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Abstract

We propose an approach for building ensembles of regularized linear models by
optimizing an objective function that encourages sparsity within each model and di-
versity among them. Our procedure works on top of a given penalized linear regression
estimator (e.g., Lasso, Elastic Net, SCAD) by fitting it to possibly overlapping sub-
sets of features, while at the same time encouraging diversity among the subsets, to
reduce the correlation between the predictions from each fitted model. The predic-
tions from the models are then aggregated. For the case of an Elastic Net penalty and
orthogonal predictors, we give a closed form solution for the regression coefficients in
each of the ensembled models. We prove the consistency of our method in possibly
high-dimensional linear models, where the number of predictors can increase with
the sample size. An extensive simulation study and real-data applications show that
the proposed method systematically improves the prediction accuracy of the base
linear estimators being ensembled. Possible extensions to GLMs and other models
are discussed.
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1 Introduction

Model ensembling is a powerful approach for prediction. Examples of ensemble methods for

regression include Random Forests (Breiman, 2001) and Boosting (Schapire and Freund,

2012; Friedman, 2001). Both methods can adapt well to the presence of non-linearity, but

the resulting prediction rules are generally difficult to interpret. If the relation between the

response and the predictor variables is approximately linear, an ensemble of linear models

will produce highly competitive predictions and yield more interpretable results.

We are interested in building ensembles of regularized linear models, with a special aim

towards data sets in which the number of observations is relatively small, smaller or not

much larger than the number of predictors. For motivation, consider the following toy

example. We generate 500 replications of 10 independent observations from the model

y = 0x1 + 1x2 + 1x3 + u,

where, xi, i = 1, . . . , 3, and u are standard normal, u is independent of xi, i = 1, . . . , 3,

x1 is independent of x2 and x3, and the correlation between x2 and x3 is 0.9. We fit three

procedures to the data, the ordinary least squares estimator (LS), Elastic Net (EN) (Zou

and Hastie, 2005) with penalty parameter chosen by leave-one-out cross-validation, and the

following ensemble: apply least squares to the data using only predictors x1 and x2, then

apply least squares to the data using only predictor x3 and average the predictions from

these two fits. We computed the prediction mean squared error (PMSE) of each procedure

on an independent test set of size five thousand. The resulting PMSEs of LS and EN are

1.74 and 2.09, respectively, whereas the PMSE for the ensemble, 1.33, is much smaller.

The intuitive idea is that, for problems with a number of observations n that is relatively

low when compared to the number of predictors p, the increase in bias due to leaving out

variables from some of the models is compensated by a double reduction in variance: (i)
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the reduction in variance in each of the linear models due the lower dimensionality and

possibly lower multicollinearity and (ii) the reduction in variance due to the averaging of

the resulting predictors. Indeed, in the example above, the mean variances of LS and the

ensemble are 0.74 and 0.32 respectively, whereas the mean squared biases are 2.6×10−3 and

9.4 × 10−3. In our toy example, since predictors x2 and x3 are highly correlated, it seems

sensible to place them in separate models. Note that to build the ensemble, in particular,

to choose how to group the variables, we used our knowledge of the data generating process,

which is not available in practice.

In general, one could exhaustively search over all possible groupings of the variables

into different models and choose the one with the lowest estimated prediction error (e.g.

using cross-validation), but this is computationally unfeasible. For example, the number

of possible splits of p features into two groups of sizes p1 and p2 plus a third group of p3

left-out features (p1 + p2 + p3 = p) is 3p. In general, the number of possible ensembles of G

models plus a group of pG+1 left-out-features is (G+1)p. This number becomes much larger

if we allow the variables to be shared by the different models. At this point we notice that,

in the simpler case of selecting a single subset of features (where G = 1), the combinatorial

problem of evaluating 2p possible subsets can be bypassed by using greedy algorithms such

as forward stepwise regression or penalized estimators. An appropriately tuned penalized

estimator, e.g. the lasso, is able to automatically and optimally determine which variables

are left out and the required level of shrinkage applied to the active variables. We will see

that a penalization approach can also be adopted to deal with the G > 1 case.

Suppose we have n samples of training data y ∈ Rn, X ∈ Rn×p, where y is the response

variable and X is a matrix collecting all the available p features from each of the n samples,

and we want to build G > 1 linear models using the data. We propose to minimize a
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penalized objective function of the form:

O(y,X,β1, . . . ,βG) =
G∑
g=1

(
1

2n
‖y −Xβg‖2 + pλS(βg) + qλD,g(β

1, . . . ,βG)

)
, (1)

where βg ∈ Rp is the vector of coefficients for model g, pλS is a penalty function, encouraging

sparsity within the models and qλD,g is another penalty function, encouraging diversity

among the models. In this paper, we take pλS to be the Elastic Net penalty

pλS(βg) = λS

(
(1− α)

2
‖βg‖22 + α‖βg‖1

)
,

where α ∈ [0, 1] and

qλD,g(β
1, . . . ,βG) =

λD
2

∑
h6=g

p∑
j=1

|βhj β
g
j |.

In general, by appropriately choosing the penalty function pλS(βg) it is seen that our

method generalizes penalized regression estimators, such as the Lasso, the Elastic Net and

the SCAD, (Tibshirani, 1996; Zou and Hastie, 2005; Fan and Li, 2001), allowing for the

selection of possibly overlapping subsets of features in such a way that variables that work

well together end up in the same model, while at the same time encouraging diversity

between the models, to reduce the correlation between the predictions resulting from each

of them. This implies that, by appropriately choosing the tuning parameters the proposed

method automatically and optimally decides: which variables are left out, how many models

are required, the distribution of the active variables among the different models (with

possible overlap) and the shrinkage applied to the active variables in each of the models.

There has been a vast production of work, both theoretical and practical, dealing with

regularization in linear models. The task of reviewing this mass of work is daunting and be-

yond the scope of this paper. The interested reader can find excellent reviews in Bühlmann

and van de Geer (2011) and Hastie et al. (2015). The main difference between our ap-

proach and the existing methodology is that the final output of our approach consists of a

4



collection of regression models, whose predictions can be averaged or otherwise combined

to produce a final prediction. Moreover, our procedure allows for the optimal choice of the

model sizes and overlap to yield better predicitions.

The rest of this article is organized as follows. In Section 2 we study the properties

of the minimizers of (1) in some simple but illustrative cases. We prove a consistency

result for the proposed method in Section 3. In Section 4 we propose an algorithm to

compute the proposed estimators, to choose their tuning parameters and to aggregate the

predictions from the constructed models. In the simulation study included in Section 5

we compare the performance with regards to prediction accuracy of the proposed method

against that of several competitors. We apply the procedures considered in the simulation

study to real data-sets in Section 6. Finally, some conclusions and possible extensions are

discussed in Section 7. Technical proofs and additional simulations results are provided in

the supplementaly material for this article.

2 Forming ensembles of regularized linear models

Assume we have training data y′ = (y1, . . . , yn), x′i = (xi,1, . . . , xi,p), i = 1, . . . , n standard-

ized so that

1

n

n∑
i=1

xi,j = 0,
1

n

n∑
i=1

x2i,j = 1, 1 ≤ j ≤ p,
1

n

n∑
i=1

yi = 0,
1

n

n∑
i=1

y2i = 1

Let X ∈ Rn×p be the matrix with x′i as rows and let xj be its columns.

We consider ensembles defined as minimizers of the objective function given in (1), that

is

β̂ ∈ arg min
β
O(y,X,β),
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where β ∈ Rp×G is the matrix with βg as columns and O(y,X,β) = O(y,X,β1, . . . ,βG).

Hence, as mentioned in the introduction, we use the quadratic loss to measure the goodness

of fit of each model, the Elastic Net penalty to regularize each of the models, and the penalty

qλD,g(β
1, . . . ,βG) to encourage diversity among the models.

The problem of minimizing (1) can be posed as an ‘artificial’ multivariate linear regres-

sion problem. Let Y ∈ Rn×G be the matrix with the vector y repeated G times as columns.

Then

O(y,X,β) =
1

2n
‖Y −Xβ‖2F + λS

(
(1− α)

2
‖β‖2F + α‖β‖1

)
+
λD
2

(
‖|β|′|β|‖1 − ‖β‖2F

)
,

where ‖ ·‖F is the Frobenius norm, |β| stands for taking the absolute value coordinate-wise

and ‖ · ‖1 is the sum of the absolute values of the entries of the matrix. It is seen that

the diversity penalty term in a sense penalizes correlations between the different models.

Further insights can be gained by analyzing the term corresponding to each model in (1)

separately. Fix any 1 ≤ g ≤ G. Then

1

2n
‖y −Xβg‖2 + λS

(
(1− α)

2
‖βg‖22 + α‖βg‖1

)
+
λD
2

∑
h6=g

p∑
j=1

|βhj β
g
j |

=
1

2n
‖y −Xβg‖2 + λS

(1− α)

2
‖βg‖22 +

p∑
j=1

|βgj |(λSα +
λD
2

∑
h6=g

|βhj |)

=
1

2n
‖y −Xβg‖2 + λS

(1− α)

2
‖βg‖22 +

p∑
j=1

|βgj |wj,g,

where wj,g = (λSα + λD/2
∑

h6=g |βhj |). Hence, when looking at each model separately, we

are solving an Elastic Net type problem, where the Lasso penalty has weights which depend

on the solution itself. In particular, the coordinates most penalized in model g will be those

that have large coefficients in the other models. Some intuition on the impact of using our
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diversity penalty can be obtained by considering an extreme situation in which there is

only one variable and three models. In Figure 1 we show level surfaces of the full penalty

term for p = 1, G = 3, α = 1, λS = 1 and different values of λD. Hence the surfaces plotted

are the solutions of

|β1
1 |+ |β2

1 |+ |β3
1 |+ λD

(
|β1

1β
2
1 |+ |β1

1β
3
1 |+ |β3

1β
2
1 |
)

= 1.

We see that when λD is small, the surface is similar to the three-dimensional `1 ball. For

larger values of λD the surface becomes highly non-convex, with peaks aligned with the

axes, where there is only one model that is non-null.

The following proposition follows easily from the previous discussion.

Proposition 1. For λD = 0, the optimal β̂ has columns equal to the Elastic Net estimator.

Since λD = 0 is always considered as a candidate penalty parameter, see Section 4, if

the optimal model (in the sense of minimal cross-validated prediction mean squared error)

is a single Elastic Net, this will be the final output of our method.

For any λS > 0, O(y,X,β)→∞ as ‖β‖ → ∞ and hence a global minimum of O exists.

The objective function O is not a convex function of β if λD > 0, due to the non-convexity

of qλD,g. Moreover, if β̂ is a global minimizer of O, any permutation of its columns is also

a global minimizer. Importantly, the objective function is convex (strictly if α < 1) in

each coordinate and in each group of coordinates βg, since the corresponding optimization

problems are actually penalized least squares problems with a weighted Elastic Net penalty.

2.1 The case of orthogonal predictors

We derive a closed form solution for the minimizers of the objective function in the special

case in which the predictors are orthogonal. We find that the closed form solution for the

orthogonal case provides some insights into how the procedure works.
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Figure 1: Plots of the full penalty term for α = 1, λS = 1 and three different values of λD.

Proposition 2. Assume X/
√
n is orthogonal and G = 2. Fix any j = 1, . . . , p and let

Cj = y′xj/n. Then

1. If |Cj| ≤ αλS the j-th coefficients of all models in all solutions of the ensemble are

zero.

2. If |Cj| > αλS

(a) If λD < 1 + (1− α)λS all solutions of the ensemble satisfy

β̂1
j = β̂2

j =
soft(Cj, αλs)

1 + (1− α)λS + λD
.

(b) If λD = 1 + (1− α)λS any pair (β1
j , β

2
j ) that satisfies β1

jβ
2
j ≥ 0 and

β1
j + β2

j =
soft(Cj, αλs)

1 + (1− α)λS

is a solution to the ensemble.

(c) If λD > 1 + (1 − α)λS all solutions of the ensemble satisfy that only one of β̂1
j

and β̂2
j is zero, and the non-zero one is equal to

soft(Cj, αλs)

1 + (1− α)λS
.
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Some comments are in order. First, as happens with the classical Elastic Net, if the

maximal correlation between the predictors and the response is smaller that αλS, then

all the coefficients in the ensemble are zero. Else, we have three distinct regimes. Fix

some coordinate j. When λD < 1 + (1 − α)λS, the coefficients for predictor j in both

models are equal, and are equal to the univariate Elastic Net estimator corresponding to

penalty parameters α and λS but with an added `2 shrinkage: the factor dividing the soft

thresholding operator has an added λD. If λD = 1+(1−α)λS the objective function depends

only on β1
j + β2

j and hence more than one solution exists. Finally, if λD > 1 + (1 − α)λS,

for all possible solutions of the ensemble, and for predictor j, only one of the models is

non-null, and it is equal to the univariate Elastic Net.

2.2 The case of two correlated predictors

Further insights into how our procedure works can be gained by analyzing the simple case

in which there are only two correlated predictors and two models.

Proposition 3. Assume X ∈ Rn×2 is normalized so that its columns have squared norm

equal to n and G = 2. Let β̂ be any solution of the ensemble, ρ = (x2)′x1/n and Cj =

y′xj/n, j = 1, 2.

1. If the models are disjoint then the active variables in each model have coefficients

Tj =
soft(Cj, αλs)

1 + (1− α)λS
, j = 1, 2,

and

λD ≥ max

{
|C1 − ρT2| − αλS

T1
,
|C2 − ρT1| − αλS

T2

}
.
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2. If variable i is inactive in both models, variable j is active in both models and λD 6=

1 + (1− α)λS then the coefficients of variable j are equal to

soft(Cj, αλs)

1 + (1− α)λS + λD
.

3. Assume λS = 0 and that both variables are active in both models. If sign(β̂1
1) =

sign(β̂2
1) and sign(β̂1

2) = sign(β̂2
2) then all solutions of the ensemble satisfy

1 λD 0 ρ

λD 1 ρ 0

0 ρ 1 λD

ρ 0 λD 1




β̂1
1

β̂2
1

β̂2
2

β̂1
2

 =


C1

C1

C2

C2

 .

If λD < 1− ρ, the solution is unique.

The case in which λS = 0 is easier to analyze. In this case, the proposition above implies

that if the fitted models are disjoint then λD ≥ {|1− ρ(C1/C2)| , |1− ρ(C2/C1)|} , and the

non-null coefficients in the ensemble are equal to the marginal Elastic Net regressions. Note

that in the case in which C1 = C2, the size of the diversity penalty required to separate

the models decreases as the correlation between the variables increases.

3 A consistency result

Assume the data follows a standard linear regression model

yi = x′iβ0 + εi, 1 ≤ i ≤ n, (2)

where the vector of predictors xi is fixed and the errors εi are i.i.d. normal random variables

with variance σ2. The number of predictors p may depend on the sample size and be greater

than n. As before, we assume that (1/n)
n∑
i=1

x2i,j = 1 for j = 1 . . . p.
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Theorem 1. Assume that λS ≥ σ
√

(t2 + 2 log(p))/n for some t > 0. Let β̂ be any solution

of the ensemble, with α = 1. Then with probability at least 1− 2 exp(−t2/2) we have

1

2n

∥∥∥∥∥
(

1

G

G∑
g=1

Xβ̂
g

)
−Xβ0

∥∥∥∥∥
2

2

≤ 2λS‖β0‖1 +
λD(G− 1)

2
‖β0‖22.

It follows that if we take λS to be of order
√

log(p)/n and λD to be of order log(p)/n

then if we assume ‖β0‖1 is of order smaller than
√
n/ log(p) and log(p)/n→ 0, the average

prediction of the ensemble, (1/G)
∑G

g=1 Xβ̂
g
, is consistent. A similar result can be obtained

if one assumes only that the errors have a sub-gaussian distribution. Sharper bounds may

be obtained if one assumes more restrictive conditions on the set of predictor variables, for

example the so-called compatibility condition; see Section 6.2.2 of Bühlmann and van de

Geer (2011) for details. An overview of consistency results for regularized estimators is

available in, for example, Bühlmann and van de Geer (2011). In the more classical case in

which the smallest eigenvalue of X′X/n is bounded below by a fixed constant, for example

when p is taken to be fixed and X′X/n converges to a positive definite matrix, we may

deduce that ‖(1/G)
∑G

g=1 β̂
g
− β0‖22 → 0 in probability as n goes to infinity.

4 Algorithm

4.1 Computing solutions for fixed penalty parameters

To obtain approximate solutions of the minimizer of (1), we propose an algorithm based

on coordinate descent: we cycle through the coordinates of β, optimizing with respect

to each coordinate while keeping the others fixed. Coordinate descent has proven to be

very efficient in solving regularized least squares problems, see Friedman et al. (2010) for

example.
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Proposition 4. The coordinate descent update for βgj is

βn,gj =

soft

(
1
n

n∑
i=1

xi,j(yi − y(−j),gi ), αλS + λD
∑
h6=g
|βo,hj |

)
1 + (1− α)λS

,

where y
(−j),g
i is the in-sample prediction of yi using model g and leaving out variable j,

soft is the soft-thresholding operator, defined by soft(z, γ) = sign(z) max(0, |z| − γ), the

superscript n stands for the new solution and the superscript o stands for the old solution.

The proof of Proposition 4 is straightforward and for this reason it is ommited. Note

that the `1 shrinkage being applied to variable j in model g, αλS+λD
∑

h6=g |β
o,h
j |, increases

with the sum of the absolute values of the coefficients of variable j in all other models. This

shows more clearly that the penalty (λD/2)
∑

h6=g
∑p

j=1 |βhj β
g
j | encourages diversity among

the models.

We cycle through the coordinates of β1, then through those of β2 and so on until we

reach βG, where we check for convergence. Convergence is declared when

max
j

(
1

G

G∑
g=1

βn,gj −
1

G

G∑
g=1

βo,gj

)2

< δ,

for some small positive δ. Since the data is standardized, the convergence criterion in the

original units is:

max
j

1

n

n∑
i=1

(
xi,j

1

G

G∑
g=1

βn,gj − xi,j
1

G

G∑
g=1

βo,gj

)2

< δ
1

n

n∑
i=1

(yi − ȳ)2 .

Hence, the algorithm converges when the in-sample average predictions no longer change

significantly. If the algorithm did not converge, we start over.

Remark 1. It follows easily from Theorem 4.1 of Tseng (2001) that the proposed algorithm

converges to a coordinate-wise minimum of (1).
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4.2 Aggregating the predictions

Once we have computed the G models β̂
1
, . . . , β̂

G
, we aggregate them to form a predictor

by averaging the models: if x is a new observation the prediction of the response is

ŷ(x) =
1

G

G∑
g=1

x′β̂
g

= x′

(
1

G

G∑
g=1

β̂
g

)
= x′β̂∗, (3)

where β̂∗ = (1/G)
∑G

g=1 β̂
g
, which is an estimate of the regression coefficients. Theorem 1

is a consistency result for this way of averaging the models.

Breiman (1996) proposes to aggregate predictors by averaging them according to weights

determined by solving a constrained least squares problem and calls the method stack-

ing. In detail, given predictors vk(x), k = 1, . . . , K, define their leave-one-out versions as

v−ik (x), i = 1, . . . , n. Let zk,i = v−ik (xi). Then the weights used to form the final predictor are

defined as the non-negative constants α1, . . . , αK that minimize
∑n

i=1

(
yi −

∑K
k=1 αkzk,i

)2
.

Breiman also provides empirical evidence to show that using 10-fold cross-validation instead

of leave-out-out to generate the data can be more effective, as well as less computationally

demanding.

The theoretical properties of combining prediction procedures are discussed in Yang

(2004) and references therein.

4.3 Choosing the penalty parameters

We choose λS and λD over grids of candidates, looking to minimize the cross-validated

(CV) mean squared error (MSE). The grids of candidates are built as follows. It is easy

to show that, for λD = 0 and α > 0, the smallest λS that makes all the models null is

given by λmaxS = 1/(nα) maxj≤p |
∑n

i=1 xi,jyi|. λmaxS is the maximum sparsity penalty that

will be considered. The smallest λD that maximises diversity among the models (makes
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them disjoint) for a given λS, say λmaxD , is estimated using a grid search. Proposition 3

hints that in general λmaxD will depend in a complicated way on the correlations between

the predictors. To build a grid to search for the optimal λS we take 100 log-equispaced

points between ελmaxS and λmaxS , where ε is 10−4 if p < n and 10−2 otherwise. The grid

used for λD is built analogously, but including zero as a candidate.

Even though we could also cross-validate over a grid of possible values of α, we find

that taking a large value of α, say α = 3/4 or α = 1, generally works well and hence in

what follows we assume that α is fixed.

Fix one of λS, λD. We then minimize the objective function O over the grid of candidates

corresponding to the other penalty term, going from the largest to the smallest values in

the grid; for each element of the grid of candidates, the solution to the problem using the

previous element is used as a warm start. Even though the optimal β̂ is not in general

a continuous function of λD and λS, see Proposition 2, we find that using warm starts as

described above works well in practice.

The main loop of the algorithm works as follows, starting with λoptD = 0, and until the

CV MSE no longer decreases:

• Find the λS in the grid giving minimal CV MSE, λoptS .

• Take the optimal λoptS from the previous step. Recompute λmaxD and the corresponding

grid. Find the λD in the grid giving minimal cross-validated MSE, λoptD . Go to the

previous step.

As we mentioned earlier, since we start with λoptD = 0, the solution with all columns

equal to the Elastic Net estimator is always a candidate to be chosen.
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4.4 Choosing the number of models

We conduct a small simulation study to illustrate the effect increasing the number of models

has on the computation time and the performance of an ensemble of Lassos. We generate

100 replications of a linear model with p = 1000 predictors and n = 100 observations,

corresponding to the second covariance structure described in Section 5. For each replica-

tion, two data-sets are generated, one on which the ensemble is trained and one used for

computing the prediction mean squared error (PMSE). The computation is repeated for

various values of the proportion of active variables, called ζ. The signal to noise ratio is

10. We show the PMSEs for different values of the number of models used (rows) and the

proportion of active variables in the data generating process (columns). We also computed

a measure of the overlap between the models in the ensemble. Let β̂ ∈ Rp×G be the matrix

with columns equal to the computed models, where G is the number of models and p the

number of features. Let oj = (1/G)
∑G

g=1 I{β̂
g
j 6= 0}, then we define the overlap as

OVP =

p∑
j=1

ojI{oj 6= 0}

p∑
j=1

I{oj 6= 0}

if
∑p

j=1 I{oj 6= 0} 6= 0, and as 0 otherwise. Note that 0 ≤ OVP ≤ 1. If OVP = 0 then all

models are empty, whereas if OVP > 0, then at least one model is non-empty and actually

OVP ≥ 1/G. If OVP = 1/G then each variable that is active can only appear in one model,

and hence the overlap between the models is minimal, since they are disjoint. Finally, if

OVP = 1 then all the variables that are active in at least one model, actually appear in all

the models, and hence we have maximum overlap.

Table 1 shows the results. The last column shows the average computation time in

seconds. The computation time doesn’t vary much between different sparsity levels, and
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hence we report the average over them. In this case, as the number of models used increases,

both the overlap and the PMSE decrease, but the gain in prediction accuracy due to using

more models also decreases. There seems to be a ‘diminishing returns’ type phenomenon.

Of course, this pattern may not persist in other settings. An objective way to determine

the number of models to be used, is to cross-validate over a coarse grid, say, taking 2, 5, 7

or 10 models; this is the approach we take in Section 6, where we apply the proposed

methodology to a real data-set. In all the settings studied in this paper, the increase in

computational time due to using more models, appears to be approximately linear in the

number of models, as evidenced by Table 1. In our simulations we always use ten models,

a possibly sub-optimal choice, but still good enough to give a excellent performance.

ζ = 0.1 ζ = 0.2 ζ = 0.3

PMSE OVP PMSE OVP PMSE OVP Time

2 1.21 0.62 1.18 0.61 1.17 0.60 17.91

5 1.16 0.37 1.13 0.36 1.12 0.35 39.37

7 1.15 0.33 1.12 0.29 1.12 0.32 52.00

10 1.15 0.32 1.11 0.26 1.10 0.27 70.30

Table 1: PMSEs, overlap and average computation time in seconds for different values of

the number of models (rows) and proportion of active variables ζ (columns) for SNR=10.
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5 Simulations

5.1 Methods

We ran a simulation study, comparing the prediction accuracy of the following nine com-

petitors. All computations were carried out in R.

1. The Lasso, computed using the glmnet package.

2. The Elastic Net with α = 3/4, computed using the glmnet package.

3. An ensemble of Lassos, using G = 10 models, called Ens-Lasso.

4. An ensemble of Elastic Nets, with α = 3/4, using G = 10 models, called Ens-EN.

5. The sure independence screening (SIS) procedure, Fan and Lv (2008), followed by

fitting a SCAD penalized least squares estimator, computed using the SIS package,

called SIS-SCAD.

6. The MC+ penalized least squares estimator, Zhang (2010), computed using the

sparsenet package, called SparseNet.

7. The Relaxed Lasso, Meinshausen (2007), computed using the relaxnet package,

called Relaxed.

8. The forward stepwise algorithm, computed using the lars package, called Stepwise.

9. The Cluster Representative Lasso, proposed in Bühlmann et al. (2013), computed

using code kindly provided by the authors, called CRL.

10. The Random Forest of Breiman (2001), computed using the randomForest package,

called RF.
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11. The Random GLM method of Song et al. (2013), computed using the randomGLM

package, called RGLM.

All tuning parameters were chosen via cross-validation; the RF and RGLM methods

were ran using their default settings. The CRL of Bühlmann et al. (2013) was not included

in scenarios with p = 1000 due to its long computation time when compared with the

rest of the methods. For the same reason, in the scenarios with p = 150, we only did 100

replications for CRL, instead of the 500 done for all the other procedures.

The popular Group Lasso (Yuan and Lin, 2006; Simon et al., 2013) is not included in

the simulation, because we don’t assume that there is a priori knowledge of the existence

of pre-defined groups among the features. The interesting recent proposals of Bühlmann

et al. (2013), Sharma et al. (2013) and Witten et al. (2014), assume that there exist

unknown clusters of correlated variables, and shrink the coefficients of variables in the

same cluster towards each other. Because CRL has a relatively more efficient numerical

implementation (compared with the other two) we included it in our simulation to represent

the cluster-based approaches. Finally, note that all the competitors above, except perhaps

for the forward stepwise algorithm, the RF and the RGLM, could in principle be used as

building blocks in our procedure for forming ensembles. Hence, our main objective in this

simulation study is to show that the proposed method for building ensembles improves

upon the prediction accuracy of the base estimators being ensembled, in this case, the

Lasso and the Elastic Net.

5.2 Models

For each Monte Carlo replication, we generate data from a linear model:

yi = x′iβ0 + σεi, 1 ≤ i ≤ n,
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where the xi ∈ Rp are multivariate normal with zero mean and correlation matrix Σ and

the εi are standard normal. We consider different combinations of p and n, see below. For

each p we take the number of active variables to be p0 = [pζ] for ζ = 0.05, 0.1, 0.2, 0.3

and 0.4. Given p, n and a sparsity level 1 − ζ, the following scenarios for β0 and Σ are

considered

Scenario 1 Σi,j = ρ for all i 6= j, the first [pζ] coordinates of β0 are equal to 2 and

the rest are 0.

Scenario 2

Σi,j =



1 if i = j

ρ if 1 ≤ i, j ≤ bp0/2c+ d(p− p0)/2e, i 6= j

ρ if bp0/2c+ d(p− p0)/2e+ 1 ≤ i, j ≤ p, i 6= j

0 otherwise

βj = 1 for j ≤ bp0/2c, βj = −1 for bp0/2c + d(p − p0)/2e + 1 ≤ j ≤ bp0/2c + d(p −

p0)/2e+ p0 − bp0/2c and the rest of the coordinates equal to zero.

Scenario 3

Σi,j =


1 if i = j

ρ if 1 ≤ i, j ≤ p0, i 6= j

0 otherwise,

the first [pζ] coordinates of β0 are equal to 2 and the rest are 0.

We consider different values of ρ: 0.2, 0.5, 0.8. Then σ is chosen to give a desired signal to

noise ratio (SNR), defined as

SNR =
β′0Σβ0

σ2
.
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We consider SNRs of 3, 5, 10 and 50. In the first scenario all the predictors are correlated

among each other. In scenario two we have two groups of active variables. This is similar

to the simulation scenario considered in Witten et al. (2014). Variables within each group

are correlated with each other, but the groups are independent. In the third scenario the

active variables are only correlated with each other. We report results for Scenario 1 with

(p, n) = (1000, 100) and ρ = 0.2, Scenario 2 with (p, n) = (150, 75) and ρ = 0.8 and with

(p, n) = (1000, 100) and ρ = 0.5 , and Scenario 3 with (p, n) = (1000, 50) and ρ = 0.5.

5.3 Performance measures

For each replication, two independent copies of the data are generated, one to fit the

procedures, the other one to compute the prediction mean squared error (PMSE), divided

by the variance of the noise, σ2. Hence, the best possible result is 1. In each table reporting

the PMSEs we also compute the standard error for each of the methods, and report the

maximum among them in the caption.

We also compute the precision (PR) and recall (RC) of each method, defined as

PR =
#{j : β0,j 6= 0 ∧ βj 6= 0}

#{j : βj 6= 0}
, RC =

#{j : β0,j 6= 0 ∧ βj 6= 0}
#{j : β0,j 6= 0}

.

For the ensembles, the vector of coefficients used to compute the precision and recall is

the average of the models, see (3). For the SIS-SCAD method, the precision and recall

are computed using the variables selected by the SIS step. For the RGLM method, the

precision and recall are computed using the union of the variables selected in each of the

bags. Since RF does not fit a linear model, we do not compute its precision and recall.
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5.4 Results

In the scenarios we consider the Elastic Net and the Lasso have very similar behaviours, as

do the Ensemble of Elastic Nets and the Ensemble of Lassos. For this reason, and due to

the fact that we are comparing eleven different procedures, we will only report the results

for: the Lasso, the ensemble of Lassos, and the best performing among the remaining

methods, excluding the Lasso, the Elastic Net and the two ensembles. The full results of

the simulation can be found in the Supplement for this article.

Tables 2 to 5 show the results, which can be summarized as follows. The ensemble

does as well or better than the base Lasso. In cases with SNR = 3, the improvements

generally range from around 5 to 15%, whereas in cases with SNR = 5, 10 improvements

range from around 10 to 30%. In cases with an admittedly high SNR of 50, the ensemble

can have a PMSE that is half or less than half that of the base estimator. In general,

as expected, the improvements tend to increase with the SNR and with the proportion of

active variables. Moreover, in the majority of the cases considered here, the ensemble has

the lowest PMSE of all the competitors considered. In Scenarios 1 and 3, the strongest

competitor is RGLM, with PMSEs similar to that of the ensemble for SNRs of 3 and 5.

However, for higher SNRs the ensemble tends to have a better performance. In Scenario

2 the strongest competitors are CRL and SparseNet, with performances similar to that of

the ensemble for ζ = 0.05, 0.1. For ζ = 0.2, 0.3, 0.4, the ensemble tends to have a lower

PMSE. It is important to note that in Scenario 2, for p = 150, n = 75, the RGLM has a

rather poor performance, with PMSEs that can be double those of the ensemble; see Table

19 in the Supplement for example.

We also note that in general the recall of the ensemble is higher than that of the base

estimator and those of the other competitors, except the RGLM. The price to pay for this

improvement is a decrease in precision, generally minor, but in some cases important (for
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example in Table 5).
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6 Glass data-sets

We analyze the performance of the competitors considered in the previous section when

predicting on real data-sets from a chemometric problem. To evaluate the prediction ac-

curacy of the competitors we randomly split the data into a training set that has 50% of

the observations and a testing set that has the remaining 50%. This is repeated 100 times

and the resulting prediction MSEs are averaged. The results are reported relative to the

best average performance among all estimators. Hence, the estimator with the best average

performance will have a score of 1. We also report the average rank among the data-sets

for each method.

The glass data-sets (Lemberge et al., 2000) were obtained from an electron probe X-ray

microanalysis (EPXMA) of archaeological glass samples. A spectrum on 1920 frequencies

was measured on a total of 180 glass samples. The goal is to predict the concentrations of

the following chemical compounds using the spectrum: Na2O, MgO, Al2O3, SiO2, P2O5,

SO3, Cl, K2O, CaO, MnO, Fe2O3, BaO and PbO. After removing predictors with little

variation, we are left with p = 486 frequencies and n = 180 observations. The CRL

estimator was not included in the comparison, due to its long computation time. The

number of models used to form the ensembles is chosen by cross-validation among the

values 2, 5, 7, 10. The Elastic Net and the Ensemble of Elastic Nets were computed with

α = 0.1, closer to a Ridge than a Lasso estimator, since we a priori expected a relatively

low level of sparsity.

Table 6 shows the results. Highlighted in black is the best performing method for each

compound. It is seen that the Ensemble of Lassos has the best overall behavior, having

the highest average rank (1.92) over the thirteen compounds. Excluding the Ensemble of

Elastic Nets which performs similarly to the Ensemble of Lassos, the RGLM is the strongest
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competitor, with a rank of 3.54.

Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl K2O CaO MnO Fe2O3 BaO PbO Rank

Lasso 1.70 1.16 1.38 2.78 1.19 1.14 1.39 1.41 1.48 1.09 1.38 1.04 1.01 4.23

Elastic Net 1.62 1.18 1.74 2.73 1.31 1.17 1.13 1.44 1.47 1.05 1.23 1.01 1.08 4.62

Ens-Lasso 1.31 1.00 1.00 1.67 1.00 1.00 1.00 1.36 1.40 1.05 1.26 1.03 1.00 1.92

Ens-EN 1.58 1.18 1.66 2.56 1.25 1.12 1.10 1.43 1.47 1.04 1.20 1.00 1.08 3.38

SparseNet 1.63 1.31 1.76 2.84 1.28 1.18 1.54 1.53 1.57 1.15 1.42 1.06 1.06 6.31

Relaxed 1.80 1.23 1.40 2.81 1.16 1.19 1.38 1.40 1.49 1.13 1.46 1.10 1.28 5.62

Stepwise 2.40 2.13 3.72 4.10 2.65 1.52 4.75 1.89 1.78 1.18 1.51 2.32 1.73 9.00

RF 1.00 1.95 7.04 3.02 16.48 1.16 12.06 6.93 9.18 1.16 1.00 2.69 6.34 7.77

RGLM 1.80 1.02 1.20 1.00 1.00 1.26 1.62 1.00 1.00 1.00 1.19 1.72 1.04 3.54

SIS-SCAD 2.01 4.19 1.70 2.88 1.85 1.29 1.87 2.08 2.08 1.19 1.67 1.68 1.95 8.62

Table 6: Average PMSEs for each compound over 100 random splits into training and

testing sets. Last column shows the average rank over all compounds.

7 Discussion

We have proposed a novel method for forming ensembles of linear regression models. Ex-

amples using real and synthetic data-sets show that the approach systematically improves

the prediction accuracy of the base estimators being ensembled. In the synthetic data-sets,

the improvements tend to increase with the signal to noise ratio and the number of ac-

tive variables. We believe that the results reported in this paper show that the proposed

method is a valuable addition to the practitioners toolbox.

The approach taken in this paper can be extended in several ways. Other sparsity

penalties such as the SCAD can be handled similarly. In fact, the algorithm proposed here

will work with any regularized model approach provided the coordinate descent updates
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can be expressed in closed form. Our method can be extended to GLMs by ensembling

regularized GLM estimators instead of linear regression estimators. For example, ensembles

of logistic regression models can be formed by replacing the quadratic loss in (1) with the

deviance. The method can be robustified to deal with outliers by using, for example, a

bounded loss function to measure the goodness of fit of each model in (1), instead of the

classical least squares loss; in this case regularized robust regression estimators (see Smucler

and Yohai (2017) for example) would be ensembled. Lower computational times may be

achieved by using early stopping strategies when computing solution paths over one of

the penalties and also by using an active set strategy when cycling over the groups, see

Friedman et al. (2010).

SUPPLEMENTARY MATERIAL

The supplemental material available online contains the proofs of the theoretical results

stated in the paper and the full results of our simulation study. An R package that imple-

ments the procedures proposed in this paper, called ensembleEN is available from CRAN.
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