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CLASSICAL STATISTICS TRIES

TO FIT WELL

ALL THE DATA
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J. W. Tukey (1979)

“ ... It is perfectly proper to use both

classical and robust/resistant

methods routinely ...”

Ruben Zamar Department of Statistics, UBC () Robustness September 29, 2012 5 / 78



J. W. Tukey (1979)

“...and only worry when

they differ enough to matter”
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J. W. Tukey (1979)

“...when they differ, you

should think hard”
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STACK LOSS DATA

EXAMPLE
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Stack Loss Data

Data available in R (dataset name = stackloss)

21 daily observations of the oxidation of
ammonia to nitric acid
First published by Brownlee (1965)
Extensively studied in the statistical literature

Daniel and Wood, 1980, Chapters 5 and 7
Atkinson, 1985, pp. 129-136, 267-8
Venables and Ripley, 1997
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Stack Loss Data (continued)

Input Variables

The rate flow of cooling air (Air.Flow )

The temperature of the cooling inlet water (Water.Temp )

The concentration of acid (Acid.Conc.)

Output Variable

An inverse measure for the overall (stack.loss )
effi ciency of the plant
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Classical and Robust Linear Models

Regression Coeffi cient Estimate LS Robust

Intercept -39.9 -37.6

Air Flow 0.72 0.80

Water Temperature 1.3 0.6

Acid Concentration -0.15 -0.07

Residual SE 3.2 1.8

Ruben Zamar Department of Statistics, UBC () Robustness September 29, 2012 11 / 78



LS Residual Plot
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Robust Residual Plot
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Thinking Hard...

Daniel and Wood (1971, Chapter 5, page 81) noticed a different
behavior in the response variable whenever the water temperature was
over 60 degrees.

The plant needs to stabilize after the water temperature reaches 60
degrees.

They concluded that observations obtained with Water Temperature
≥ 60 degrees require special attention, and should be removed from
the analysis.

These are cases 1, 3, 4 and 21 directly uncovered by the robust fit.
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PART II

SOME TECHNICAL

CONCEPTS
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Statistical Models

Many data can be modeled as follows:

OUTPUT DATA = SIGNAL(INPUT DATA, θ) + NOISE
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A Closer Look at the Noise

We distinguish two types of noise

1

“TYPICAL”NOISE

2

ATYPICAL NOISE
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Sources of Typical Noise

Typical noise comes from

NATURAL FLUCTUATIONS

MEASUREMENT ERRORS

ITEM TO ITEM VARIABILITY, ETC

Not necessarily “Gaussian Noise”

Other classical parametric models such as Gamma, Weibull, Poisson,
etc
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Sources of Atypical Noise

WHERE DOES ATYPICAL NOISE COME FROM?

OUTLIERS AND GROSS ERRORS

MEASUREMENTS OF UNEVEN QUALITY (mixture)

DATA CONTAMINATION (mixture)

MISSING DATA (declared or unsuspected)

DATA DUPLICATIONS, ETC
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STATISTICIAN TASKS (A VERY SIMPLIFIED VIEW)

Filter the noise in data (both typical and atypical)

Extract the signal from data
Measure the noise strength
Assess uncertainty
Predict likely future data
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Output from Statistical Analysis

Point Estimates
θ

Confidence Regions

Cov
(

θ̂
)
, Confidence Region for θ

Prediction / Interpolation

̂SIGNAL ± 2× SE
(
̂SIGNAL

)
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Only Typical Noise (OLD CLASSICAL STATISTICS)

TYPICALLY
θ̂→ θ

AND
Cov

(
θ̂
)
=
1
n
Cθ̂ → 0

BETTER RESULTS WHEN Cθ̂ IS “SMALL” =⇒ USE EFFICIENT
PROCEDURES

I BELIEVE THAT TOO MUCH ATTENTION IS GIVEN TO THE
PROBLEM OF MINIMIZING Cθ̂
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The Effect of Atypical Noise

Atypical noise tends to produce asymptotic bias

That is
θ̂→ ∆, ∆ 6= θ

The difference between ∆ and θ is called “contamination bias” (cb)

cb
(

θ̂
)
is of order 1 while Cov

(
θ̂
)
of order 1/n

Therefore, for large n, cb
(

θ̂
)
should be the leading concern
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A (Classical) Robustness Model

Let Fθ be the joint distribution for the data

Let H be an arbitrary distribution on the data space

H represents the “contamination generating mechanism”

Let 0 ≤ ε < 1

ε represents the fraction of contamination

The robustness model

Fε = {F : F = (1− ε) Fθ+ εH}
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Estimating Functional

Let T (F ) be an estimating functional for θ

Suppose T (F ) is defined on a set of distributions including

Empirical distributions Fn [in this case Tn = T (Fn)]
The robustness neighborhood Fε

Suppose also that T is consistent

T (Fn)→ T (F ) a.s.[F ] for all F ∈ Fε

A robust estimate would satisfy T (F ) ≈ T (Fθ) when ε is relatively
small
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Maxbias and Other Robustness Measures

Consider an appropriate distance d on the parameter space Θ

Contamination bias:

bT (ε,F ) = d [T (F ) ,T (Fθ)] , F ∈ Fε

Contamination maxbias

BT (ε) = sup
F∈Fε

d [T (F ) ,T (Fθ)]
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The Breakdown Point (BP) and Gross Error Sensitivity
(GES)

The BP of and estimating functional T (F ) is defined as follows

BPT = sup {ε : BT (ε) < ∞}

The GES is defined as follows

GEST =
d
dε
BT (ε)

∣∣∣∣
ε=0

= B ′T (0)

Therefore
BT (ε) = εGEST + o (ε)
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The Median - Gaussian Case
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Examples of the Types of Results One Obtains in this
Setting

Huber (1964) showed that

BMedian (ε) ≤ BT (ε)

for all translation equivariant estimate T , and for all ε > 0

Tn (X1 + c ,X2 + c , ...,Xn + c) = Tn (X1,X2, ...,Xn) + c

Huber (1964) also showed that

BMedian (ε) = F
−1
0

(
1

2 (1− ε)

)
Martin, Yohai and Zamar (1989) obtained minimax-bias results for
multiple linear regression
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Tn (X1 + c ,X2 + c , ...,Xn + c) = Tn (X1,X2, ...,Xn) + c

Huber (1964) also showed that

BMedian (ε) = F
−1
0
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More General (and Realistic) Robust Model

Typical robust methods work as follows

Identify unusual data points in the dataset (rows in the data table)
Downweight the unusual data cases

Important assumption underlying classical robust procedures

Percentage of unusual data points is relatively small
Hopefully way below 50%
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The Shape of Data Tables

Most statistical applications
D
A
T
A

T
A
B
L
E
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LARGE and Shallow Data Tables

In some applications we deal with datasets like this

D A T A T A B L E
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Some Examples of This Type of Data

Microarray data

p number of genes several thousands

n number of patients at best a few hundreds

Asthenosphere Data

p number of locations about 5000

n number of days 3650 days
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Implications for Robustness Methods

Downweighting entire rows may be too “wasteful”

Rows may be only partially spoiled

Consider “cell contamination”as opposed to “row contamination”

Need for more flexible robustness methods and models
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An Example: Cell-wise Contamination Model

From Alqallaf’s PhD thesis and Alqallaf et al (2009)

X = (I − B)Y+ BZ

B = diag (B1,B2, ...,Bp)

P (Bi = 1) = 1− P (Bi = 0) = εi

Lot’s of room for research at the MSc and PhD levels on this area
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PART III

DATA MINING
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Definition of Data Mining

Data mining is the analysis of (large)
observational datasets

to find unsuspected relationships
to sumarize the data in novel ways

understandable and useful
to the data owner.
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WAL-MART EXAMPLE
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Wal-Mart Data Warehouse

Wal-Mart captures all the sale transactions in their 8,500 stores in 15
countries

Continuously transmits these data to its massive 500 terabytes data
warehouse.

Over 3,500 suppliers access data on their products and perform data
analyses

Identify customer buying patterns at the store display level
Goal: To manage local store inventories and to identify new
merchandising opportunities
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Wal-Mart Famous Example

men in their 20s who purchase beer on Fridays after work are also
likely to buy a pack of diapers

put beer and diapers near each other to increase sales for both

put one (but not both) of these products on sale on Friday evenings
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NEW YORK KNICKS
Vs

CLEVELAND CAVALIERS

EXAMPLE
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Basketball Positions
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Basketball Game (Jan 6, 1995)

The New York Knicks (103) Versus
the Cleveland Cavaliers (93)
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Mark Price (Cavaliers’Player)
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John Williams (Cavaliers’Player)
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Basketball and Data Mining

Computer softwares analyze the movements of players to help coaches
orchestrate plays and strategies.

NBA is exploring a data mining application that can be used in
conjunction with image recordings of basketball games.
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The January 6, 1995 Basketball Game (Continues)

The Cavaliers lost the game (103 - 93) and had an overall shooting
percentage of 49.30%

When Mark Price played the Point Guard position, John Williams
attempted four jump shots and made each one!

It is interesting because it differs considerably from the average
shooting percentage of 49.30%.
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PARALLEL BETWEEN

STATISTICS AND

DATA MINING
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Data Size

Statistics Data Mining

n = tens, hundreds, n = thousands,
thousands (?) millions

p = a handful, rarely p = hundreds,
more than a few tens thousands
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Logical Data Sequence

Statistics Data Mining

Data collected to Data collected electronically
answer a given question for future possible use

Questions come first, Data come first,
data come second questions come second
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Data Type

Statistics Data Mining

First hand data Second hand data

Data collected to Data collected ellectronically
fit/test a model for future “mining”

Case-control studies Supermarket sales
Sampling surveys Internet traffi c
Designed experiments Stock market transactions

etc etc
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Data Processing

Statistics Data Mining

Hand-on procedures Highly automated procedures

Data analyzed by people Data processed by computer
with the aid of computers algorithms with the aid of people
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Typical Tasks

Statistics Data Mining

Model fitting/testing Patterns seeking and
identification

Confidence and
prediction intervals Grouping

Sample size / power Ranking/short listing
calculations
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Research Goals

Statistics Data Mining

Develop better statistical Develop better/faster
procedures algorithm for data mining

Study statistical properties Study empirical performance
of methods of mining algorithms

Asymptotic distributions Construct scalable data mining
of statistical procedures systems

Asymptotic approximations
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Dissemination of Research Results

Statistics Data Mining

Mostly Journals Mostly Conference Procedures
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SUPERVISED
AND

UNSUPERVISED

LEARNING
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SUPERVISED LEARNING

LEARNING WITH A “TEACHER”

OBSERVATION OF THE “OUTPUT”VARIABLE (RESPONSE)
ARE AVAILABLE

TRAINING DATA


x11 x12 x13 · · · x1d y1
x21 x22 x23 · · · x2d y2
x31 x32 x33 · · · x3d y3
...

...
...

...
...

xN1 xN2 xN3 · · · xNd yN


CONDITIONAL DISTRIBUTION OF THE “OUTPUT VARIABLE”
GIVEN THE “INPUT VARIABLES”
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SUPERVISED LEARNING (CONTINUED)

CONTINUOUS OUTPUT

♠ LINEAR AND NONLINEAR REGRESSION

♠ PREDICTION AND FORECASTING
CATEGORICAL OUTPUT

♠ CLASSIFICATION

♠ RANKING

♠ SHORT LISTING
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UNSUPERVISED LEARNING

LEARNING WITHOUT A “TEACHER”

RESPONSE VARIABLE NOT GIVEN

TRAINING DATA


x11 x12 x13 · · · x1d
x21 x22 x23 · · · x2d
x31 x32 x33 · · · x3d
...

...
...

...
xN1 xN2 xN3 · · · xNd


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UNSUPERVISED LEARNING

SEARCH FOR FEATURES OF THE JOINT DISTRIBUTION OF
THE GIVEN VARIABLES

♣ GROUPING ITEMS (CLUSTERING)

♣ DATA COMPRESSION (PCA, ICM)

♣ SEARCH FOR PATTERNS
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THE THREE STEPS

IN

DATA MINING
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BOSTON HOUSING DATA

14 SOCIOECONOMIC VARIABLES FOR 506 TOWNS IN THE BOSTON
AREA

N Crime rate N Prop. of residential land
N Prop. of non-retail business N Nitric oxides concentration
N Charles River dummy variable N Proportion of owner
N Average number of rooms occupied homes
N Distances to employment centres N Access to radial highways
N Property-tax rate N Pupil-teacher ratio by town
N 1000(Bk - 0.63)2 where N % Lower status population
(Bk = proportion of blacks) N Median value of owner

occupied homes
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STEP 1:

DEFINING THE

DATA MINING GOAL
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ILLUSTRATION USING THE BOSTON HOUSING DATA

An incomplete list of possible goals includes:

To predict the median house price using other variables

To predict the crime rate using other variables

Find linear/non-linear relations among the recorded variables

Find clusters of similar towns

Find clusters of similar variables
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STEP 2:

ASSESSING (SCORING)

DATA MINING RESULTS
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SCORING

Choice of evaluation criterion to assess how well a certain procedure
realizes the mining goal

Related to choice of a loss function in Statistics

non-robust scoring demands success in all the cases

robust scoring allows for partial success

Example below will illustrate this point
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STEP 3:

NUMERICAL

IMPLEMENTATION
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GETTING IT DONE

Devise numerical procedures for effi cient implementation of the
mining task

Related to “Statistical Computing”

Emphasis placed here on "scalability”, regarding the number of case
and variables.

Ruben Zamar Department of Statistics, UBC () Robustness September 29, 2012 69 / 78



GETTING IT DONE

Devise numerical procedures for effi cient implementation of the
mining task

Related to “Statistical Computing”

Emphasis placed here on "scalability”, regarding the number of case
and variables.

Ruben Zamar Department of Statistics, UBC () Robustness September 29, 2012 69 / 78



GETTING IT DONE

Devise numerical procedures for effi cient implementation of the
mining task

Related to “Statistical Computing”

Emphasis placed here on "scalability”, regarding the number of case
and variables.

Ruben Zamar Department of Statistics, UBC () Robustness September 29, 2012 69 / 78



PART IV

ONE LAST EXAMPLE...
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Least Squares Fit
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A Very Simple Robust Alternative to LS

Sorted Residuals

r2i (b0, b1) = (yi − b0 − b1xi )2

r2(1) (b0, b1) ≤ r2(2) (b0, b1) ≤ · · · ≤ r2(50) (b0, b1)

Least Trimmed Squares (LTS)

(
β̂0, β̂1

)
= arg min

b1,b2

30

∑
i=1
r2(i ) (b0, b1)
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Absolute Prediction Errors
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LTS-Quantiles Vs LS-Quantiles
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Summary for the Absolute Prediction Errors

LTS LS
Min 0.001 0.046
First Quartile 1.634 2.539
Median 3.537 5.703
Third Quartile 5.739 7.100
Max 51.10 32.55
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