of our algorithm

• k may be suggested by additional subject field
information (species, gender, location, etc.)

• Finding the number of groups may be the most
important goal of the research
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Graphical Approach
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Graphical Approach

• Plots may provide visual information
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Graphical Approach

• Plots may provide visual information

• Mainly helpful for 2 or 3 dimensional data
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Graphical Approach

• Plots may provide visual information

• Mainly helpful for 2 or 3 dimensional data

• Eyes may fail to identify linear patterns in heavily
overlapping regions
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Graphical Approach
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The GAP Statistic

Tibshirani, Walther and Hastie (2001) proposed the GAP statistic
to determine the number of clusters in a data set.
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The GAP Statistic

Tibshirani, Walther and Hastie (2001) proposed the GAP statistic
to determine the number of clusters in a data set.

GAP compares the pooled within-cluster sum of squares around
the cluster centers with its expectation under a null reference
distribution.
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The GAP Statistic

Tibshirani, Walther and Hastie (2001) proposed the GAP statistic
to determine the number of clusters in a data set.

GAP compares the pooled within-cluster sum of squares around
the cluster centers with its expectation under a null reference
distribution.

The null distribution is obtained by generating uniformly
distributed points on the hyper-rectangle aligned with the principal
components of the data.
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The GAP Statistic

Tibshirani, Walther and Hastie (2001) proposed the GAP statistic
to determine the number of clusters in a data set.

GAP compares the pooled within-cluster sum of squares around
the cluster centers with its expectation under a null reference
distribution.

The null distribution is obtained by generating uniformly
distributed points on the hyper-rectangle aligned with the principal
components of the data.

The (modified) GAP statistic for linear grouping is obtained by
replacing “distance to the center” by “distance to the
hyperplane” .
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The GAP Statistic (continued)

GAP (k) =

[
1
B

B∑
b=1

log (SSRk (b))

]
− log (SSRk)
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The GAP Statistic (continued)

GAP (k) =

[
1
B

B∑
b=1

log (SSRk (b))

]
− log (SSRk)

k̂ = smallest k such that GAP (k) ≥ GAP (k + 1)− sk+1
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The GAP Statistic (continued)

GAP (k) =

[
1
B

B∑
b=1

log (SSRk (b))

]
− log (SSRk)

k̂ = smallest k such that GAP (k) ≥ GAP (k + 1)− sk+1

sk+1 = Sk+1

√
1 + (1/B)
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The GAP Statistic (continued)

GAP (k) =

[
1
B

B∑
b=1

log (SSRk (b))

]
− log (SSRk)

k̂ = smallest k such that GAP (k) ≥ GAP (k + 1)− sk+1

sk+1 = Sk+1

√
1 + (1/B)

Sk+1 = Standard Deviation of log (SSRk+1 (b))
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Application to Allometry Data
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Biologists investigate the relationships between sizes of organs
for different species.
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Application to Allometry Data

Biologists investigate the relationships between sizes of organs
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The (transformed) sizes of organs are linearly related.
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Application to Allometry Data

Biologists investigate the relationships between sizes of organs
for different species.

The (transformed) sizes of organs are linearly related.

Linear associations differ across species because of different
living habits, environment, food sources, etc.

Grouping according to different linear patterns is necessary.

Biologists make manual assignments based on their scientific
experience (Jerison 1973).
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Application to Allometry Data

Figure 6: Logarithms of Olfactory Bulb vs. Brain Weight for some
mammal species: Insectivores (i), Carnivores (c), Prosimians (p),
Apes (a), Monkeys (m), Human (h) and Horse (o).
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Application to Allometry Data

LGA with k = 3 (Dr. Jerison’s hypothesis)
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Application to Allometry Data

LGA with k = 2 (GAP result)
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Prof. Jerison

I insectivores, carnivores, horses,
II prosimians (primitive primates)
III anthropoids (monkeys, apes, human)

LGA with k=3

I insectivores, carnivores, horses, red
II prosimians and apes green
III monkeys and human black

LGA & GAP

I insectivores, carnivores, horses, prosimians black
II monkeys, apes and human red
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Application to Sport Data
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Application to Sport Data

➤ Performance of 871 players in the 94/95 Hockey League
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Application to Sport Data

➤ Performance of 871 players in the 94/95 Hockey League
➤

Variables Description

PTS # of Goal Scored + # of Assists

P/M Plus/Minus Rating

+ team scored,
- oponent team scored

PIM Total penalty time (minutes)

PP Total number of power-play goals scored
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➤ We applied OR-grouping with k=3

➤ The results:
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Sharp Shooters - Team Players
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Application to Genomics
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Application to Genomics

➤ The Gene/Environment Team at the ICAPTURE Center is currently using the
fluorescent based Taqman technology to genotype 10, 000 enrolled patients for
160 single nucleotide polymorphisms (SNP).
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Application to Genomics

➤ The Gene/Environment Team at the ICAPTURE Center is currently using the
fluorescent based Taqman technology to genotype 10, 000 enrolled patients for
160 single nucleotide polymorphisms (SNP).

➤ SNP (pronounced ‘snip’), is a small genetic variation that can occur within a
person’s DNA sequence. Example: the DNA segment AGGTTA changes to
ATGTTA.

➤ On average, SNPs occur in the human population approximately 1 percent of
the time.

➤ SNPs found within a coding sequence are of particular interest (more likely to
alter the biological function of a protein).
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The TaqMan Technology
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The TaqMan Technology
The TaqMan assay is a popular high-throughput genotyping technology (Livak et al. 1995)
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ROX Normalization
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ROX Normalization

➤ VIC (for Allele X), FAM(for Allele Y) and ROX(Passive Reference)
fluorescence values are measured concurrently for each well.
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ROX Normalization

➤ VIC (for Allele X), FAM(for Allele Y) and ROX(Passive Reference)
fluorescence values are measured concurrently for each well.

➤ ROX account for well-to-well differences and for differences in the PCR
mastermix.
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ROX Normalization

➤ VIC (for Allele X), FAM(for Allele Y) and ROX(Passive Reference)
fluorescence values are measured concurrently for each well.

➤ ROX account for well-to-well differences and for differences in the PCR
mastermix.

➤ ROX dye intensities are assumed unchanged after PCR amplification and
hence can be used to normalize the data.
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Call Rate vs ROX
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Plate3 - Raw Data
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Plate3 - ROX Normalized Data
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Plate3 - Raw Data - LGA Grouping
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Summary

➤ LGA finds groups that follow different linear relationships

• LGA can find overlapping linear patterns
• LGA tolerates the presence of “nuisanse” variables

➤ We are currently “fine-tuning” an algorithm to genotype SNPs using LGA
(Gyan, G., Van Aelst, S., Welch, W. and Zamar, (2006)).

➤ Justin Harrington constructed an R-package to implement LGA and GLGA
(available from http://md.stat.ubc.ca/lga )

➤ Scaled up algorithm to handle higher dimensions and very large datasets
(Harrington, J. and Salibian-Barrera, M., 2006)

➤ Robust LGA using trimmed means to deal with outliers (Pison, G., Van Aelst,
S. and Zamar, R.H., 2006))

➤ We plan to extend this approach to find nonlinear patterns.
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Thanks for your attention!
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