
Robust Genotype Classification Using
Dynamic Variable Selection

by

Mohua Podder

MSTAT, Indian Statistical Institute, 2003
B.Sc., Calcutta University, 2001

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate Studies

(Statistics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August, 2008

c© Mohua Podder 2008



Abstract

Single nucleotide polymorphisms (SNPs) are DNA sequence variations, oc-
curring when a single nucleotide -A, T, C or G - is altered. Arguably, SNPs
account for more than 90% of human genetic variation. Dr. Tebbutt’s lab-
oratory has developed a highly redundant SNP genotyping assay consisting
of multiple probes with signals from multiple channels for a single SNP,
based on arrayed primer extension (APEX). The strength of this platform
is its unique redundancy having multiple probes for a single SNP. Using this
microarray platform, we have developed fully-automated genotype calling
algorithms based on linear models for individual probe signals and using
dynamic variable selection at the prediction level. The algorithms combine
separate analyses based on the multiple probe sets to give a final confidence
score for each candidate genotypes.

Our proposed classification model achieved an accuracy level of > 99.4%
with 100% call rate for the SNP genotype data which is comparable with
existing genotyping technologies. We discussed the appropriateness of the
proposed model related to other existing high-throughput genotype calling
algorithms.

In this thesis we have explored three new ideas for classification with high
dimensional data: (1) ensembles of various sets of predictors with built-in
dynamic property; (2) robust classification at the prediction level; and (3)
a proper confidence measure for dealing with failed predictor(s).

We found that a mixture model for classification provides robustness against
outlying values of the explanatory variables. Furthermore, the algorithm
chooses among different sets of explanatory variables in a dynamic way, pre-
diction by prediction. We analyzed several data sets, including real and
simulated samples to illustrate these features. Our model-based genotype
calling algorithm captures the redundancy in the system considering all the
underlying probe features of a particular SNP, automatically down-weighting
any ‘bad data’ corresponding to image artifacts on the microarray slide or
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failure of a specific chemistry.

Though motivated by this genotyping application, the proposed method-
ology would apply to other classification problems where the explanatory
variables fall naturally into groups or outliers in the explanatory variables
require variable selection at the prediction stage for robustness.
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Glossary of Some Genetic
Terms

(All the definitions are in either the website
http://www.genome.gov/glossary.cfm or in the Glossary of
Gene-Environment Meeting at iCAPTURE.)
Allele One of the variant forms of a gene at a particular locus, or location,
on a chromosome. Different alleles produce variation in inherited charac-
teristics such as hair color or blood type. In an individual, one form of the
allele (the dominant one) may be expressed more than another form (the
recessive one).
Nucleotide One of the structural components, or building blocks, of DNA
and RNA. A nucleotide consists of a base (one of four chemicals: adenine,
thymine, guanine, and cytosine) plus a molecule of sugar and one of phos-
phoric acid.
Adenine One of the four bases in DNA that make up the letters ATGC,
adenine is the “A”. The others are guanine, cytosine, and thymine. Ade-
nine (A) always pairs with thymine (T) and cytosine (C) always pairs with
guanine (G).
APEX (arrayed primer extension) A type of genotyping method that
allows multiple genotypes to be generated in one experiment. The method
utilizes several oligonucleotide probes that are specific for a particular SNP
and match the sequence just before the polymorphic site. The end of each
oligonucleotide is modified to allow its covalent attachment to a glass slide.
Each SNP is amplified by PCR and the DNA added to the bound oligonu-
cleotides on the glass slide. An extension reaction is carried out using a ther-
mostable DNA polymerase. Four unique, fluorescently-labelled nucleotides
are used to extend each probe by only one base, dependent on the individ-
ual’s template DNA. Following removal of all unincorporated dye as well as
the template DNA, the SNPs are detected by the wavelength of fluorescence
from the dyes at each site on the array.
Asper Biotech Asper Biotech is a genetic testing company with an estab-
lished set of robust and efficient DNA tests. Asper is also a reliable partner

x



Glossary of Some Genetic Terms

for the scientific and commercial communities in their custom genotyping
projects (http://www.asperbio.com/).
Base pair Two bases which form a “rung of the DNA ladder.” A DNA
nucleotide is made of a molecule of sugar, a molecule of phosphoric acid,
and a molecule called a base. The bases are the “letters” that spell out the
genetic code. In DNA, the code letters are A, T, G, and C, which stand
for the chemicals adenine, thymine, guanine, and cytosine, respectively. In
base pairing, adenine always pairs with thymine, and guanine always pairs
with cytosine.
Candidate gene A gene, located in a chromosome region suspected of be-
ing involved in a disease, whose protein product suggests that it could be
the disease gene in question.
Chromosome One of the threadlike “packages” of genes and other DNA
in the nucleus of a cell. Different kinds of organisms have different numbers
of chromosomes. Humans have 23 pairs of chromosomes, 46 in all: 44 auto-
somes and two sex chromosomes. Each parent contributes one chromosome
to each pair, so children get half of their chromosomes from their mothers
and half from their fathers.
Coriell The Coriell Cell Repositories provide research reagents to the scien-
tific community by establishing, maintaining and distributing cell cultures
and DNA derived from the cell cultures.
Deoxyribonucleic acid (DNA) The molecule that encodes genetic infor-
mation. DNA is a double-stranded molecule held together by weak bonds
between base pairs of nucleotides. The four nucleotides in DNA contain the
bases: adenine (A), guanine (G), cytosine (C), and thymine (T). In nature,
base pairs form only between A and T and between G and C; thus the base
sequence of each single strand can be deduced from that of its partner.
DNA sequencing Determining the exact order of the base pairs in a seg-
ment of DNA.
Gene The term coined by Johannsen (1909) for the fundamental physical
and functional unit of heredity. The word gene was derived from De Vries’
term pangen, itself a derivative of the word pangenesis which Darwin (1868)
had coined. A gene is an ordered sequence of nucleotides located in a par-
ticular position (locus) on a chromosome that encodes a specific functional
product (the gene product, i.e., a protein or RNA molecule). It includes
regions involved in regulation of expression and regions that code for a spe-
cific functional product.
Gene expression The process by which a gene’s coded information is con-
verted into the structures present and operating in the cell. Expressed genes
include those that are transcribed into mRNA and then translated into pro-
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tein and those that are transcribed into RNA but not translated into protein
(e.g., transfer and ribosomal RNAs).
Genetic marker A segment of DNA with an identifiable physical location
on a chromosome and whose inheritance can be followed. A marker can
be a gene, or it can be some section of DNA with no known function. Be-
cause DNA segments that lie near each other on a chromosome tend to be
inherited together, markers are often used as indirect ways of tracking the
inheritance pattern of a gene that has not yet been identified, but whose
approximate location is known.
Genome The entire complement of genetic material in an organism.
Genotype A somewhat poorly defined term. Most often it refers to the set
of alleles at a single point on a chromosome. Confusingly, it is also used to
mean an organism’s entire genetic makeup (thus overlapping with the term
“genome”).
Haplotype The alleles of a set of closely linked genetic markers present on
one chromosome which tend to be inherited together.
Haplotype tag SNP A SNP that can be used to identify, i.e., tag, a hap-
lotype in a given region of the genome. The information from a haplotype
tag SNP (htSNP) can be used to infer the presence of all the alleles that
form the haplotype.
Homozygous An individual who has inherited two identical copies of an
allele at a particular locus.
Heterozygous An individual who has inherited two different alleles at a
particular locus.
Human Genome Project An international research project to map each
human gene and to completely sequence human DNA.
Linkage Disequilibrium Linkage disequilibrium (often termed “allelic as-
sociation”) is a situation when alleles at two separate loci occur together
on chromosomes more frequently than expected by chance alone. Linkage
disequilibrium tends to only occur between loci that are very close to each
other on a chromosome.
Locus The position of a gene or a genetic marker on a chromosome. Plural:
loci.
Microarray Spotter A high-precision robot with metal pins that dip into
a DNA solution, suck up a specific volume and deposit the DNA onto a glass
slide in a pre-arranged pattern.
Microarray technology A new way of studying how large numbers of
genes interact with each other and how a cell’s regulatory networks control
vast batteries of genes simultaneously. The method uses a robot to precisely
apply tiny droplets containing functional DNA to glass slides. Researchers
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then attach fluorescent labels to DNA from the cell they are studying. The
labeled probes are allowed to bind to complementary DNA strands on the
slides. The slides are put into a scanning microscope that can measure the
brightness of each fluorescent dot; brightness reveals how much of a specific
DNA fragment is present, an indicator of how active it is.
Normalised DNA A group of DNA samples that has been adjusted so that
each sample is at the same concentration, thus making subsequent genotyp-
ing easier and more accurate.
Nucleotides The building blocks of nucleic acids such as DNA.
Oligo Oligonucleotide, short sequence of single-stranded DNA or RNA. Oli-
gos are often used as probes for detecting complementary DNA or RNA
because they bind readily to their complements.
PHASE A program that estimates haplotypes from a set of genotypes found
in a given person. Haplotypes are usually difficult to determine experimen-
tally and therefore we rely on statistical means to estimate what the haplo-
types are in a person. PHASE can be accessed on the
web (http://www.stat.washington.edu/stephens/phase.html).
Phenotype The term coined by Johannsen (1909) for the appearance (Gk.
phainein, to appear) of an organism with respect to a particular character
or group of characters (physical, biochemical, and physiologic), as a result
of the interaction of its genotype and its environment. We most often use
the different diseases that we study as the phenotype of interest.
Polymerase chain reaction (PCR) A fast, inexpensive technique for
making an unlimited number of copies of any piece of DNA. Sometimes
called “molecular photocopying,” PCR has had an immense impact on bi-
ology and medicine, especially genetic research.
Polymorphism Difference in DNA sequence among individuals. Usually
the term only applies to genetic variations occurring at a frequency of more
than 1%.
Primer short oligonucleotide sequence used in a polymerase chain reaction.
Probe A piece of labeled DNA or RNA or an antibody used to detect the
function of a gene.
Ribonucleic acid (RNA) A chemical similar to a single strand of DNA.
In RNA, the letter U, which stands for uracil, is substituted for T in the
genetic code. RNA delivers DNA’s genetic message to the cytoplasm of a
cell where proteins are made.
Sepsis A serious bacterial infection of the blood. Sepsis is more common in
the elderly and in neonates. Symptoms include high fever, chills, decreased
urine output, and a decreased level of consciousness.
SIRS The full form is the systemic inflammatory response syndrome. SIRS
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can be the inflammatory response to sepsis or the response to non-infectious
stimuli such as cardiopulmonary bypass.
SNP (single nucleotide polymorphism) A DNA sequence variation that
involves a change in a single nucleotide (SNP is often pronounced as “snip”).
TaqMan TaqMan is a type of assay patented by Roche Molecular Systems.
We use this assay for genotyping the samples in our cohorts. In general,
TaqMan assays utilize an oligonucleotide probe that is specific for the tar-
get gene. This probe is labelled with a fluorescent tag and a quenching
molecule. During the extension step of a PCR the Taq enzyme will disrupt
probe bound to the target separating the fluorescent tag from its quencher
molecule thus permitting fluorescence. For genotyping assays, we use two
probes rather than one. Each probe is specific for a given allele of a poly-
morphism. The two probes can be distinguished because they are labelled
with different tags that fluoresce at different wavelengths.
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Chapter 1

Introduction

In 2004, I joined the iCAPTURE Centre, St. Paul’s Hospital as a sum-
mer student under the supervision of Scott Tebbutt. There I started work
in a project of genotyping single nucleotide polymorphisms (SNPs) using
Arrayed Primer Extension technology. Gradually this project became an
essential part of my PhD thesis, and collaboration between my supervisors
William J. Welch and Ruben H. Zamar in the Statistics Department and
Scott Tebbutt in the iCAPTURE Centre has formed. At present I am a
member of Dr. Tebbutt’s lab at the iCAPTURE center and the main fo-
cus of my research has been to develop automated SNP-genotype calling
algorithms for the APEX-based microarray genotyping platform. In this
chapter, I will first give a brief description of SNPs and their relevance in
Biomedical research. I will also describe various genotyping technologies as
well as the proposed genotyping algorithm and its significance with respect
to the current genotyping platform.

1.1 Single Nucleotide Polymorphisms and Their
Relevance in Biomedical Research

Single Nucleotide Polymorphisms or SNPs (pronounced as “snips”) are DNA
sequence variations, occurring when a single nucleotide:— adenine (A),
thymine (T), cytosine (C) or guanine (G) — in the genome is altered. An
example of a SNP is a possible change in the nucleotide sequence aagcCta
to aagcTta. Here the fifth letter “C” is replaced with “T”. The two possi-
ble bases for a biallelic SNP are called SNP alleles. For a variation to be
considered a SNP, it must occurs in at least 1% of the population. SNPs,
which make up about 90% of all human genetic variations, occur every 100
to 300 bases along the 3-billion-base long human genome. Two of every
three SNPs involve the replacement of cytosine (C) with thymine (T). The
International HapMap Consortium has already reported discovery of ap-
proximately 10 million SNPs
(http://www.ncbi.nlm.nih.gov/sites/entrez?db=snp).
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1.2. Genotyping SNPs and Various Microarray Platforms

More than 99% of the human DNA sequence is the same across the pop-
ulation. However, variations in the DNA sequence are responsible for re-
sponsiveness of humans towards disease; environmental interaction through
bacteria, viruses, toxins, and chemicals; drugs and other therapies (Janssens
et al., 2004). This makes SNPs of great importance in Biomedical research
(Fan et al., 2006).

Many common diseases in humans like cancer, diabetes, vascular dis-
eases, and various kinds of allergy are not caused only by a genetic variation
within a single gene, but are influenced by complex interactions among mul-
tiple genes and various environmental factors (Yang et al., 2003). The main
purpose of any genetic study is to investigate the potential of an individual
to develop a disease based on different genetic variations (Candidate gene
association studies: (Risch and Merikangas, 1996). For this purpose, it is of
utmost importance to develop proper methodology to investigate the genetic
variations among different samples (patients).

1.2 Genotyping SNPs and Various Microarray
Platforms

The exact determination of the base sequence at a specific SNP site is called
genotyping. A number of medium to high-throughput genotyping methods
have been developed. Among these various techniques the most popular
and oldest is TaqMan (Livak et al., 1995), which was designed to be optimal
for genotyping a large number of individuals for a single SNP. But in the
context of personalized medicine (use of genomic information to improve
the diagnosis of disease, as well as the prevention and treatment of disease)
one needs a system capable of genotying multiple SNPs simultaneously for
a single individual.

Such a system can be achieved through a device known as a “geno-
typing microarray”. Through this mechanism, one can display hundreds,
or even thousands of specific oligonucleotide probes, precisely located on a
small glass slide. These array-based technologies offer both an economic and
patient specific application allowing the simultaneous genotyping of multi-
ple SNPs. There are a number of microarray genotyping protocols with
leading technologies including Affymetrix GeneChips (Kennedy et al., 2003)
and Illumina’s BeadArray system (Oliphant et al., 2002), (Fan et al., 2006);
these two technologies are designed to analyze thousands if not hundreds
of thousands of SNPs simultaneously. Compared to these two systems, Ar-
rayed primer extension (APEX), commonly known as mini-sequencing, is
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an evolving technology, potentially suitable for rapid genetic diagnostics in
clinical settings for its fast on-chip chemistry reaction. In this platform two-
or four-coloured channel data for signal intensities are analyzed (Pastinen
et al., 1997), (Tebbutt et al., 2004). We will give very brief descriptions of
these three main microarray genotyping platforms in the following subsec-
tions. Notice that each array refers to a single individual (sample) and will
be used interchangeably in the entire thesis.

1.2.1 Affymetrix GeneChips

For the widely used Affymetrix GeneChip system, a system based on the
discriminatory power of nucleic acid hybridization to generate the genotyp-
ing signals, sophisticated autocalling algorithms have been developed. We
will give a brief review of the algorithms published over the last decade
by Affymetrix research group in Section 1.3. The Affymetrix GeneChips
platform uses multiple sets of short oligonucleotide probe quartets for each
known SNP, which have been combined through various statistical method-
ologies (both clustering and classification approaches have been applied) to
generate reliable and accurate genotype calls. Each quartet consists of a
perfect match (PM) cell and a mismatch (MM) cell with 25-mer probe, cor-
responding to both alleles (generically known as allele X and allele Y) for
each SNP, which consequently generates the basic unit of probe quartet with
four different probes: PMX, MMX, PMY and MMY for allele-specific hy-
bridization. There are multiple quartets corresponding to different strands
(both sense and antisense strands) and shifts (seven in total) surrounding
the polymorphic site. Seven probe quartets per strand give 56 probe cells
per SNP (Liu et al., 2003).

1.2.2 Illumina BeadArray

The Illumina BeadArray genotyping platform is based on the hybridiza-
tion of a dual-purpose oligonucleotide probe (carrying a tag sequence as
well as an SNP-specific sequence) to a complementary probe on an array
(www.illumina.com). Each array in the Illumina HumanMap 550K SNP
microarray consists of lateral strips of 55000 different beadtypes. Each bead-
type assays a single SNP and is represented by 20 beads on average. On
average 20 allele measurements per SNPs are obtained through single base
extension biochemistry reaction on the locus-specific 50-mer probes associ-
ated with the nucleotide sequence directly adjacent to the SNP. Thus, similar
to Affymetrix multi probe feature set, Illumina has multiple beads (20 on
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average for each SNP in each array) corresponding to two possible SNP al-
leles, generating dual coloured signal intensities for each allele, visualized
through labelled ddNTP corresponding to the complement of the assayed
SNP (Steemers et al., 2007). Using the BeadArray genotyping assay, the au-
tomatic genotype calls are obtained through a proprietary genotype calling
software: GenCall. Unfortunately, to our knowledge, the exact details of
this genotype calling algorithm are not available in the public domain. How-
ever, (Teo et al., 2007) published an algorithm for the Illumina BeadArray
platform. Brief details on the algorithm are given in the Section 1.3.

1.2.3 Mini-sequencing reaction on Microarray

Arrayed primer extension (APEX), commonly known as mini-sequencing is
based on the allelic discriminating primer extension reaction in multiplex,
separating the SNP alleles by pre-arraying the probes on a solid support
(glass slide). In this method, the identity of the base incorporated is pro-
vided by the dye-labeled fluorescent terminators and the identity of the SNP
assay is provided by the specifically designed probe (Pastinen et al., 1997),
(Tebbutt et al., 2004). Our robust mixture model based genotype classifica-
tion algorithm has been motivated by a complex data set generated in Dr.
Tebbutt’s laboratory using this APEX technology. Details of this APEX
platform are described in Chapter 2. In order to discuss our genotyping
model in the context of other genotype calling algorithms, we now provide
a very brief description of our set of explanatory variables.

We have multiple probe sets corresponding to two different chemistries
(classical APEX probes and allele-specific APEX probes) for both sense and
antisense strands. Each probe has multiple replicates, which are randomly
allocated on the microarray chip, each generating four coloured allele specific
signals. In summary we have a set of four separate probe chemistries which
produces four pair of variables that measure the intensity of the two possible
SNP alleles (Podder et al., 2006).

1.3 Available Genotype Calling Algorithms

For any genotyping platform, the main idea has been to design an appro-
priate mapping between the signal intensities of the several predictor sets
(for Affymetrix they are probe quartets; for Illumina BeadArray they are
unique beadtypes; and for APEX mini-sequencing assays they are four dif-
ferent probe chemistries) and the three possible genotype classes (generically
defined as XX, YY and XY) for all the biallelic SNPs analyzed in the array.
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I will briefly describe several Affymetrix algorithms and also an algorithm
based on Illumina BeadArray.

The genotype mapping can be designed through two basic approaches:
a standard single model using all probes together to give the final genotype
class; and a combination of multiple models each exploring a single probe.

For the standard models, information from multiple probes are combined
to produce a single set of explanatory variables and a single prediction model.
Whereas, in the multiple model set up, in a first stage each probe set gen-
erates a separate set of explanatory variables and probe-based genotyping
model. Next, the first stage genotyping models are assembled in various
effective manners to give a final genotype call.

1.3.1 Genotyping using a Single Model

A single model-based approach has been successfully implemented in the
clustering-based MPAM algorithm (Liu et al., 2003) for Affymetrix first-
generation (10K) SNP GeneChip microarrays. Here the probe-level aggre-
gated predictor set, a point on a unit square, is formed based on the rela-
tive allele signal (RAS). Based on this predictor set, a clustering algorithm
using modified partitioning around medoids has been used to cluster sam-
ples (arrays) into three possible genotype classes for each SNP. A large set
of samples has been interrogated to label the appropriate genotype clus-
ters. More recently another single model-based approach for the Affymetrix
GeneChips has been proposed by Rabbee and Speed (2006). They designed
a classification-based RLMM (robust linear model with Mahalanobis dis-
tance) algorithm, which used the prior knowledge from a large number of
publicly available SNP calls from the HapMap project to build the genotype
classification model. In this algorithm, for each sample (i) a two-dimensional
predictor set is formed using robust linear model giving estimated probe ef-
fects for each SNP (j) corresponding to two possible SNP alleles. Decision
regions for each genotype class (XX, XY and YY) are formed assuming
bivariate Gaussian or Mahalanobis regions based on the two-dimensional
predictor set using the training data. A new test data is assigned to a
genotype class after computing the Mahalanobis distance of the point (two-
dimensional predictor set), estimated from the test data, w.r.t. the center of
the genotype class and using Mahalanobis distance as a minimum distance
classifier.

Xiao et al. (2007) proposed a multi-array multi-SNP genotyping algo-
rithm for the Affymetrix SNP microarrays using a normal M-cluster mixture
model-based approach to cluster the SNP data. Here again a pooled estimate
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of multiple probe quartet intensities for two possible SNP alleles has been
used as a single predictor set. Another single classifier based approach has
been developed by Hua et al. (2007) based on an expectation-maximization
(EM) clustering algorithm (defined as SNiPer-HD) with parameters esti-
mated using a large training set assuming again an M-cluster based Gaussian
mixture model. Here a single predictor set consists of multiple relative-allele-
signal (RAS) values corresponding to multiple probe quartets. Both of these
mixture models have the following general form

L(τ , π) =
n∏

i=1

G∑

g=1

πgfg(xi; τg) (1.1)

where, fg is the predefined density function of the gth genotype class; τg

denotes the corresponding parameter set (e.g., location parameter, variance-
covariance matrix, etc.); πg is the proportion of the gth class and xi is the
predictor set corresponding to the ith array.

For the Illumina BeadArray platform, the information from multiple
beads is pooled through proprietary normalization technique to provide a
pair of variables (xij , yij : for the jth SNP in the ith array) correspond-
ing to a single SNP for each array. The genotype calling algorithm using
the data from Illumina BeadArray platform, published by Teo et al. (2007),
is mainly based on a three component bivariate mixture model (see Equa-
tion 1.1). This approach is similar to the standard M-cluster mixture model.
They assumed a t-distribution for their data (x, y), with three different sets
of parameters (location, variance-covariance matrix and degrees of freedom)
specific to three genotype classes. These parameters are estimated by ap-
plying an EM algorithm using a large training set.

1.3.2 Genotyping Combining Multiple Models

Assembling of individual probe level models has been first proposed by Di
et al. (2005) in their dynamic model (DM) genotyping algorithm for 100K
and 500K Affymetrix arrays. DM is a single sample based algorithm, which
has been implemented through pixel intensities corresponding to a single
SNP. Likelihood functions corresponding to four possible genotype states
(XX, YY, XY and Non-call) have been estimated for each probe separately.
Accordingly, individual probe level score functions are defined for n probe
quartets and later combined through a non-parametric Wilcoxon signed rank
test. In this way the majority of good quality probes are chosen to give the
genotype class with smallest p-value, obtained from the above mentioned

6



1.4. Proposed Genotype Calling Algorithm

test. This p-value is also used as a confidence measure. An improvement of
the DM algorithm has been proposed by Nicolae et al. (2006) in their empir-
ical likelihood based genotype calling model. For each SNP, two sufficient
statistics corresponding to two possible alleles are formed for each probe
quartet giving the basic predictor set. Three separate distributions for each
predictor set are estimated using empirical likelihood functions. Genotypes
are called based on the Bayesian posterior probability, which is calculated
using a weighted likelihood of the previously defined individual empirical
likelihood functions. The weights are predetermined using a reliability score
based on the training set.

1.4 Proposed Genotype Calling Algorithm

I have mentioned in the previous section that there are two possible ways
for modeling the multi probe level signal intensities to predict the genotype
class: single model approach and multiple model approach. Based on ex-
ploratory data analysis of the APEX microarray genotyping data (obtained
from Dr. Tebbutt’s laboratory), we found that combining information from
all available probes at the initial stage and then fitting a single prediction
model gives a higher error rate compared with the proposed two-stage geno-
type classification model. This phenomenon is justifiable since functionality
of different probe chemistries is highly sequence specific, i.e., varying from
sample to sample and from SNP to SNP. Even if we design a different model
for each SNP, still probe chemistry variation with respect to the arrays might
give erroneous results.

We believe that the best way for designing a genotyping mapping would
be a two-stage modeling where each model in the first stage captures one
individual probe chemistry. These models are then assembled in a second
stage in such a way that the actual strength of each probe chemistry is
reflected in the final genotype calling through an objective confidence mea-
sure. Initially, two independent data sets of different sizes with the same
set of SNPs have been provided by Dr. Tebbutt to build an appropriate
genotyping model for the APEX platform. We will call them the Coriell
and the SIRS data sets. Details on these data sets are given in Chapter 2.
We can then treat one of them as the training set and the other as the test
set.

We began our journey by proposing a supervised learning algorithm
which treats each probe set as an individual classifier using simple linear dis-
criminant scores. The four prediction models are dynamically combined. We
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take a weighted average of the four posterior probabilities provided by the
four individual LDA (linear discriminant analysis) classifiers. The weights
are sample/SNP-specific and defined so that the best working probe set gets
maximum weight. Whereas, the only other genotyping algorithm which in-
volves weighted likelihood of the available Affymetrix probe data, Nicolae
et al. (2006) defines SNP-specific weights based on the training set. These
weights remain constant for all the test samples. If some probe does not
work well for a given sample this would not be reflected in the genotype
call for that test sample. Details of our weighting scheme are described in
Chapter 2 and Chapter 4.

We found that it is convenient but not sufficient to use a genotyping
model with dynamic weights. Each model built on individual probe chem-
istry should also downweight outliers which occur in both the training and
the test set. To deal with the outliers in the training set we can replace
the estimates of the underlying model parameters by their robust counter-
parts. To deal with the outliers in the testing set we propose a class-specific
mixture model for each base classifier, in which one part models the signal
from good working probes (good signal distribution) and another part mod-
els possible outliers, i.e. generated by poorly working probes. We notice
that our mixture model is totally different from the mixture model defined
in Equation 1.1 (proposed by Xiao et al. (2007), Hua et al. (2007) and Teo
et al. (2007)). Our mixture model is defined as follows

Pj(xj |g) = (1− α)fg(xj ; τg) + αh(τ) (1.2)

where fg is the predefined density function of the gth genotype class; τg

denotes the corresponding parameter set (e.g., location parameter, variance-
covariance matrix, etc.); xj is the jth predictor set and α is a user defined
constant which allows α fraction mixing of the outlier distribution h(τ) with
the actual distribution fg. Our proposed mixture model is also different from
the classical contamination model, since for this APEX based genotyping
platform each predictor set is contaminated independently from the other
sets. Therefore, some of the four sets could be outliers, while the others are
perfectly good data. Thus, class-specific mixture models for the individual
predictor sets makes sense.

After obtaining a posterior probability for each base classifier using the
above model (defined in Equation 1.2), a weighted average of the four basic
posterior probabilities gives a confidence measure for all possible genotype
classes. Then a new test sample is assigned to a genotype class with the
maximum confidence measure. The weights are defined dynamically and
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depend on the actual strength of each individual probe chemistry. This
modeling approach is described in Chapter 4.

1.5 Linear Discriminant Analysis

In this section, I will give a brief description of the linear discriminant analy-
sis (LDA: Fisher (1936) and Hastie et al. (2001)). LDA, introduced by Fisher
(1936), is one of the first and simplest statistical classification methods. I
will describe LDA with two classes, where Fisher’s discriminant function
(DF) is a single linear combination of d explanatory variables X and the co-
efficients are estimated optimally to give the maximum separation between
the classes for the training set. There are several ways of deriving the same
DF and here I will describe both methods: maximizing the variance between
classes relative to within classes and the likelihood ratio.

1.5.1 Maximizing the Variance-ratio

Let x1, . . . , xd be the d-dimensional observed predictor set and DF is a linear
combination of the variables X1, . . . , Xd defined as

D =
d∑

i=1

wiXi (1.3)

We assume that the weights w = (w1, . . . , wd)T are estimated in such a way
that the two classes get maximum separation w.r.t their location parameters
and the population covariance matrix for X1, . . . , Xd is the same for both
classes. Then the conditional distribution of X1, . . . , Xd given class k is

X1, . . . , Xd|k ∼ (µ(k),Σ) (k = 0, 1) (1.4)

where µ(k) is the d-dimensional population mean for class k, and Σ is the
common d × d population covariance matrix. Now the distribution of D
given class k can be defined through the mean(D) and Var(D):

E(D|class k) = E(wTX|class k) = wT µ(k) (1.5)

and

Var(D) = Var(wTX) = wT Σw (1.6)
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Now a good DF should have weights which would maximize the following
t-like ratio for comparing the two means of DF corresponding to two classes.

t =
wT (µ(0) − µ(1))√
( 1

n0
+ 1

n1
)wT Σw

(1.7)

An estimate of the above quantity would be

t̂ =
wT (x̄(0) − x̄(1))√
( 1

n0
+ 1

n1
)wTSw

(1.8)

Where S is the pooled estimate of Σ based on the individual estimates S(0)

and S(1)

S =
(n0 − 1)S(0) + (n1 − 1)S(1)

n0 + n1 − 2

Maximizing t̂ in Equation 1.8 is equivalent to maximize the t̂2, which is a
ratio of between-class to within-class variation (apart from the constant part
in Equation 1.8) and derived as follows:

t̂2 =
wT (x̄(0) − x̄(1))(x̄(0) − x̄(1))Tw

wTSw
(1.9)

The optimizing w is then

w ∝ S−1(x̄(0) − x̄(1)) (1.10)

The solution is arbitrary up to a constant of proportionality. Finally Fisher’s
DF is given by

wT x = (x̄(0) − x̄(1))TS−1x, (1.11)

or any multiple thereof. Note that no assumption regarding the exact dis-
tribution of X1, . . . , Xd has been made beyond means and covariances. Now
for more than two classes (suppose there are c classes), the idea of Fisher’s
LDA is to find the directions that maximize between-class variability relative
to within-class variability, i.e., to maximize the following quantity

wTBw
wTSw

with respect to w. Where

B =
1
c

c−1∑

k=0

(x̄(k) − x̄)(x̄(k) − x̄)T
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is the between-class variance with x̄ = 1
n

∑c−1
k=0 nkx̄(k) as the overall mean

vector, and the within-class variance is given by

S =
∑c−1

k=0(nk − 1)S(k)

n− c

The optimizing w is the eigenvector of S−1B with the largest eigenvalues.
The same DF can be derived through the Likelihood Ratio method (with
exact distributional assumptions) and Regression model.

1.5.2 Likelihood Ratio Optimization

Suppose we want to test the hypotheses

H0 : Object comes from Class 0

versus
H1 : Object comes from Class 1

with the assumption that X1, . . . , Xd have a multivariate normal (MN) dis-
tribution. Then the assumption in (1.4) become

X1, . . . , Xd|k ∼ MN(µ(k),Σ) (k = 0, 1) (1.12)

The underlying density function would be

L(x;µ,Σ) =
1

(1π)
d
2 |Σ| 12

exp[−1
2
(x− µ)T Σ−1(x− µ)] (1.13)

Using the likelihood ratio of the two distributions as the scoring function
for discrimination:

L(x| Class 0)
L(x| Class 1)

=
exp[−1

2(x− µ(0))T Σ−1(x− µ(0))]
exp[−1

2(x− µ(1))T Σ−1(x− µ(1))]

= exp[(µ(0) − µ(1))T Σ−1x]exp(
1
2
µ(0)T Σ−1µ(0) − 1

2
µ(1)T Σ−1µ(1))

(1.14)

Only the first factor of the above scoring function involves x and after taking
the natural logarithm it leads to the following classification criterion

(µ(0) − µ(1))T Σ−1x
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After replacing µ(k) with x̄(k) and Σ by S we obtain the same Fisher’s DF
again

(x̄(0) − x̄(1))TS−1x

Details on LDA can be found in Hastie et al. (2001).

Organization of the Thesis
This is a manuscript based PhD thesis as allowed by UBC guidelines. The
main objective of this thesis is to build a classification algorithm for SNP
genotype data obtained through APEX based microarray genotyping plat-
form. Chapter 2 to Chapter 4 are three independent manuscripts which are
self contained and each has its own reference list. Work under Chapter 2
and Chapter 3 has been published in peer-reviewed journals and Chapter 4
will be submitted to a refereed journal and is being formatted accordingly.
Chapter 5 concludes the thesis with a summary and discussion of possible
future research directions.
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Chapter 2

Dynamic Variable Selection

2.1 Background

2.1.1 Genotyping SNPs

Determination of the alleles at a specific single nucleotide polymorphism
(SNP) site is called genotyping. An optimal genotyping technology should
be capable of genotyping any number of SNPs for a large number of indi-
viduals satisfying the following criteria: 1. easy and quick development of
an assay from the sequence information; 2. over-all low cost; 3. the data
analysis must be simple, transparent, fully-automated and robustly give ac-
curate genotype-calls for all kinds of samples; and 4. the study design must
be flexible and scalable in all respects (e.g., number of SNPs investigated).
Automated genotype calling is an essential part of such a system. A num-
ber of medium to high-throughput genotyping methods have been developed.
Among these various techniques, TaqMan (Livak et al., 1995) was designed
optimally to give genotypes of large numbers of individuals for one SNP at
a time. But from a clinically relevant, personalized medicine point of view,
we require a system which can genotype multiple SNPs simultaneously for
any single patient sample.

Such a system can be achieved through a device known as a genotyping
microarray. Through this mechanism, one can display thousands of specific
oligonucleotide probes, precisely located on a small glass slide. These array-
based technologies offer both economic and patient specific applications al-
lowing the genotyping of multiple SNPs simultaneously. There are a num-
ber of microarray genotyping protocols, including Affymetrix GeneChips(R)

(Kennedy et al., 2003) and Illumina’s BeadArrayTM system (Oliphant et al.,
2002). For the widely used Affymetrix GeneChip system, a system based on

A version of this chapter has been published as: Mohua Podder, William J. Welch,
Ruben H. Zamar and Scott J. Tebbutt: Dynamic variable selection in SNP genotype
autocalling from APEX microarray data. BMC Bioinformatics 2006, 7:521.
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the discriminatory power of nucleic acid hybridization to generate the geno-
typing signals, sophisticated autocalling algorithms have been developed (Di
et al., 2005). Over the last five to six years Affymetrix has developed and
tested a series of algorithms using their platform. The Affymetrix GeneChip
is suitable for very large scale genotyping, e.g., 10,000 or more SNPs at a
time, but is expensive for medium to small scale genotyping (e.g., 100 to 200
SNPs). The Illumina BeadArray genotyping platform provides a powerful
combination of high-throughput and accuracy with low cost per SNP anal-
ysis. Based on the GoldenGateTM genotyping assay, Illumina designed a
genotype calling algorithm using a Bayesian model, taking the ratio of two
single colored intensity signals corresponding to two possible SNP alleles,
to give the genotype for a single SNP (Shen et al., 2005). The automatic
calling of genotypes is performed by proprietary software, GenCall, which
is based on a custom-designed clustering algorithm (Shen et al., 2005). To
our knowledge, exact details of the algorithm are not available in the public
domain.

Compared to these systems, our laboratory has developed a robust and
redundant chemistry platform using the technology of single base extension
which produces multiple signals from multiple probes [APEX and allele-
specific APEX (ASO) probes for both DNA strands] corresponding to a
single SNP (Tebbutt et al., 2004). To our knowledge, APEX is the only
chemistry in which the on-chip assay can be performed in 20 minutes, making
APEX potentially suitable for rapid genetic diagnostics in clinical settings:
the Affymetrix assay takes several hours for hybridization on the chip, and
Illumina’s assays also takes longer compared to APEX.

Commercial software called Genorama (www.asperbio.com) can detect
all the four colors of fluorescence emitted from the dyes used in an APEX ex-
periment, and then automatically call the base(s) corresponding to a specific
probe spot. The problem with this system is that the underlying scoring
algorithm treats all probes equally and thus requires considerable inspection
of the original array data to produce the final genotype call (Kamiński et al.,
2005), (Kurg et al., 2000). Using the Genorama base-calling data for both
APEX and AS-APEX probes, Gemignani et al. (2002) developed a simple
matrix-score based algorithm and made the calls corresponding to the most
likely genotype, but with considerable manual inspection.

2.1.2 Current Genotype Calling System: SNP Chart

SNP Chart is a Java based visualization tool, developed by our research
group (Tebbutt et al., 2005). In this integrated platform, spot intensity
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data from different and/or replicate probes (randomly scattered across the
microarray slide) that interrogate the same SNP are imported, together with
a multi-channel TIFF image of the original array experiment. This system
is capable of calling any SNP genotype with the help of individual manual
data inspection. The main problem with this genotype-calling system is
that it is time-consuming and exposed to user subjectivity bias.

Examples of SNP Charts are shown in Figure 2.1. Here, template DNA
from three Coriell samples with three possible genotypes (CC, CT and TT)
and one negative control (NN) are shown in four different charts. Each
chart shows four-channel fluorescent intensity data (A, C, G, and T) on the
vertical axes, from 12 rs1106577-specific array spots (duplicate spots for six
different probes). On the horizontal axes, 12 probe-names corresponding
to 12 spots are given sequentially. The first and second spots from the left
(“LEFT C/T”) refer to the left-hand APEX probe that will give either a
single C (green) signal (for homozygous CC genotypes) or a T (blue) signal
(for homozygous TT genotypes) or a mixture of C and T (heterozygous
CT). The third and fourth spots from the left (“RIGHT G/A”) refer to
the right-hand APEX probe that interrogates the DNA strand nucleotide
complementary to that of the left-hand APEX probe, thus giving a single
G (red) signal (for CC), a single A (yellow) signal (for TT), or a mixed G
and A signal (for CT). From the left, spots 5 to 12, inclusive, represent
allele-specific APEX probes in which a base-specific fluorescence signifies
the presence of the allele. Among them, spots 5 to 8 refer to the “ 1” probes
corresponding to the first allele (C in the case of rs1106577) and spots 9 to 12
refer to the “ 2” probes corresponding to the second allele (T). The details of
the APEX chemistry are explained by Tebbutt et al. (2004, Section “APEX
Microarrays”). The redundancy and consistency of the data across different
probes give high confidence in the assigned genotypes.

2.1.3 Data Composition

We built our genotyping model based on the training set of 32 Coriell DNA
samples (http://coriell.umdnj.edu/) and 3 negative PCR controls (Tebbutt
et al., 2004), (Tebbutt et al., 2005). Each sample comes from a single
microarray experiment, conducted on a small glass slide, and contains infor-
mation on all the SNPs under study. Our laboratory has developed a robust
microarray platform for each sample patient, generating multiple signals for
approximately one hundred SNPs using two kinds of probes, namely, clas-
sical APEX probes and allele specific APEX (ASO) probes (Tebbutt et al.,
2004). There are six probes in total for each biallelic SNP and each probe
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Figure 2.1: An Example of SNP Chart Application for the SNP rs1106577.

has two replicates which make twelve different spots for a single SNP on
the microarray slide. All these spots are randomly scattered across the mi-
croarray slide but with known coordinates. Multiple sets of probes of these
types along with their replicates make this genotyping platform unique and
redundant. Each spot in the microarray slide produces signals from four
different channels, corresponding to A, C, G and T. In our current geno-
typing method, we only considered the expected foreground signals and will
consider all the background, non-expected signals for further development
of genotyping model (see below).

An example of a data source for a single Coriell sample and a single SNP
is given in Table 2.1. For the SNP rs1106577, the two possible alleles are C
or T. Each row of this table represents a single spot. The first column is
the spot ID; the second column is the probe name; the third column is the
expected allele ID for the appropriate spot; and the last four columns are
the signal intensity values for the four channels corresponding to each spot.

In the second column of Table 2.1, “APEX LEFT” refers to the left-hand
APEX probe on the sense strand, and “APEX RIGHT” refers to the right-
hand APEX probe on the anti-sense strand that interrogates the DNA strand
nucleotide complementary to that of the left-hand APEX probe. For all
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the APEX probes, the fluorescent signals come from the base position of the
SNP allele. In contrast, for all the ASO probes, fluorescent signals come
from the base adjacent (3’) to the actual SNP site (Tebbutt et al., 2004).
For the SNP rs1106577 considered in Table 2.1, the base 3’ adjacent to the
SNP allele is always T on the sense strand. The left probes, ASO 1LEFT
and ASO 2LEFT, are designed to signal at this adjacent base, T, if the
SNP site has the first allele (C here) and/or the second allele (T here),
respectively. Similarly, SNP rs1106577 has G in the adjacent position 3’
to the SNP side on the anti-sense strand. The right probes, ASO 1RIGHT
and ASO 2RIGHT, signal at this adjacent base, G, again for C and/or T at
the SNP site, respectively. It is merely the presence or absence of the signal
that indicates the SNP allele. According to the probe structure, the signals
corresponding to the expected alleles are highlighted. The data represented
in Table 2.1 come from the DNA sample Coriell NA17102 and here the true
genotype is CC (see the top-right CC-chart in Figure 2.1). According to the
APEX chemistry, for the genotype CC the dominating signals from spots 1
and 2 should be C among the two expected channels C and T. Similarly
the dominating signals from spots 3 and 4 should be G (complementary to
C in the left-strand) among the two expected channels G and A. Rows 5–12
represent the ASO probes in which a base-specific fluorescence signifies the
presence of the allele. Since the genotype is CC, all the expected signals
corresponding to allele 1 (C) should dominate over the other channels, i.e.,
expected foreground (expected channel corresponding to all allele 2 probes)
and background signals (Tebbutt et al., 2004). Note that for spots 11 and
12, the expected signal (G), corresponding to the presence of the T allele
(which is absent in this particular case), is comparable to the background
signals. In Table 2.1, all the signals which are not highlighted in bold are
considered as background signals, often due to the spectral overlap between
dyes, and/or a general background.

In fact, this is a very good source of data, as all the signals corresponding
to allele 2 (T in this case) are comparable to the level of background signals.
Now suppose the true genotype is TT, then we should expect dominating
signals only from the expected channels corresponding to all allele 2 probes.
For a heterozygous CT genotype, we should expect dominating signals from
all the expected channels corresponding to both allele 1 probes and allele 2
probes. These features of our redundant and robust platform can also be
represented through our data visualization tool: SNP Chart (Tebbutt et al.,
2005). In Figure 2.1, four SNP Charts corresponding to three different
genotypes (CT, CC and TT) and a negative control (NN) are shown for the
same SNP (rs1106577). In our study we use the 32 Coriell samples plus
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Table 2.1: Data structure for SNP rs1106577 and DNA sample Coriell
NA17102 (CC) (CC-chart in Figure 2.1)

Spot ID Probe ID Expected allele A C G T
Spot 1 APEX LEFT C and/or T 732 17003 258 667
Spot 2 APEX LEFT C and/or T 965 28290 348 1046
Spot 3 APEX RIGHT G and/or A 190 85 1198 233
Spot 4 APEX RIGHT G and/or A 353 104 2923 269
Spot 5 ASO 1LEFT T 109 5284 80 45700
Spot 6 ASO 1LEFT T 107 5456 83 45713
Spot 7 ASO 2LEFT T 90 88 20 182
Spot 8 ASO 2LEFT T 76 106 22 222
Spot 9 ASO 1RIGHT G 288 182 2346 992
Spot 10 ASO 1RIGHT G 369 209 3908 1098
Spot 11 ASO 2RIGHT G 138 68 166 187
Spot 12 ASO 2RIGHT G 151 68 212 193

three negative PCR controls for model building. These 35 samples will
be called the Coriell training set. To test the performance of the calling
algorithm we also have a completely independent set of 270 SIRS (systematic
inflammatory response syndrome) DNA samples from the ICU of St. Paul’s
hospital, plus one test negative control sample. This set of 271 samples
will be called the SIRS test data. Note that the SIRS data are not used
in model building and come from a separate study, so they provide a very
rigorous test. For the training data, there are 123 SNPs on the microarray
slide, but only 96 were usable: (1) 15 SNPs had PCR chemistry failure and
(2) 12 SNPs had one of the three possible genotypes missing among the
training set.

2.1.4 Formation of Classifiers

Ideally, the genotype call could be solely based on just one of four sets of
probes: (1) APEX LEFT, (2) APEX RIGHT, (3) ASO 1LEFT and
ASO 2LEFT, and (4) ASO 1RIGHT and ASO 2RIGHT (see Table 2.1).
Accordingly, we have developed four sets of classifiers, named APEX.L,
APEX.R, ASO.L and ASO.R, based on the respective probe sets. Each
classifier is based on two explanatory variables, generically denoted by X
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and Y, measuring the signal intensities for the two candidate alleles in the
SNP position. In Table 2.1, for example, X and Y corresponds to the C
and T alleles, respectively.

Between them the four classifiers have four pairs of such explanatory vari-
ables: (APEX.XL, APEX.YL); (APEX.XR, APEX.YR); (ASO.XL, ASO.YL)
and (ASO.XR, ASO.YR). They are derived from the signal intensities
in rows 1–2, 3–4, 5–8, and 9–12, respectively, in data structures exempli-
fied in Table 2.1. All these variables take the sum of the relevant sig-
nals. From the example data in Table 2.1, the values of the variables
for the classifier APEX.L are APEX.XL = 17, 003 + 28, 290 = 45, 293 and
APEX.YL = 667 + 1, 046 = 1, 713, and so on, as summarized in Table 2.2.
Our main objective is to automatically select from these four sets of vari-

Table 2.2: Values of the explanatory variables for SNP rs1106577 and DNA
sample Coriell NA17102

Classifier Variables used by classifier Values
APEX.L APEX.XL APEX.YL 45,293 1,713
APEX.R APEX.XR APEX.YR 4,121 543
ASO.L ASO.XL ASO.YL 91,413 404
ASO.R ASO.XR ASO.YR 6,254 378

ables those pairs which give “good” signals for genotype calling. Moreover,
the variables and hence the classifier(s) used will be chosen dynamically, i.e.,
for a specific SNP and sample. In this paper we use Fisher’s (Fisher, 1936)
linear discriminant analysis (LDA) to build the classifiers, but the method
of dynamic variable selection would apply to any linear or nonlinear classi-
fier. Figure 2.2 and Figure 2.3 illustrate how dynamic variable selection
exploits the redundancy in the chemistry. The figures are based on the 32
Coriell samples plus three negative PCR controls, where the true genotypes
are known. We plot the X and Y signals for each of the four probe sets.
Ideally, any pair of variables would form well separated clusters for the three
possible genotypes, XX, XY and YY (plotted with different colors and sym-
bols) [red, green, blue and black colored symbols respectively denote the
classes YY, XY, XX and NN]. There is a fourth cluster corresponding to
the negative controls (NN). Any reasonable classifier based on these vari-
ables should make correct calls under ideal conditions. Figure 2 shows an
ideal SNP, where all four probe sets produce good separation of the three
genotypes and the negative controls. In Figure 2.2, all the classifiers give
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Figure 2.2: Example of a well-behaved SNP: rs1932819
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Figure 2.3: Example of a critical SNP: rs1003399.
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three well separated clusters for the SNP rs1932819; whereas in Figure 2.3,
sample 11 is correctly classified by both ASO probes and APEX.R probe
but wrongly classified by APEX.L probe for the SNP: rs1003399, whereas
for sample 20, APEX.L probe works the best.

Conversely, problems with the samples or the chemistry may lead to
overlap in the four clusters, making calling difficult. In Figure 2.3 for SNP
rs1003399, for example, sample 11 is a GG genotype which falls in the CG
cluster for the left APEX probe set. Fortunately, the other three probe
sets correctly place sample 11 in the GG cluster. So three out of the
four probe sets work, and classifiers based on them would make the correct
call for sample 11. For sample 20 (NA07341), however, the left APEX
probe set works the best, placing the GG sample clearly in the GG data
cluster. Thus, different probe sets may be effective for different samples,
even for the same SNP. Our algorithm attempts to identify effective probe
sets automatically, sample by sample, and it is in this sense that it chooses
variables dynamically.

2.2 Results and Discussion

2.2.1 Dynamic-variable LDA Based Genotyping Model

For each SNP we build four separate LDA classification models; the models
are based on the pairs of explanatory variables in Table 2.2 corresponding
to the four probe sets. For this stage the training data are the 32 Coriell
samples and the three negative PCR controls described under Data Com-
position. As test data to evaluate the calling performance we use the 271
SIRS test samples also described under Data Composition. Within each
SNP, sample by sample the four classifiers are combined using the weighting
algorithm described later in the Methods Section, to give one call for the
particular test sample. The calls are checked for concordance with the val-
idated genotypes in the SIRS data, leading to the results in the first row of
Table 2.3. In 0.4% of samples, the called genotype is NN (non-call), hence
the call rate of less than 100% in the table. As detailed under Methods,
by changing the threshold for calling, a modest reduction in the call rate
to 94.9% yields a 99.6% concordance rate. We also reverse the roles of the
training and test data sets, leading to the second row of Table 2.3.

The results are stronger in terms of the number of SNPs called, call rate
and concordance rate, because in this second analysis a much larger set of
data is used for training the models.

Row 3 of Table 2.3 reports the results from applying the method of cross
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Table 2.3: Results from Dynamic-variable LDA

Training Test No. of High call.rate Lower call.rate
set set SNPs Call.rate Accuracy Call.rate Accuracy
Coriell SIRS 96 99.6% 98.9% 94.9% 99.6%
SIRS Coriell 102 99.9% 99.3% 95.6% 99.8%
Coriell CV 96 100.0% 98.7% 94.2% 99.2%
SIRS CV 102 99.9% 99.3% 96.0% 99.8%

validation (CV) (Hand et al., 2001) to the Coriell data set. Here, each
sample is removed in turn from the data, and its genotype is predicted based
on retraining the four classifiers using only the remaining data. The results
are similar to those in row 1. For the SIRS data, row 4 reports analogous
cross validation performance estimates, and there is very close agreement
with row 2.

2.2.2 Simple LDA Based Genotyping Model

For comparison, for each SNP we use the training data to build a single LDA
classification model using all eight variables available in Table 2.2. For each
SNP, simple LDA applied to the training data assigns weights to the eight
variables and these weights are constant for every test sample. Thus, this
more standard modeling approach does not allocate weights dynamically.
The same comment applies to MACGT from our research group (Walley
et al., 2006), which also requires greater levels of manual inspection of the
APEX data. In fact, a simple LDA is expected to work well if all the
underlying variables are good (without contamination) so that simple LDA
can assign optimal weights treating all variables simultaneously. However,
in this genotype classification problem, we have seen that occasionally some
probe fails thus introducing outliers in the system.

The results from simple linear discriminant analysis are given in Ta-
ble 2.4. In row 1 the concordance rate for the SIRS test set is 97.3%,
which might be considered good for other applications but for clinical pur-
poses a much smaller concordance error is desirable. Modifying the calling
threshold makes negligible difference to the concordance rate. Reversing the
training and test data shows an even worse outcome: (1) again changing the
threshold value does not control the call rate and (2) the concordance rate
deteriorates dramatically. Therefore the performance is not competitive
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against dynamic-variable LDA.
As shown in rows 3 and 4 of Table 2.4, the performance of simple linear

discriminant analysis is better when measured by cross validation, partic-
ularly when predicting the SIRS data. It seems that the method is not
robust to using samples from different sources for training and testing.

Table 2.4: Results from Simple LDA

Training Test No. of High call.rate Lower call.rate
set set SNPs Call.rate Accuracy Call.rate Accuracy
Coriell SIRS 96 99.4% 97.3% 98.1% 97.3%
SIRS Coriell 102 99.5% 93.0% 99.5% 93.0%
Coriell CV 96 99.8% 98.4% 99.7% 98.5%
SIRS CV 102 99.4% 99.5% 98.9% 99.6%

We also analyze the SNP specific performance of the two models: dynamic-
variable LDA and dimple LDA. For this we plot the misclassification rates
corresponding to 96 SNPs using Coriell as a training set and predicting the
genotypes of 270 SIRS samples (see Figure 2.4) for 100% call rate. Figure 2.4
shows that there are many points with higher misclassification rates with
simple LDA model as compared to the dynamic-variable LDA model.

2.2.3 Discussion

We also tried classifiers based on different sets of variables. For example, we
built an ASO classifier using the variables ASO.XL, ASO.YL, ASO.XR and
ASO.YR and an APEX classifier using the variables APEX.XL, APEX.YL,
APEX.XR and APEX.YR. The calls from the two classifiers were then
combined using the dynamic variable methodology. Little improvement in
concordance rate was found relative to eight-variable simple LDA. Similar
results were obtained when combining left and right classifiers, based on the
left variables (ASO.XL, ASO.YL, APEX.XL and APEX.YL) and the right
variables (ASO.XR, ASO.YR, APEX.XR and APEX.YR), respectively.

2.3 Conclusions

We have developed a robust automated genotype calling method based on
an ASO and APEX microarray platform. Multiple, qualitatively different
probes provide redundancies in the event that a probe does not provide
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a reliable signal. The dynamic-variable calling algorithm respects these
redundancies, building up an overall call from classifiers based on subsets
of variables, with more weight given to seemingly more reliable classifiers.
The weights change from one test sample to another; it is in this sense that
the method is dynamic. Standard methods of variable selection (also called
feature extraction) as described by, for example, Hand, Mannila, and Smyth
(Hand et al., 2001) or Hastie, Tibshirani, and Friedman (Hastie et al, 2001),
would select or filter the variables and use the same set of reduced variables
for every call. Such a strategy would be appropriate if the same probe
sets are reliable from sample to sample.

For a call rate of approximately 95%, we were able to achieve a concor-
dance rate of 99.6% in a large, independent test set of validated genotypes.
The probe data for those samples/SNPs that are not automatically called
would be manually inspected within SNP Chart; unlike 100% manual in-
spection, this does not impose an unreasonable time burden. The method
of combining classifiers is not specific to linear discriminant analysis; other
statistical classifiers could be used. Similarly, the method could be applied
to other microarray platforms with complex redundancies.

2.4 Methods

2.4.1 LDA

Linear discriminant analysis (LDA), due to Fisher (Fisher, 1936), is one of
the oldest methods of discrimination between classes or classification. It
is described in virtually every text book that includes classification (e.g.,
Hastie, Tibshirani, and Friedman) (Hastie et al, 2001). LDA is applied to
each SNP separately. It is assumed that the variables (probe signals) used
to classify have a multivariate normal distribution, with a within-class co-
variance matrix that is common to all classes (the genotypes and a negative
control class) but within-class mean vectors that vary from one class to an-
other. These quantities are estimated from the Coriell training data. For
any test sample, the values of the same variables lead to posterior proba-
bilities for the various classes. The genotype called is the class with the
highest posterior probability. The method also requires the prior probabili-
ties of belonging to the various classes. We assume priors based on observed
frequencies in the training data. This basic LDA methodology is common
to all the strategies we use.
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2.4.2 Simple LDA

In Simple LDA we train a single LDA genotyping model using the logarithms
of all eight variables described in Table 2.2. Among the validated genotypes
of the 32 Coriell samples, there are some cases where the exact genotype is
unknown, denoted by NN (non-call). The three negative controls added to
the Coriell data are also treated as NN as well. Thus, for each SNP there
may be up to four classes present in the training data, corresponding to the
three candidate genotypes and NN. Thus, LDA may call NN. The call
rate is the proportion of calls that are not NN.

2.4.3 Dynamic-variable LDA

For each SNP we apply LDA to each pair of variables in Table 2.5. For ex-
ample, the classifier ASO.L is based on the left ASO variables, log(ASO.XL)
and log(ASO.YL). Here we consider the log transformation of the original
values as the microarray signal intensities are usually transformed to the
log scale (e.g. Di et al. (2005), Rabbee and Speed (2006)). Moreover we
found from the initial data analysis that log-transformation works better as
compared with the raw values. For generic alleles X and Y, the classes

Table 2.5: Applying LDA using four sets of classifiers

Classifier Variables
ASO.L log(ASO.XL), log(ASO.YL)
ASO.R log(ASO.XR), log(ASO.YR)
APEX.L log(APEX.XL), log(APEX.YL)
APEX.R log(APEX.XR), log(APEX.YR)

are XX, XY, YY, and NN (if all are present). Table 2.6 sets out the no-
tation for the Bayesian posterior probabilities for the possible classes from
each of the four possible classifiers. For example, P

(ASO.L)
XX is the posterior

probability for the XX genotype from the classifier, ASO.L. The posterior
probabilities for the four classifiers are combined using an entropy weighting
scheme. Entropy is a measure of uncertainty or dispersion of a random
variable, which can give more weight to seemingly more confident classifiers.
Other measures could be used, such as the variance of the posterior proba-
bilities, but entropy performs well for this application. Another issue is the
uncertainty in the estimates of the individual posterior probabilities, which
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Table 2.6: Posterior probabilities from four LDA classifiers

Classifier/Class XX XY YY NN
ASO.L P

(ASO.L)
XX P

(ASO.L)
XY P

(ASO.L)
YY P

(ASO.L)
NN

ASO.R P
(ASO.R)
XX P

(ASO.R)
XY P

(ASO.R)
YY P

(ASO.R)
NN

APEX.L P
(APEX.L)
XX P

(APEX.L)
XY P

(APEX.L)
YY P

(APEX.L)
NN

APEX.R P
(APEX.R)
XX P

(APEX.R)
XY P

(APEX.R)
YY P

(APEX.R)
NN

could be assessed, for example, via bootstrap variances. We do not pursue
this here.

Denote the four posterior probabilities from any classifier (*) in any row
of Table 2.6 by P ∗

c , where c indexes one of the classes (genotypes) in the set

C = {XX, XY, YY,NN}.
Posterior probabilities P ∗

c are calculated using the function lda in R from
library “MASS”. The prior probabilities for the four classes are based on
the training-data frequencies. The underlying calculations associated with
the function lda follow similar steps as described in Section 1.5.2. Then the
entropy for this probability distribution over classes is defined to be

−
∑

c∈C

P ∗
c log(P ∗

c ).

Entropy or uncertainty is maximized when all the P ∗
c are equal and min-

imized (taking the value 0) when one of the P ∗
c is 1 and the others are

zero.
Entropy is computed for each of the four classifiers in Table 2.6. We

will be giving more weight to a classifier with less entropy (uncertainty).
Thus, we define for the ASO.L classifier in row 1 of the table, for example,

EASO.L = − log(
1
4
)− [−

∑

c∈C

P (ASO.L)
c log(P (ASO.L)

c )],

which is a quantity which is large if ASO.L’s entropy is small compared
to the maximum possible entropy. Analogous quantities are computed for
EASO.R, EAPEX.L, and EAPEX.R in Table 2.6. The weights for the four
classifiers are obtained by normalizing them so that they sum to 1, i.e.,

WASO.L =
EASO.L

EASO.L + EASO.R + EAPEX.L + EAPEX.R
,
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with analogous computations for WASO.R, WAPEX.L, and WAPEX.R. Note
that the probabilities in Table 2.6 and hence the weights will vary from one
test sample to another.

The weights for the four classifiers are applied to the posterior probabil-
ities for each class (column) in Table 2.6 to obtain the final class posterior
probabilities. For example, the final probability for XX is

PXX =
∑

j

WjP
(j)
XX,

where j ∈ {ASO.L, ASO.R, ASO.L, ASO.R} with similar calculations for
XY, YY, and NN. A sample is assigned to the class with maximum weighted
probability.

To increase the concordance with the validated test samples (at the ex-
pense of reducing the call rate), a call is made if and only if the maximum
probability across the classes exceeds a threshold. For instance, the results
in the last two columns of the first row of Table 2.3 are obtained by requiring
the maximum probability to be at least 0.6 for a call.

Example corresponding to SNP rs1003399 and sample Coriell
NA17111

Figure 2.3 relates to SNP rs1003399 and the point labeled 11 is Coriell sam-
ple NA17111. To check how dynamic-variable LDA works for a sample with
complex redundancy, we predict the genotype of that sample based on the
remaining 31 Coriell samples plus three negative PCR controls. Underly-
ing calculations for both dynamic-variable LDA and simple LDA are shown
here.

The posterior probabilities from dynamic-variable LDA corresponding
to Table 2.6 but specific to this example are given in Table 2.7. The fi-

Table 2.7: Posterior probabilities from Table 2.6 for SNP rs1003399 and
target sample Coriell NA17111

Classifier/Class CC CG GG NN
ASO.L < 0.001 0.001 0.999 < 0.001
ASO.R < 0.001 0.003 0.997 < 0.001

APEX.L < 0.001 1.000 < 0.001 < 0.001
APEX.R < 0.001 0.005 0.995 < 0.001
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nal posterior probabilities from Dynamic-variable LDA and Simple LDA
are given in Table 2.8. So from Table 2.8, it is clear that the sample

Table 2.8: Resultant Posterior probabilities from Two Methods

Classes/Methods Dynamic-variable LDA Simple LDA
CC < 0.001 < 0.001
CG 0.253 1.000
GG 0.746 < 0.001
NN < 0.001 < 0.001

Coriell NA17111 (with validated genotype GG) is correctly classified only
by dynamic-variable LDA with confidence measure .75, but simple LDA fails
to do so. Moreover simple LDA wrongly classifies the sample as CG with
high confidence score (posterior probability 1.000).

This example also illustrates potential problems with a simple 0/1 weight-
ing scheme, where weight 1 is given to the most confident classifier. In Ta-
ble 2.7, APEX.L assigns 1.00 posterior probability to GG, and this is the
most confident classifier, but it makes the wrong call. The right call is made
here by also taking account of ASO.L and ASO.R.
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Chapter 3

Validation of Genotype
Calling Algorithm

3.1 Background

If ‘personalized medicine’, using genomic knowledge, is to become a real-
ity, then the ability to determine the most appropriate clinical interven-
tion for a patient will require the genotyping of several tens to hundreds of
single nucleotide polymorphisms (SNPs) across many genes and their reg-
ulatory sequences for that individual patient (Yang et al., 2003), (Janssens
et al., 2004), rapidly and at the point-of-care. Of many genotyping meth-
ods, those based on microarrays offer the greatest potential for economic,
patient-specific application (Hirschhorn et al., 2000), (Kennedy et al., 2003),
(Oliphant et al., 2002), (Pastinen et al., 2000), (Steemers et al., 2007),
due to their ability to simultaneously interrogate multiple SNPs. Arrayed
primer extension (APEX: Kurg et al. (2000), Shumaker et al. (1996)) is
a minisequencing microarray assay based on a two-dimensional array of
oligonucleotide probes that are immobilized, via their 5’ ends, on a glass
surface. The probes (25-mers) are designed so that they are complementary
to the gene up to, but not including, the base where the SNP exists. The
Sanger-based sequencing chemistry of APEX allows genotyping of hundreds
of SNPs, with the array chemistry taking only fifteen to twenty minutes to
complete. APEX achieves this clinically relevant speed because it uses the
catalytic ability of a DNA polymerase to carry out a single nucleotide base
extension (SBE) at the 3’ end of the arrayed probes, specific to the SNP
sites of interest in amplified patient DNA that is temporarily hybridized
to these probes. The dideoxynucleotide (ddNTP) ‘terminator’ bases are la-

A version of this chapter has been published as Mohua Podder, Jian Ruan, Ben W
Tripp, Zane E Chu and Scott J Tebbutt: Robust SNP genotyping by multiplex
PCR and arrayed primer extension; BMC Medical Genomics, 2008: 1-5.
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belled with tags containing distinct fluorescent chromophores, specific for
each of the four bases of DNA (A,C,G,T). Hence, the fluorescent ‘colour’
at each of the probe sites (array spots) will give SNP-specific genotypic in-
formation. As a discovery research tool, APEX has been used to detect
-thalassemia (Gemignani et al. (2002), p53 of Tonisson et al. (2002)), and
BRCA1 mutations (Tõnisson et al., 2000). Importantly, APEX has also been
shown to be efficient at simultaneously genotyping SNP markers that are
widely dispersed across the human genome (Dawson et al. (2002), Tebbutt
et al. (2004)); such capability is essential for future ‘individualized’ genomic
diagnostic analysis across multiple genes and pathways that are relevant to
disease. In a recent quality assessment survey of SNP genotyping laborato-
ries (Lahermo et al., 2006), in which up to 18 SNPs were genotyped across
47 DNA samples, APEX performed well against other methods, and the
authors concluded that a “conservative approach for calling the genotypes
should be used to achieve a high accuracy at the cost of a lower genotyping
success rate.” Whilst such a conservative approach may be applicable for
research studies, it may not be appropriate for clinical diagnostics, in which
life-saving medical decisions might require extremely accurate genotyping
across all SNPs of interest.

Given the potential utility of APEX for rapid clinical diagnostics, we
have developed robust assay design, chemistry and analysis methodologies,
and have sought to determine just how effective APEX is in comparison to
leading ‘gold-standard’ genotyping platforms, including Perlegen and Illu-
mina. Our objective was to achieve 100% assay completion rate, call rate
and genotyping accuracy rate, for multiple SNPs across multiple samples.
Previous studies from our laboratory have reported APEX genotyping ac-
curacies ranging from 98% to 99.8% (Tebbutt et al. (2004), Tebbutt et al.
(2006), Walley et al. (2006), Podder et al. (2006)), though the call rates in
these studies have always been significantly lower than 100%, and usually
do not include a proportion of the originally selected SNPs that fail the as-
say. Similarly, other laboratories that use APEX and equivalent technology
have reported genotyping accuracies ranging from 98% to > 99%, with call
rates varying from 84.4% to 96.8% (Gemignani et al. (2002), Tonisson et al.
(2002), Dawson et al. (2002), Lahermo et al. (2006), Cremers et al. (2007),
Zernant et al. (2005) and Jaakson et al. (2003)).
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3.2. Results and Discussion

3.2 Results and Discussion

We selected 50 SNPs from the HapMap database that had been previously
genotyped and analyzed as part of the third quality control exercise on
Illumina and Perlegen platforms, arguably the most accurate and best val-
idated high-throughput methodologies for SNP genotyping to date. The
randomly selected SNPs were located across multiple chromosomes and are
listed in Additional Table 1 online, along with details of the APEX probe
sequences and PCR primer sequences. The genotyping arrays that are cur-
rently being developed and tested in our laboratory incorporate multiple
redundant measures consisting of sense and antisense DNA-strand APEX
probes plus allele-specific oligonucleotide (ASO) APEX probes for a total
of six different probes per SNP (Tebbutt et al., 2004), with each replicated
five times on the array grid, which allows for more robust statistical aver-
aging. Optimal PCR primer pairs were designed for each of the 50 SNP
loci (Additional Table 1 online) and seven multiplex PCR groups were set
up that, together, would amplify all 50 loci (Additional Table 2 online).
We obtained a set of 287 DNA samples from McGill University and Gnome
Qubec Innovation Centre (one of the HapMap Project’s genotyping cen-
ters). This set comprised 270 DNA samples from the Coriell Institute for
Medical Research (http://coriell.org/) plus hidden duplicates and negative
controls, all of which our laboratory was blinded to. PCR (Fig. 3.1a and
Fig. 3.1b) and APEX assays were performed on each of the samples, plus a
10% repeat set which was randomly selected by us to allow internal quality
control and an initial assessment of genotyping concordance. Fig. 3.1 de-
scribes multiplexing PCR and subsequent amplicon fragmentation results,
prior to APEX reaction on HapMap Chip. (a) Standard multiplex PCR
from a single Coriell DNA sample using optimally-designed primers within
seven unique multiplex groups (lanes 1-7; lane M shows 100 bp DNA ladder
markers), showing wide range of amplicon sizes across the 50 SNP loci. (b)
Purification, concentration and fragmentation of standard PCR amplicons.
Lane 1 represents an aliquot of concentrated mixture of all seven multiplex
products shown in Fig. 3.1a. Lane 2 shows the fragmentation result, gener-
ating single-stranded nucleic acid of 30-100 base length. (c) Multiplex PCR
amplification of all 50 SNP loci in a single reaction tube using new PCR
primer set (Additional Table 4 online), showing 50-plex PCR products (in-
dividual SNP loci amplicons are unresolvable by agarose gel electrophoresis)
from two Coriell DNA samples (lanes 1 & 2), plus a negative PCR control
(lane 3). (d) Fragmentation of 50-plex PCR amplicons from aliquots of lane
1 & lane 2 samples shown in Fig. 3.1c.
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Figure 3.1: Multiplexing PCR and subsequent amplicon fragmentation re-
sults, prior to APEX reaction on HapMap Chip.

Microarray image data were imported into SNP Chart (Tebbutt et al.,
2005) and analyzed using previously described image analysis algorithms
(Abbaspour et al. (2006) and Abbaspour, Abugharbieh, Podder, and Teb-
butt (Abbaspour et al.)). Genotypes were called using two previously pub-
lished methods: 1. MACGT software (Walley et al., 2006), which is a multi-
dimensional clustering tool; 2. simple linear discriminant analysis (LDA)
using dynamic variable selection (Podder et al., 2006), which is a classifi-
cation algorithm. Results are shown in Table 3.1 and Additional Table 3
online. Briefly, a training set was established using SNP Chart, followed by
auto-calling in MACGT. Nine SNPs did not pass quality control due to as-
say failure or inconsistent PCR amplification. For all remaining SNPs that
were auto-called by MACGT, any genotypes that had a ‘fit’ score of less than
0.001 (approximately 9%) were checked by manual scoring in SNP Chart and
either validated, or changed to a different genotype or to a non-call (NN).
The final results using MACGT showed highly accurate genotyping (99.94%
concordance with HapMap) with good call rates (90% auto-called plus 9%
manual scoring). Importantly, of the 1,013 genotypes called manually, the
accuracy was 99.87%, even in cases where the array spot signal intensities
were up to an order of magnitude lower than for higher quality genotype
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data, and only slightly higher than background signals (Additional Fig. 1
and Fig. 2 online). Using the same training set, we then analyzed the data
set with simple linear discriminant analysis (LDA) using dynamic variable
selection (Podder et al., 2006). Results (Table 3.1 and Additional Table
3 online) also showed accurate genotyping (99.91% HapMap concordance),
and with higher automated call-rates (94.91% - using a confidence score
threshold of 0.75). We also calculated the homozygous and heterozygous
performance for the set of 270 HapMap samples with the previously selected
41 SNPs out of 50 SNPs (See Table 3.1). For a threshold of 0.75, we were
able to call 6883 cases out of 7214 homozygous cases (95.41% call rate) with
6880 correct calls (99.96% HapMap concordance). Whereas, with the same
threshold, out of 3873 heterozygous cases, we were able to call 3640 cases
(93.98% call rate) with 3634 correct calls (99.84% HapMap concordance).
Therefore, in common with other genotyping platforms, our methodology
has a slight bias that favours the calling of homozygous genotypes. These

Table 3.1: Results summary for 287 HapMap samples and 41 SNPs

Method Call rate HapMap Accuracy
MACGT (0.001) + manual 98.90% (9% manual) 99.94%

LDA (0.75) Total 94.91% 99.91%
LDA (0.75) Homozygous 95.41% 99.96%
LDA (0.75) Heterozygous 93.98% 99.84%

Table 3.2: Results summary for 49 HapMap samples and 50 SNPs

Method Call rate HapMap Accuracy
Manual calling only 100.0% 99.92%
MACGT (no cut-off) 100.0% 99.84%

LDA (0) Total 100.0% 99.89%
LDA (0) Homozygous 100.0% 100.0%
LDA (0) Heterozygous 100.0% 99.7%

MACGT (0.001) 94.04% 99.94%
LDA (0.75) Total 99.18% 99.90%

LDA (0.75) Homozygous 98.91% 100.0%
LDA (0.75) Heterozygous 99.7% 99.7%
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results, although promising and at least as accurate as any previously re-
ported for APEX-based methodologies, did not deliver on our objective of
100% call rate and 100% accuracy, and several of the 50 SNPs failed qual-
ity control. However, two important lessons were learnt from the study: 1.
our on-chip assay chemistry is extremely robust and specific, allowing ac-
curate genotype calls (at least by manual inspection of the array spot data
within SNP Chart) even at very low sensitivities (i.e., when the sequence-
specific spot intensities are only slightly higher than background signals);
2. non-calls (NNs) generally resulted from sporadic PCR failure for certain
amplicons, especially those of a length greater than 650-700 base pairs (bp).
Taken together, our results suggested that even if specific SNPs give high
NN rates across multiple samples, the genotypes for the remaining samples
for these SNPs (for which APEX assay data can be obtained) are still very
accurate, despite low signal to noise. We believe that this is due to the re-
dundancy in the genotyping probe design: two classical APEX probes (one
probe per DNA strand), plus four allele-specific (ASO) APEX probes (two
probes per strand), each replicated five times, for each SNP site. When this
redundant data is displayed in a SNP Chart, it is relatively straightforward
to interpret the genotype manually (Additional Fig. 1 and Fig. 2 online).
From these conclusions we reasoned that the PCR design itself needed to be
addressed, so that sporadic failures (despite good primer design algorithms)
could be consistently minimized or even eliminated.

For SNP genotyping, only the immediate sequence around the SNP site is
of interest. Therefore, keeping the PCR amplicon size to a minimum ensures
short extension times and minimal use of reagents. However, sequence-
context issues, especially in multiplex PCR, necessitate the design of unique
primers that have balanced annealing temperatures. This requirement can
result in individual amplicon sizes in a multiplex mix ranging from 100 to
>700 bp (Tebbutt et al., 2004). Large amplicons are optimal neither for
fast PCR nor for the subsequent APEX assay, which requires amplicons to
be fragmented to 50-100 base lengths (Fig. 3.1b). In addition, the degree
of multiplexing is usually limited to between four and ten amplicons per
individual multiplex PCR: e.g., for our original HapMap chip, the 50 SNP
loci are amplified in a total of seven separate multiplex reactions (Fig. 3.1a
and Additional Table 2 online). We initially tested multiplex PCR using all
original PCR amplicon primer pairs in a single reaction. As expected, several
experimental attempts all failed to amplify even a modest proportion of the
50 amplicons (typically, less than 20 amplicons would be successful; data not
shown). Thus, our new objectives were to increase the degree of multiplexing
and shorten the amplicon lengths to less than 200 bp, so that all 50 SNP loci

40



3.2. Results and Discussion

could be simultaneously and robustly amplified in a single reaction vessel.
New PCR primers were designed for the 50 HapMap SNP loci, with amplicon
sizes restricted to between 100 and 200 bp (Additional Table 4 online).
Because of this limitation, we were not able to optimally design the primers
based on a balanced melting temperature (Tm). To try to compensate
for this potential problem, each new PCR primer had a common linker
sequence designed at its 5’ end (5

′
TACGACTCACTTAGGGAG3′ for each

of the left hand PCR primers / 5′CGATGTAGGTGACACTAG3′ for each of
the right hand PCR primers). These linkers have two properties: a balanced
and reasonably high GC content to increase the melting temperature of
the primer and a unique sequence not found in the human DNA template
(Wang et al., 1998). After the first few cycles of PCR, the linker sequence
becomes incorporated into the amplicon sequence and is amplified along with
the template sequence. This approach helps reduce primer-dimer formation
during the PCR (Brownie et al., 1997). Because the primers have balanced
GC content, primer annealing in later cycles of PCR should become much
more sensitive and robust (Wang et al., 2005). We randomly selected 50 of
the HapMap Coriell DNA samples from our initial study, for 50-plex PCR
using the pool of linker-modified primers. Specific PCR cycling conditions
were adopted from a previously published study by Wang et al. (2005).
We also attempted 50-plex PCR using the redesigned PCR primers, but
without the common 5’ linker sequences. We managed to amplify only a
modest number of the 50 SNPs, and this multiplex PCR was not robust and
we could never amplify all 50 SNPs (data not shown).

PCR (Fig. 3.1c and Fig. 3.1d) and APEX assays (Fig. 3.2) were per-
formed on each of the samples, including negative controls. Microarray
image data were imported into SNP Chart and analyzed as described pre-
viously. Genotype calling was performed using three independent methods:
1. manual calling in SNP Chart; 2. auto-calling with MACGT; and 3. auto-
calling by LDA using dynamic variable selection. Genotypes were compared
to HapMap data for concordance. One SNP (rs7693776) was monomorphic
(TT) across all samples genotyped. Results are presented in Table 3.2 and
Additional Tables 7-10 online. Manual genotype calling, although time-
consuming and vulnerable to user-subjectivity issues (Tebbutt et al. (2004),
Tebbutt et al. (2005)), is nevertheless an accurate and validated way to in-
terpret APEX data, especially at low spot intensity levels (see above). In
addition, manual calling does not require the use of a training set. Of the 49
Coriell DNA samples (one sample out of the random set was a blinded neg-
ative control sample) assayed across 50 SNPs, manual calls were made for
all possible 2,450 genotypes (100% assay completion and 100% call rate).
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Figure 3.2: HapMap Chip four colour microarray images showing successful
de-multiplexing of 50-plex PCR from two Coriell DNA samples (a, b), plus
a negative control sample (c), prior to image analysis and automated geno-
typing. The spots on the negative control image represent positive control
probes.

Of these, 2,448 were concordant with HapMap data (99.92%). The two
discrepant genotypes were for two different samples each at different SNP
loci. Interestingly, the SNP Charts for these two genotypes showed high
quality data, and the same samples/genotypes had previously been concor-
dant with HapMap in the initial data set (Additional Table 3 online, and
discussed further below).

Auto-calling was independently undertaken. Initially, MACGT cluster
plots and quality control using SNP Chart were used to allow manual se-
lection of a limited training set of samples from the data set (Walley et al.,
2006). Using this training set, MACGT auto-calling of the test set with a
0.001 fit threshold resulted in a call rate of 94.04% and a concordance rate
of 99.94%. When the fit threshold was relaxed to achieve a 100% call rate,
three genotypes were discordant with HapMap data. Two of these geno-
types (both with high fit values - good confidence scores) were the same as
the two that had been identified as part of the manual calling data. The
third discrepancy had a relatively poor fit confidence score. LDA with dy-
namic variable selection, using a slightly reduced sized training set, yielded
identical genotyping results to manual calling, at a 100% call rate across
all 50 SNPs (16 NNs at a 0.65 confidence score threshold). Again, the two
discrepant genotypes, both of which were incorrectly called as homozygous,
had high confidence scores, consistent with high quality APEX assay data.
Separate analysis of homozygous and heterozygous cases showed that for
a 0.0 threshold, homozygous cases (1289 in total) achieved a call rate of
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100% with 100% HapMap concordance, whereas heterozygous cases (652 in
total) achieved a call rate of 100% with 99.7% HapMap concordance (two
heterozygous errors with high confidence scores). Surprisingly, with a 0.65
threshold, among 16 non-calls 14 were homozygous with 11 cases (all TT
genotypes) from a single SNP rs1891403, which gives a homozygous call
rate of 98.9% and a heterozygous call rate of 99.7%. Interestingly, the LDA-
called genotype that had the lowest score (but nevertheless was still called
correctly) was the same genotype as the third MACGT-called discordant
genotype (see above and Additional Table 7 online). Subsequent inspec-
tion of the SNP Chart for this genotype (heterozygous CT) showed that the
ASO-APEX probe intensity signals for the C allele were somewhat lower
than the T allele signals. Again, this same sample/genotype had previously
been concordant with HapMap in the initial data set, using the original
PCR primer pairs. (See below for further discussion of this genotype and
the other two discrepant genotypes.)

In summary, we have shown that a combination of multiplex PCR, re-
dundant and robust APEX design and assay, and statistically-robust auto-
calling (simple LDA using dynamic variable selection) can achieve 100%
completion and call rate with >99.9% accuracy, for multiple SNPs and mul-
tiple samples. We believe that this is a significant improvement over other
published APEX methodologies. The strength of our methodology is not
based on the quality of a single measurement but on the redundancy ob-
tained from measuring the allele intensities by using multiple chemistries.
To take advantage of this inherent robustness of the assay we use robust sta-
tistical methods that automatically select the most reliable measurements
for each SNP to make the genotype call, sample by sample (Podder et al.,
2006). Redundancy in genotyping arrays is associated with higher costs per
SNP, concomitant with lower numbers of SNPs able to be interrogated in
a given area of the microarray. For research studies, a trade-off may need
to be taken into consideration, given the ever-increasing need to genotype
as many SNPs as possible, at minimal cost per SNP, and a recent arti-
cle by Smemo and Borevitz (2007) cogently argues for a reduction in the
approximately 40-fold probe redundancy currently featured on Affymetrix
GeneChips, which only use hybridization for allelic signal generation. For
clinical diagnostics however, we believe that genotyping accuracy, call rate
and completion rate are paramount.

To further determine the effect of probe redundancy in our APEX method-
ology, we used LDA to reanalyze both data sets (original and 50-plex) but us-
ing non-redundant and partially-redundant probe-specific data (Additional
Tables 8-10 online). Fig. 3.3 and Additional Fig. 3 online show simple
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Figure 3.3: Simple scatter plots for SNP rs12466929 (A/G) from 50-plex
data set (this SNP is representative of the entire set of 50 HapMap SNPs).
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four-panel scatter plots of the probe data for the 50-plex experiment. For
each plot the x-axis represents signal values for X allele (A for this SNP)
and the y-axis represents signal values for Y allele (G for this SNP). All
values are in log scale. Magenta, green, blue and black coloured symbols
denote the classes YY (GG), YX (AG), XX (AA) and NN (negative control
samples), respectively. Plot (1) combines the two ASO-APEX Left probes
(one for each allele); plot (2) combines the two ASO-APEX Right probes
(one for each allele); plot (3) is for the APEX Left probe; plot (4) is for
the APEX Right probe. All the classifiers except APEX Left (plot 3) give
well separated genotype clusters for this SNP. Dynamic variable selection is
able to automatically weight these LDA classifiers in such a way that the
homozygous AA cluster in plot (3) (blue) is able to contribute to the final
call for such genotypes, even though AG (green) and GG (magenta) geno-
type clusters overlap somewhat for this Left APEX probe. Additional Fig.
3 online shows four-panel scatter plots for all 50 SNPs from the 50-plex data
set.

In particular, Fig. 3.3 represents the four separate scatter plots for
the SNP rs12466929 corresponding to the four different probe chemistries:
ASO.LEFT, ASO.RIGHT, APEX.LEFT and APEX.RIGHT. For each scat-
ter plot, the three possible genotype clusters (previously known from the
HapMap data set) are presented with three different colours: blue for al-
lele 1 homozygous; magenta for allele 2 homozygous; and green for allele
1 and allele 2 heterozygous. For the SNP rs12466929, allele 1 is A and
allele 2 is G, and the scatter plots are representative of the entire set of
50 HapMap SNPs. The four scatter plots indicate that three out of the
four probe chemistries work perfectly well and produce well separable (in-
formative) clusters corresponding to the three genotype classes (AA, AG
and GG), whereas one probe chemistry, namely APEX.LEFT, fails to work
properly and gives overlapping clusters for AG and GG genotype classes
(plot (3) in Fig. 3.3). Nevertheless, this probe chemistry gives a well sep-
arable cluster for the AA genotype class. This phenomenon conveys the
point of considering each probe chemistry separately during the building
of the genotype classification model, and in the next stage of the genotype
calling algorithm, combining the four genotype models with proper weights
adjusted dynamically with the quality of each of the four classifiers (four
probe chemistries) specific to each SNP and sample. If all four probes failed
to produce informative clusters, then our LDA-based genotype calling algo-
rithm would flag that SNP as a failed SNP, which clearly is not the case for
the SNP rs12466929. This is how the redundancy amongst our APEX based
genotyping platform is captured through the proposed LDA-based genotype
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calling algorithm with dynamic variable selection. Viewing the four-panel
scatter plots, we would also like to emphasize the point that for most of
the SNPs the homozygous clusters show some significant signal intensities
corresponding to the other allele, due to spectral overlap within the APEX
fluorescent ddNTP chemistry, thus inducing background to the homozygous
clusters. Particularly for this reason, we do not often see a homozygous
cluster close to either of X- or Y-axes. Here, the aim is to compare the
allele 1 and allele 2 signal intensities for the three possible genotype classes,
and then assign a test sample to the appropriate class based on the prior
knowledge of the available training set. We would also like to mention that
the initial signal intensities corresponding to each allele for all four probe
chemistries are converted into the log-scale in order to reduce the variability
between several microarray slides.

Performance analyses for the different data sets are described below, ad-
dressing the redundant probe chemistry (Table 3.3, 3.4, 3.5). The extreme
left hand column of each table indicates the combination of four classifiers
(APEX.L; APEX.R; ASO.L and ASO.R) used to build the LDA model. For
example, in the first row, all four classifiers were used to give the final geno-
type call, and in the fourth row, only the left classifiers were used. In the last
four rows, only one classifier was used at a time to give independent genotype
calls using the simple LDA model (with no dynamic variable selection). For
the complete set of 287 HapMap samples and the set of 41 SNPs, the train-
ing data had in total 807 genotype cases (among which 519 genotypes were
from HapMap Coriell samples and 288 genotypes were from other Coriell
samples) and the test data had in total 11,248 genotype cases (among which
163 had no validated genotypes from HapMap for comparison). For the
set of 270 HapMap DNA samples, applying a 0.65 threshold improved the
concordance rate (0.31% miss-classification rate) with a reduced call rate of
97.30%. We further checked the performance of the same data set apply-
ing a stringent threshold of 0.75, which gave 99.91% concordance (0.06%
miss-classification rate) for a reduced call rate of 94.91%. Applying differ-
ent level of thresholds, we can control the call rates and, given the validated
genotype set, we can also check the performance level by calculating the
miss-classification rates. The underlying supposition is that, with reduced
call rate, accuracy should increase successively until it reaches its maximum
limit. For the improved 50-plex PCR chemistry, we were able to achieve
a high concordance rate (99.89% using all four classifiers) with 100% call
rate (see Table 3.3). If we apply a 0.65 threshold to the set of 50-plex PCR
HapMap samples, then the automated call rate reduced to 99.18%, leaving
only 16 non calls (below threshold value) to be verified manually using SNP
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Table 3.3: 270 HapMap samples on the subset of 41 SNPs

LDA (0) LDA (0.65) LDA (0.75)
Classifiers Call.rate Error Call.rate Error Call.rate Error
All 100 0.8 97.30 0.31 94.86 0.06
APEX 100 1.58 94.52 0.44 92.37 0.42
ASO 100 1.83 95.35 0.69 93.08 0.60
LEFT 100 1.57 94.65 0.46 92.68 0.40
RIGHT 100 2.49 94.48 0.82 92.57 0.69
APEX.L 100 5.16 97.42 4.02 95.85 3.41
APEX.R 100 4.84 98.66 4.4 97.59 4.05
ASO.L 100 4.30 97.53 3.65 96.41 3.37
ASO.R 100 5.05 97.58 4.03 95.57 3.34

Table 3.4: 50-plex HapMap samples on 50 SNPs using smaller training set
including three negative control samples

LDA (0) LDA (0.65)
Classifiers Call.rate Error Call.rate Error
All 100 0.12* 99.26 0.12*
APEX 100 0.18 97.28 0.12*
ASO 99.50 1.42 96.33 0.72
LEFT 99.51 0.96 95.92 0.30
RIGHT 99.67 0.24 97.93 0.12*
APEX.L 99.37 2.52 98.27 2.04
APEX.R 99.72 1.98 96.88 1.38
ASO.L 99.32 2.40 98.66 2.10
ASO.R 99.28 1.38 97.50 0.96
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Table 3.5: 50-plex HapMap samples on 50 SNPs using minimal training set
including three negative control samples

LDA (0) LDA (0.65)
Classifiers Call.rate Error Call.rate Error
All 99.61 0.10* 96.96 0.10
APEX 99.02 0.70 93.87 0.10
ASO 98.57 4.80 87.1 1.00
LEFT 98.67 3.20 91.54 0.85
RIGHT 98.39 1.05 91.28 0.25
APEX.L 98.93 3.60 98.18 3.35
APEX.R 98.77 1.95 96.88 1.35
ASO.L 98.92 5.85 95.84 5.35
ASO.R 98.34 5.20 95.30 4.90

Chart (all of which were correct).1

Therefore, we have determined that reliance on any single probe type
alone [i.e.: APEX Left probe; APEX Right probe; 2 x ASO-APEX Left
probes (one for each allele); 2 x ASO-APEX Right probes (one for each
allele)] resulted neither in as high an accuracy of genotyping nor in as high
a call rate, compared to the dynamic use of multiple probes.

We were interested in further study of the two discrepant genotype cases,
since both had previously been concordant with HapMap in the 7reaction-
multiplex PCR data set, and both showed high quality, unambiguous SNP
Charts in the 50plex PCR data set. A third genotype case (concordant with
HapMap by manual calling and simple LDA, but with a low quality score of
0.4876) was also discrepant when called by MACGT. We re-amplified these
three individual SNP loci from their respective Coriell DNA samples, using
the original PCR primers (Additional Table 1 online), and sequenced each
amplicon from both ends. The two discrepant genotypes were: 1. DNA
sample 192 (NA18502) at SNP rs3776720 50plex genotype GG / HapMap
& 7reaction-multiplex genotype GA; 2. DNA sample 101 (NA18621) at SNP
rs12472674 50plex genotype CC / HapMap & 7reaction-multiplex genotype
CT. The third genotype case (concordant with HapMap by manual calling

1*The only two discrepancies occurred due to the presence of hidden SNPs within the
PCR primer sites. Otherwise, manual inspection of the data corresponding to those two
cases was completely agreeable with the predicted genotypes by the automated genotype
calling algorithm.
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and simple LDA, but with a low quality score of 0.4876) was also discrepant
when called by MACGT (DNA sample 228 (NA19210) at SNP rs4739199
50plex genotype (MACGT) TT / HapMap, 7reactionmultiplex, and 50plex
(manual call & LDA) genotype CT).

As expected, we identified additional polymorphic sites that coincided
with the positions delimited by the PCR primer sequences used for the 50-
plex reaction. One of the sites was identified as an existing SNP (rs6871885).
To our knowledge, the other two sites represent genetic variants not pre-
viously reported. For each of these cases, it appears that the sequence
variation within the PCR primer site has caused allelic drop-out, result-
ing in homozygous genotype calls for the two discrepant cases, and a poor
quality heterozygous genotype call for the third case (partial allelic drop-
out). Specifically, for discrepant genotype case 1 (Coriell NA18502 at SNP
rs3776720), we found a neighbouring SNP (T/A) which is located at the
3’ end of the anti-sense PCR primer site (5

′
CGA TGT AGG TGA CAC

TAG TAT TGC AGG CAG ACG TGA3′ - Additional Table 4 online) - this
polymorphic site (30 bp downstream of rs3776720) is reported in dbSNP as
rs6871885, with the A base (sense strand) being described as a rare allele
(0.083) in sub-Saharan African populations only (Coriell NA18502 is indeed
a sub-Saharan African, Yoruba, and is heterozygote for this SNP).

For discrepant genotype case 2 (Coriell NA18621 at SNP rs12472674),
we found a sequence variant (G/A) 52 bp downstream of SNP rs12472674,
located within the anti-sense PCR primer site (5

′
CGA TGT AGG TGA

CAC TAG CTC AAT ATG TTA CCA CAA3′ - Additional Table 4 online)
- this variant (heterozygous in Coriell NA18621 - Asian, Han Chinese) has
not been previously reported in dbSNP and may represent a novel poly-
morphism. For the low quality genotype case 3 (Coriell NA19210 at SNP
rs4739199), we found a sequence variant (G/A) 45 bp downstream of SNP
rs4739199, located within the anti-sense PCR primer site (5

′
CGA TGT AGG

TGA CAC TAG TCC ACT TCA TTA GGT GAA3′ - Additional Table 4 on-
line) - this variant (heterozygous in Coriell NA19210 - sub-Saharan African,
Yoruba) has also not been previously reported in dbSNP and may represent
a novel polymorphism.

Whilst more stringent due-diligence at the 50-plex PCR primer design
stage would have alerted us to one of these SNPs (rs6871885), the evidence
that we have identified two hitherto unreported SNPs provides a cautionary
tale (Quinlan and Marth, 2007). Elimination of such ‘sporadic’ genotyping
errors due to novel or unaccounted-for SNPs, as well as due to structural
variation in the genome (e.g., copy number variants - CNVs) (Feuk et al.,
2006), will need to be addressed in future clinical diagnostic genotyping
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technologies, and possibly even in research discovery studies where any spo-
radic errors due to hidden SNPs will not cause significant departure from
Hardy-Weinberg equilibrium (Lahermo et al., 2006). In preliminary studies
we have been able to correct all three discrepancies previously described,
using a redundant 50-plex PCR assay that includes two primer pairs for
each SNP loci (data not shown).

Finally, due to the low amount (5 ng) of genomic DNA required for the
50-plex PCR (compared to 25 ng for each of the 7-reaction-multiplex PCRs),
we have attempted APEX genotyping using our improved methodology on
DNA derived from plasma samples. A pilot project was performed on five
plasma samples (stored for up to ten years). Comparing the plasma-derived
genotyping data with data obtained from high quality genomic DNA for the
same five individuals, the call rate was >99% (100% for high quality DNA)
and the concordance was >99%, which opens up the possibility of robust
and accurate genotyping of clinical plasma samples without any need for
prior whole genome amplification.

3.3 Conclusion

We report significant improvements to arrayed primer extension (APEX)
genotyping methodology that may show utility in future point-of-care ge-
netic diagnostic applications. Our methods have been validated against
industry-leading technologies in a blinded experiment based on Coriell DNA
samples and SNP genotype data from the International HapMap Project.
Modifications to PCR amplification design have allowed robust 50-plex geno-
typing from as little as 5 ng of DNA, with 100% call rate and >99.9% ac-
curacy.

3.4 Materials and Methods

3.4.1 DNA Samples and Validated Genotypes

A set of 287 DNA samples were obtained from McGill University and Gnome
Qubec Innovation Centre (one of the HapMap Project’s genotyping centers).
This set comprised 270 DNA samples from the Coriell Institute for Medical
Research (http://coriell.org/) plus hidden duplicates and negative controls,
all of which our laboratory was blinded to. We were given access to the
validated HapMap genotyping data for these samples only after we had
finished the main genotyping experiment (287 samples / 50 SNPs), and
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after we had sent a file of our genotyping results to McGill University.

3.4.2 HapMap APEX Chip - Probe Design and Printing

Six oligonucleotide probes (25 mers) for each SNP were designed using Bio-
data algorithms (Biodata Ltd., Tartu, Estonia - www.biodata.ee) (Addi-
tional Table 1 online): two classical APEX probes (one probe per DNA
strand), plus four allele-specific (ASO) APEX probes (two probes per strand)
which include the actual SNP site at the 3’ end of the probe. Allele-specific
single base extension of these ASO-APEX probes during the reaction is con-
tingent on the presence of the actual complementary base at the SNP site
in the sample template DNA (Pastinen et al. (2000) and Gemignani et al.
(2002)). Probes were synthesized at a 25 nmol scale and aliquotted into
96-well plates by Integrated DNA Technologies (Coralville, IA, USA). We
diluted each probe at 200 pmol/µL as stock concentration in pure water (re-
sistivity of 18.2 MΩ-cm and total organic content of less than five parts per
billion) using a Biomek FX robot (Beckman Coulter, Fullerton, CA, USA).

Arrays were generously printed for us at the Microarray Facility of
The Prostate Centre at Vancouver General Hospital (University of British
Columbia, Vancouver, BC, Canada). Briefly, the APEX and ASO-APEX
probe oligonucleotides (50 pmol/µL in 150 mM sodium phosphate print-
ing buffer, pH 8.5) were printed to specific grid positions on CodeLinkTM

Activated Microarray Slides (Amersham Biosciences/GE Healthcare, Pis-
cataway, NJ, USA) following the manufacturer’s recommended protocols.
The 5’ end of each oligonucleotide probe was amino-modified during syn-
thesis, allowing its covalent attachment to the slide’s pre-applied surface
chemistry. Each grid consisted of five spot replicates of each of the six
probes per SNP, as well as multiple buffer-only spots and positive control
normalization spots. The latter comprised an oligonucleotide probe based
on a plantspecific gene sequence that will extend by a single N base due
to the presence of an exogenous complementary template oligonucleotide
in the APEX reaction mixture (Npg1) (Tebbutt et al., 2004). Each Npg1
positive control probe was spotted 40 times onto the grid, at regular phys-
ical intervals. Each one of the six probes for each SNP was printed at a
reasonably wide distance apart from any other probe for the same SNP
within the grid (as were their replicate spots). This enabled a useful de-
gree of robustness in the system, especially helpful in cases of high local
background and hybridization problems (Tebbutt et al., 2004). Each spot
was approximately 110 µm in diameter. Three replicated grids were printed
on each slide, enabling three samples to be genotyped per slide. Follow-
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ing the printing of the arrays, the slides were incubated overnight at room
temperature at 75% relative humidity (saturated NaCl chamber) to drive
the covalent coupling reaction between the probes’ 5’ amino group and the
CodeLinkTM slide chemistry to completion. Blocking of the arrays was in
50 mM ethanolamine, 0.1 M Tris, pH 9.0, 0.1% SDS, at 50◦C for 20 min,
according to the manufacturer’s protocol.

3.4.3 PCR Amplification and Fragmentation

For the first experiment, PCR primers were designed to amplify the regions
across the 50 SNPs, based on a melting temperature (Tm) of 62◦C ± 3◦C
(at 20 mM monovalent salt concentration in PCR buffer Additional Ta-
ble 1 online). All primers were computationally tested against the human
genome and found to amplify single product (Biodata Ltd., Tartu, Estonia
www.biodata.ee). Multiplex PCR amplifications were performed on the

Coriell genomic DNA samples (plus several negative PCR control samples
that contained no genomic DNA). The multiplex PCR group had a unique
combination of the primer pairs among 7 reactions (Additional Table 2 on-
line). Each PCR was performed in a total volume of 15 µL, containing 1.5
µL 10 × PCR buffer [Tris-Cl, (NH4)2SO4, 15 mM MgCl2, pH 8.7], 1.5 mM
MgCl2, 200 µM dNTPs without dTTP, 160 µM dTTP, 40 µM dUTP, 0.75 U
HotStar Taq DNA polymerase (5 U/µL; Qiagen, Valencia, CA, USA), 1 µL
10 µM primer mixtures (each primer), and 25 ng genomic DNA. Incorpora-
tion of the dUTP allowed for the amplified DNA to be enzymatically sheared
by uracil N-glycosylase (UNG, InterScience, Troy, NY, USA) to produce a
DNA size of approximately 50100 bases, optimal for hybridization to the
oligonucleotides on the microarray (see below). Genomic DNA and PCR
master mixture were transferred into ABI 384well reaction plates (Applied
Biosystems, Foster City, CA, USA) using a Biomek FX robot (Beckman
Coulter, USA). PCR reactions were performed in a GeneAmp PCR System
9700 ThermoCycler (Applied Biosystems, USA). PCRs were initiated by a
15 min polymerase activation step at 95◦C and completed by a final 10 min
extension step at 72◦C. The PCR cycles were as follows: 35 cycles of 30 s
denaturation at 95◦C, 30 s annealing at 58◦C, and 50 s extension at 72◦C.

For the second experiment, in order to increase the efficiency of PCR,
we designed 50x 5’ linker PCR primer pairs (Additional Table 4 online)
based on a Tm of 65◦C ± 7◦C and performed 50-plex PCR in one sin-
gle reaction per sample. Each new PCR primer had a common linker se-
quence designed at its 5’ end (5

′
TACGACTCACTTAGGGAG3′ for each of

the left hand PCR primers / 5′CGATGTAGGTGACACTAG3′ for each of
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the right hand PCR primers). The 3’ ends of the primers were chosen to
have non-complementary bases with respect to each other (i.e., all primers
ended with on or two A bases), in order to reduce the probability of primer
interactions and primer-dimer formation. All primers were computation-
ally tested against the human genome and found to amplify single product.
The new amplicon sequences were located within the amplicon sequences
from the original primer pairs. The multiplex PCR was carried out in a
25 µL reaction containing 20 nM (final) of each primer plus 20 nM of left
and right linker-only primers (left linker: 5′TACGACTCACTTAGGGAG3′

/ right linker: 5′CGATGTAGGTGACACTAG3′), 200 µM dNTPs without
dTTP, 160 µM dTTP, 40 µM dUTP, 6 units of HotStar Taq DNA poly-
merase (5 U/µL; Qiagen, USA), 1.5 mM MgCl2 in 1x PCR reaction buffer
[100 mM Tris-HCl, 50 mM KCl, 100 µg/mL Gelatin, pH 8.3] with 5 ng of
genomic DNA. PCR was performed using a MJR PTC 200 ThermoCycler
(MJ Research, Waltham, MA, USA). PCR was initiated by a 15 min poly-
merase activation step at 95◦C and completed by a final 3 min extension
step at 72◦C. The reaction procedure consisted of 40 cycles of denaturation
at 95◦C for 40 s, primer annealing at 55◦C for 2 min and one ramping-up
step from 55◦C to 70◦C for 2.5 min (0.1◦C/s) (Wang et al., 2005).

Aliquots of PCR products were visualized with Gel Red fluorescent nu-
cleic acid dye (Biotium, Hayward, CA, USA) staining under ultraviolet
(UV) illumination on a 2% agarose gel, following electrophoresis in 0.5x
Tris-borate EDTA (TBE) buffer. The 7 subgroup multiplex PCR products
were pooled for each individual Coriell sample and precipitated by adding
2.5 volumes of ice-cold 100% ethanol and 0.25 volumes of 10 M ammonium
acetate solution. After precipitation at -20◦C overnight, the mixture was
centrifuged at 20,800 g at 4◦C for 20 min. The supernatant was carefully
removed, and the DNA pellet was washed with 400 µL of ice-cold 70%
ethanol. The DNA pellet was then dissolved in 15 µL pure water. 10 µL
of this DNA (or 10 µL of unpurified 50plex PCR products; amplified to
a concentration of approximately 300 400 ng/µL.) were then fragmented
by 1 UuracilNglycosylase (UNG; Inter Science Inc., Troy, NY, USA) and
unincorporated dNTPs were simultaneously inactivated by digestion with 1
U shrimp alkaline phosphatase (SAP; Amersham Biosciences / GE Health-
care, USA) for 15 min at 37◦C, in a 20 µL reaction mixture containing 2 µL
10 digestion buffer [0.5 M Tris-HCl, 0.2 M (HN4)2SO4, pH9.0], followed by
enzyme inactivation for 10 min at 95◦C.
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3.4.4 Microarray-based Minisequencing: Arrayed Primer
Extension (APEX)

The APEX reaction was performed in a total volume of 40 µL by the
addition of 17 µL fragmented DNA template, 1 mL of 2 pmol/µL Npg1-
positive control template oligonucleotide, 1.25 µM of each fluorescently la-
beled dideoxynucleotide triphosphate (Texas Red-ddATP, Cy3-ddCTP, Cy5-
ddGTP, R110-ddUTP; Perkin Elmer Life Sciences, Boston, MA, USA), 5
U Thermo SequenaseTM DNA polymerase (Amersham Biosciences / GE
Healthcare, USA) diluted in its dilution buffer, 2 Thermo Sequenase reac-
tion buffer [10, 260 mM Tris-HCl, 65 mM MgCl2, pH 9.5]. The reaction
mixture was applied to the grid of APEX and ASO-APEX probes previ-
ously printed on the CodeLink slide that had been washed two times in
95◦C pure water and placed on a Thermo Hybaid HyPro20 incubation plate
(Thermo Electron, Waltham, MA, USA) set at 58◦C. The reaction mixture
was covered with a small piece of ParafilmTM , and the APEX reaction al-
lowed to proceed at 58◦C with agitation (setting 1) for 20 min. Following
the incubation period, slides were washed with 95◦C water to remove the
template DNA, enzyme, and excess ddNTPs. Further washing in 0.3% Al-
conox (Alconox Inc., White Plains, NY, USA) and 95◦C pure water ensured
low background on the array images.

3.4.5 DNA Sequencing

As described in the main paper, we directly sequenced three SNP loci in
three independent samples: 1. sample 192 (NA18502) at SNP rs3776720;
2. sample 101 (NA18621) at SNP rs12472674; 3. sample 228 (NA19210)
at SNP rs4739199. We performed three single-plex PCR reactions using
primer pairs from the first experimental design and methods (Additional Ta-
ble 1 online) to obtain the DNA fragments including the SNP sites on these
three Coriell DNA samples. PCR primers pairs used were: 1. rs3776720
sense 5′GGC CAA GGA AAA GAA ATG AAT CTG CT3′ , anti-sense
5′AAC TTT AGT GCA GGA TTT GCC ATC CA3′ - PCR amplicon size
of 389 bp; 2. rs12472674 sense 5′TAA AAT CCA ATC AGG CCA ACT
GTT CA3′ , anti-sense 5′TCA ATG CCA TTA TAT GTG CCA GCC A3′

- PCR amplicon size of 388 bp; 3. rs4739199 sense 5′TCC AGC CAG
CAA AAG ATC CTC AAA3′ , anti-sense 5′TCA AGC ACA TGT TAC
CAG TTT CCC AA3′ - PCR amplicon size of 587 bp. PCR products
were purified using a QIAquick PCR Purification Kit (Qiagen, Valencia,
CA, USA) according to the manufacture’s instructions. DNA sequenc-
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ing reactions were performed by the Nucleic Acid Protein Service Unit
(http://www.michaelsmith.ubc.ca/services/NAPS/) at the University of
British Columbia (Vancouver, BC, Canada). For each amplicon, sense and
anti-sense PCR primers were used as sequencing primers.

3.4.6 Microarray Imaging and Spot Intensity Calculation

Slide microarrays were imaged using an arrayWoRx e Auto Biochip Reader
(Applied Precision, LLC, Issaquah, WA, USA), fitted with the following
filter sets: 1. A488 - Ex. 480/15x - Em. 530/40 (R110 dye); 2. Cy3
(narrowband) - Ex. 546/11 - Em. HQ570/10m (Cy3); 3. Texas Red - Ex.
602/13 - Em. 631/23 (Texas Red); 4. Cy5 - Ex. 635/20 - Em. 685/40 (Cy5)
(Chroma Technology,Rockingham, VT, USA). Exposure times for each dye
were set up to give approximately 60-70% pixel saturation for selected Npg1
positive control probe spots. Resolution of the imager was set to 10 µm.
Four 16-bit TIFF files for each array were obtained (one from each channel)
and these were imported into SNP Chart, a data management and visual-
ization tool for array-based genotyping by primer extension from multiple
probes (http://www.snpchart.ca) (Tebbutt et al., 2005). This software gen-
erates visual patterns of spot intensity values, from multiple channels across
a multiple probe set specific for a given SNP, allowing easy calling of the
genotype. All the images were gridded in SNP Chart by manually selecting
four pre-defined spots that, combined with knowledge of the layout of the
grid, allows SNP Chart to locate every spot (Tebbutt et al., 2005). Spot seg-
mentation and background subtraction were based on hybrid segmentation
algorithms previously published by our laboratory (Abbaspour et al. (2006)
and Abbaspour, Abugharbieh, Podder, and Tebbutt (Abbaspour et al.)).
Spot intensity values were normalized by setting the 40 Npg1 positive con-
trol spots, widely distributed across each array grid, to an average value
of 20,000 units per channel, with the exported normalized intensity value
calculated from the scale factor x median signal) (Tebbutt et al., 2006).

3.4.7 Genotyping - Manual Calling

Manual genotype calling within SNP Chart was carried out as previously
described (Tebbutt et al. (2004), Tebbutt et al. (2005) and Tebbutt et al.
(2006)).
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3.4.8 Genotyping - Automated Calling using MACGT

The training set for MACGT (multi-dimensional automated clustering geno-
typing tool) (Walley et al., 2006) was selected by manually inspecting SNP
Charts for each of the SNPs across some of the 287 samples. For the 50
SNPs, up to ten high-quality charts were chosen as ‘prototypes’ (Tebbutt
et al., 2005) for each genotype. All prototype data were exported from
SNP Chart into a format readable by MACGT. MACGT was run on just
the training data, and the clusters for each SNP were manually inspected
to ensure there where no errors in the training set. Genotyping was per-
formed by MACGT using the parameters NORMALIZE GROUP OF 4=1,
GROUP OF 4 MEAN CUTOFF=10,
PATCH GROUPS OF 4=1, DROP NNS=1. A ‘fit’ statistical cut-off of
0.001 was used to identify poor quality genotypes as non-calls (NNs) (Walley
et al., 2006). Any SNP or sample with a high rate of NNs was subject to
further inspection. We identified nine SNPs that the PCR assay performed
poorly on and which MACGT could not confidently score, although manual
inspection of SNP Charts did show that the assays were somewhat success-
ful, albeit non-reproducibly. The final training set for the 41 SNPs was made
up of 519 genotypes (Additional Table 3 online). All NNs were inspected
within SNP Chart and manually called if possible. The final genotypes from
MACGT and from those manually called were combined, and compared to
the validated genotypes from HapMap using a Microsoft Excel macro (Ad-
ditional Table 3 online).

3.4.9 Genotyping - Automated Calling using Simple LDA
with Dynamic Variable Selection

Detailed descriptions of the algorithms used in simple linear discriminant
analysis (LDA) with dynamic variable selection have previously been pub-
lished by our laboratory (Podder et al., 2006). A brief descriptive example
follows, using the data structure for SNP rs12466929 and DNA sample 101
(Coriell NA18621 - genotype AA - Additional Table 5 online).

Ideally, for variable construction, each genotype call could be based on
just one of the four sets of probes: (1) APEX LEFT; (2) APEX RIGHT; (3)
ASO 1LEFT and ASO 2LEFT; and (4) ASO 1RIGHT and ASO 2RIGHT
(Additional Table 5 online). Considering the underlying chemistry, we have
developed four sets of classifiers, named: APEX.L, APEX.R, ASO.L and
ASO.R. Each of these classifiers consists of a pair of explanatory variables,
generically denoted by X and Y, corresponding to two candidate alleles in
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the SNP position (Additional Table 6 online). In Additional Table 5 online,
for example, X and Y correspond to the A and G alleles, respectively. Since
there are five realizations (replicates) for each of the two entries in each
classifier, we summarized the information for each allele, by taking a robust
average: median of the relevant signals from five spots, for each of the
classifiers. From the example data in Additional Table 5 online, the values
of the variables for the classifier APEX.L are
APEX.XL = median (1394, 1148, 597, 1106, 1504) = 1148, and
APEX.YL = median (29, 27, 43, 27, 32) = 29, and so on, as summarized in
Additional Table 6 online. In our subsequent analyses, we have considered
different combinations of the above mentioned classifiers.

Our automated genotype calling algorithm is based on the simple linear
discriminant analysis (LDA), using dynamic variable selection as a special
criteria for various classifiers related to multiple probes. LDA is a super-
vised learning technique which requires a valid training set in order to build
the classification (genotyping) model for each SNP. For the complete set
of 287 HapMap samples, our dynamic variable LDA-based genotype calling
algorithm used the same training set as used by MACGT above (i.e., 519
genotypes across the 41 SNPs - Additional Table 3 online) and predicted
the genotypes for the remainder of the samples.

For LDA analysis of the 50-plex PCR chemistry, performed on a subset
of 50 HapMap samples which were chosen randomly out of the original 287
samples, we selected prototypes to build a new training set using MACGT
clusters, verifying the chosen cases with SNP Chart. We considered two
different training sets, one with a small number of prototypes (at most 3
to 4 prototypes in each class) and the other with a minimal number of
prototypes (at most 2 prototypes in each class) for each SNP. The two
different training sets yielded different performances for the respective test
data sets (see Table 3.4, 3.5).

For automated genotype calling, we started our analysis by fitting the
simple LDA-based genotype model using each classifier separately, and then
comparing the predicted genotypes with the validated genotypes. Subse-
quently, we applied our dynamic-variable LDA-based genotyping model on
different combinations of the four classifiers.

For automated genotype calling, we followed the same steps as described
in Podder et al. (2006).
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Chapter 4

Robust Dynamic Variable
Selection

4.1 Introduction

4.1.1 Genetics Background

The success of the Human Genome Project and the International HapMap
Project is inspiring much research on the effects of genes on various complex
diseases, e.g., asthma-allergy, heart disease and sepsis. Genetic variability
has been a primary focus for many of these studies. SNPs are the most
abundant form (90%) of genetic variability, and are defined as DNA sequence
variations that occur when a single base (A, C, G or T) in the genome
sequence is altered. Different combinations of SNPs in single or multiple
genes are partly responsible for disease susceptibility, the variability in how
individuals respond to illness and to medical therapy, and for whether they
develop adverse drug responses.

The determination of a given person’s base sequence at a specific SNP
site is called genotyping. Many medium to high throughput genotyping tech-
niques have been developed and tested on various populations. Affymetrix
GeneChips (Kennedy et al., 2003) and Illumina’s bead-array system (Oliphant
et al. (2002), Fan et al. (2006)) are regarded as the leading technologies in
this field and are optimally designed to analyze thousands if not hundreds
of thousands of SNPs simultaneously.

One challenge of the Human Genome Project is how to transfer research-
based genetic knowledge to the benefit of society at large. In the field of
biomedical research this translates into how to apply the knowledge obtained
from SNP-related research to medical and clinical settings. Successful trans-
lation requires technological advancement and real-time innovation. In clini-

A version of this chapter will be submitted for publication. Authors: Mohua Podder,
William J. Welch, Ruben H. Zamar and Scott J. Tebbutt.
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4.1. Introduction

cal settings, a genotyping technology should be designed to classify hundreds
of SNPs simultaneously for a patient in a rapid, accurate, robust and cost
effective manner. The above mentioned technologies are mostly suitable for
pure research discovery; they are not optimally designed for rapid genetic
diagnosis of an individual patient. For example, a single intensive care unit
(ICU) patient with severe sepsis might require rapid genetic diagnosis within
one hour in order to receive optimal treatment based on his or her underly-
ing genetic variability. Such diagnostics cannot be provided through existing
research-based technologies, since their underlying chemistries require more
than 24 hours for completion.

The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary
Research is a translational research unit, with scientists and medical practi-
tioners working in the field of gene-environment interactions and their com-
bined effects on various complex diseases involving heart, lung and blood
vessels. Tebbutt’s laboratory is engaged in developing a microarray geno-
typing assay based on arrayed primer extension, abbreviated APEX (Shu-
maker et al. (1996); Kurg et al. (2000); Pastinen et al. (2000)). APEX
is a mini-sequencing assay where the array chemistry takes only fifteen to
twenty minutes to complete, allowing rapid genotyping of hundreds of SNPs
simultaneously for an individual patient.

4.1.2 Redundant Microarray Genotyping Platform using
APEX Probe Chemistry

Tebbut’s genotyping array chip design is based on a robust and redundant
probe chemistry platform. The technology involves multiple probes: clas-
sical APEX probes and allele-specific APEX (ASO) probes for both DNA
strands (generically denoted as left and right strand) corresponding to a
single SNP (Tebbutt et al., 2004). Each probe has several replicates (two
to five) and each probe-replicate in this system generates signals for all four
channels (A, C, G, and T). According to the underlying chemistry, some of
these signals are considered as foreground signals and some are considered
as background signals. For each of the two DNA strands, each individual
probe provides signals corresponding to the two possible alleles (generically
denoted as X and Y allele) at a specific SNP site.

For a specific SNP, the multiple probes generate four separate pairs of
explanatory variables based on the expected foreground signals: (ASO.XL,
ASO.YL); (ASO.XR, ASO.YR); (APEX.XL, APEX.YL); and (APEX.XR,
APEX.YR). Each set has two signals, corresponding to the X and Y alle-
les, respectively. The four sets are all combinations of APEX versus ASO
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chemistries and left versus right strands. Details may be found in Podder
et al. (2006). We will call the four sets of signals ASO.L, ASO.R, APEX.L
and APEX.R, respectively. The main objective of this study is to classify
the SNP as one of the three genotype classes, XX, YY and XY, based on
the these four independent probe sets (pairs of explanatory variables). This
can be done manually for each SNP and individual patient using a graphi-
cal display called SNP Chart (Tebbutt et al., 2005). However, in any SNP
related genetic study, hundreds of SNPs are analyzed simultaneously, which
necessitates automated genotype calling. Such an algorithm should be sim-
ple, fast, and robust to poor values of the explanatory variables. We will
build multiple classifiers in this article, each based on one of the ASO.L,
ASO.R, APEX.L or APEX.R variable sets.

To build and test models for this APEX-based microarray genotyping
platform, we have two independent data sets: 32 Coriell DNA samples
(http://coriell.umdnj.edu/); and 270 SIRS (systematic inflammatory re-
sponse syndrome) DNA samples from the ICU of St. Paul’s hospital. These
two sets will be called Coriell and SIRS, respectively. We will use SIRS as
training data and Coriell as test data. For each sample (i.e., patient), there
are about 100 SNPs on the microarray chip, which are genotyped simulta-
neously.

Ideally, any one of the probe sets should provide information to genotype
a particular SNP and sample. In practice, however, SNP by SNP and sample
by sample, a probe set may fail. In other words, some probe set(s) may
provide useful information for a particular SNP and sample, whereas the
same probe(s) might give misleading information for another SNP or sample.
This complexity will be clearer if we examine the data for a few critical SNPs.

SNP rs1360590 and subject 12. Figure 4.1 shows data for SNP
rs1360590. The two alleles generically called X and Y are A and G, here,
and the known AA, AG, or GG genotypes are shown by different symbols
in the four panels corresponding to the four probe sets. Sample 12 is known
to have genotype AA for this SNP, but suppose we treat sample 12 as an
unknown test case to be classified based on the remaining samples. For
the ASO.L probe set, data for the three genotypes overlap considerably and
there are many outliers. ASO.L does not provide good information for this
SNP in general. Similar comments may be made about the other three probe
sets here, though the data are more informative in general. For classifying
sample 12 specifically, we see that the ASO.R and APEX.L probe sets are
not informative as this sample falls between the AA and AG clusters evident.
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Figure 4.1: Data from the four probe sets are shown in the four panels for
SNP rs1360590 (alleles A/G). The AA, AG, and GG genotypes are denoted
by circles, triangles, and squares, respectively. Coriell sample 12 is denoted
by ×; its genotype is AA.
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APEX.R is the best behaving probe chemistry here, placing subject 12 well
within the AA data. We next look at a different SNP where the situation is
completely different even for the same sample.

SNP rs1981278 and subject 12. Figure 4.2 shows analogous plots for
classifying subject 12 but for SNP rs1981278. Here the three possible geno-
type classes are CC, CT and TT, and sample 12 is TT. The four probe
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Figure 4.2: Data from the four probe sets are shown in the four panels for
SNP rs1981278 (alleles C/T). The CC, CT, and TT genotypes are denoted
by circles, triangles and squares, respectively. Coriell sample 12 is denoted
by ×; its genotype is TT.

chemistries again give some overlapping clusters and some outliers. Sam-
ple 12 falls on the edge of a wrong class (CT) in the ASO.L, ASO.R, and
APEX.R signal spaces. The APEX.L chemistry works best here, placing
subject 12 in the correct class (TT).
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4.1.3 Implications for Statistical Modeling

The APEX-based genotyping platform is deliberately redundant, anticipat-
ing the occasional failure of one or more probe-set chemistries. Conventional
variable selection would use the training data to select a fixed set of variables
optimal in some sense for a particular classification method from the eight
available in the four probe sets. The resulting classifier would be applied to
all test cases.

From the illustrative examples in Section 4.1.2 it is clear, however, that
variable selection needs to be dynamic to exploit the redundancy in the
probe chemistry. Our approach is to design four SNP-specific classification
models, each based on the variables in one probe set. At the prediction stage,
these base classifiers are combined with weights according to the measures
of confidence for the four chemistries specific to that test sample. Details of
this modeling approach are described in Section 4.2.

The examples in Section 4.1.2 also illustrate that outliers are fairly fre-
quent. Indeed, the anticipation of outliers—from failed chemistries—is the
reason for redundancy in the data. Thus, there is a need for robustness in
statistical modeling, particularly for validity of the measures of confidence
used to combine classifiers.

For the base classifiers in the dynamic ensemble we start with linear
discriminant analysis (LDA). It is straightforward to use robust estimates
of the means and covariances (Croux and Dehon, 2001) required for LDA .
Paradoxically, as we illustrate in Section 4.6.2, training the base classifiers
in a robust way leads to less robustness in assessing the confidence of correct
classification. For this reason, the base LDA classifiers in Section 4.2 are
not trained in a robust way.

For robustness to outliers, it is necessary to apply robust methods at
both the training and prediction stages. In other words, it is essential also to
model the possible presence of outliers in the signals associated with a new
sample when classifying that sample. A mixture model allowing for “good”
and “failed” signal distributions is developed in Section 4.3 for this purpose.
In combination with robust training of the models via robust estimates of
location and scale, the entire training-prediction modeling process is made
resistant to outliers. The mixture model leads to a better estimate of con-
fidence for each base classifier, and hence better weights in the dynamic
ensemble.
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4.1.4 Outline of the article

Section 4.2 introduces the methodology for building a dynamic ensemble of
classifiers. The underlying base classifiers are made robust in Section 4.3
through a mixture model, which allows a “good signal” distribution to be
contaminated by outliers from a failed chemistry. In Section 4.4 we revisit
the examples of Section 4.1.2 to illustrate the dynamic ensemble of classifiers,
in both non-robust and robust forms. Section 4.5 gives results for the two
methods in terms of overall classification accuracy when genotyping the
Coriell samples using the SIRS data for model training. Section 4.6 provides
some insight via simulation into the performance of the ensemble methods,
in particular how robustness at only the training stage may be harmful.
Finally, Section 4.7 makes some concluding remarks.

4.2 Dynamic Ensemble of Models

In Section 4.1.2 we discussed four independent pairs of explanatory vari-
ables. A pair of variables for a particular probe, generically denoted X and
Y , summarize the signal intensities for the two candidate alleles at a particu-
lar SNP position. For each pair of variables and each SNP we apply Fisher’s
linear discriminant analysis (LDA) (Fisher (1936); Hastie et al. (2001), Sec-
tion 4.3). This is implemented in R via the function lda in the library MASS
with the prior class probabilities estimated by the training class frequencies.
The parameters: µc and Σ are estimated here using the class-specific sample
mean vectors and the common sample covariance matrix. In this way, for
each SNP, four base classifiers are available, leading to four sets of posterior
probabilities for any test subject. These probabilities are denoted by P

(i)
c ,

where i = 1, 2, 3, 4 indexes the four base classifiers (1 =ASO.L, 2 =ASO.R,
3 =APEX.L and 4 =APEX.R) and c ∈ C = {XX,XY,YY} indexes the three
possible genotype classes. They are set out in Table 4.1, where, for example,
P

(1)
XX is the posterior probability for the XX genotype using the base classifier

ASO.L.
A single probability for each genotype class, Pc, can now be obtained

as a weighted average of the posterior probabilities P
(1)
c , . . . , P

(4)
c , with the

weights chosen dynamically for each SNP and test subject. These weights
are estimated using individual test sample data. Ideally, the weight assigned
to a base classifier should reflect its degree of “confidence”. A confident base
classifier assigns a large probability to one of the three possible classes and
low probabilities to the other two. Entropy is a measure that captures this
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Table 4.1: Posterior probabilities for the three genotypes from four LDA
classifiers

Classifiers/Classes XX XY YY
LDA(ASO.L) P

(1)
XX P

(1)
XY P

(1)
YY

LDA(ASO.R) P
(2)
XX P

(2)
XY P

(2)
YY

LDA(APEX.L) P
(3)
XX P

(3)
XY P

(3)
YY

LDA(APEX.R) P
(4)
XX P

(4)
XY P

(4)
YY

property, but it has to be changed such that larger entropy leads to smaller
weight (confidence). Hence, we define

Ei = − log
(

1
3

)
−

[
−

∑

c∈C
P (i)

c log(P (i)
c )

]
, (4.1)

where −∑
c∈C P

(i)
c log(P (i)

c ) is the entropy of the probability distribution
P

(i)
c over c ∈ C and − log(1/3) is the corresponding maximum entropy. Note

that Ei in (4.1) is minimized—equal to zero—when P
(i)
XX = P

(i)
XY = P

(i)
Y Y =

1/3, and Ei is maximized—equal to − log (1/3)—when one of the three
probabilities is 1 and the other two are 0.

The weights for the four classifiers are obtained by normalizing the Ei

so that their sum is 1, i.e.,

Wi =
Ei

4∑

i=1

Ei

.

Note that the weights will vary from one test sample to another as they
depend on the sample/SNP specific probabilities in Table 4.1. Finally, for
each c ∈ C,

Pc =
4∑

i=1

WiP
(i)
c .

Two applications of this modeling approach have been reported in Pod-
der et al. (2006); Podder et al. (2008). We would like to mention at this
point that other approaches (e.g., logistic regression, quadratic discriminant
analysis, classification trees or support vector machines) could also be used
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for the base classifier models. We choose LDA because it works well for
the given application, has a simple interpretation, has been widely used in
similar classification problems (Guo et al., 2007), and it is easy to robustify.

4.3 Dynamic Ensembles of Robust Mixture
Models

4.3.1 Robust mixture model

We now present a robustification of the LDA-based classifiers described in
Section 4.2, recognizing that one or more of the redundant chemistries may
fail and produce noninformative outliers. Instead of modeling the signals X
and Y by a bivariate normal distribution (as in LDA) we use the mixture
density

f(x, y|C = c) = (1− λ)gc(x, y) + λh(x, y), (4.2)

where gc is an informative class-specific density and h is a noninformative
(failed-chemistry) density. Specifically, we take gc as N(µc, Σ) and h as
uniform over the data range. The informative and noninformative distribu-
tions are mixed via a user-adjustable weight parameter, λ ∈ (0, 1), which
represents the proportion of times the chemistry is expected to fail. Now,
µc, Σ are global parameters estimated using the training data and λ is a
global parameter specified by the user. We will see that the inclusion of the
noninformative background distribution has the crucial effect of producing
noninformative (high entropy) posterior probabilities whenever the test case
signals (x, y) seem to come from a failed chemistry. In this way, we formally
acknowledge the deliberate redundancy in the chemistry and ultimately get
valid robust genotype probability estimates.

Let (xi, yi) be the intensity signals corresponding to one of the four
chemistries (i = 1, . . . , 4). By Bayes rule, the posterior probability of class
c given by the mixture-model classifier for chemistry i is

P (i)
c = P (C = c|xi, yi) =

pcf(xi, yi|C = c)∑
c′ pc′f(xi, yi|C = c′)

=
pc[(1− λ)gc(xi, yi) + λh(xi, yi)]∑
c′ pc′ [(1− λ)gc′(xi, yi) + λh(xi, yi)]

,(4.3)

where pc is the prior probability of class c estimated from the training data.
For each class c, four posterior probabilities, P

(i)
c for i = 1, . . . , 4, are es-

timated from the four base classifiers. These sets of probabilities will be
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combined dynamically (Section 4.3.2) to give one final probability for each
class.

We note from (4.3) that when (xi, yi) is an outlier with respect to all
classes, gc (xi, yi) is very small for all c and so λ almost cancels. On the other
hand, when (xi, yi) is not an outlier, λ should be small enough so that it does
not unduly affect the posterior probability calculation. The parameter λ can
be estimated using the training data or simply set equal to a small value. In
this article we take λ = 0.1 for the SNP genotyping data application and also
for the simulation study. We have observed (see Figure 4.7 in Section 4.6.2)
that for small values of λ (between 0.005 and 0.15), the overall performance
of the classification model shows little change. Which indicates that our
genotyping model is robust with respect to the small values of lambda.

The remaining model parameters (µc, Σ) are robustly estimated using the
training data. In the first step, the location parameters µc in f(xi, yi|C =
c) in (4.2) are estimated by applying the robust fast minimum covariance
determinant (MCD) estimator proposed by Rousseeuw and Van Driessen
(1999) and implemented in the function covMcd in the R library Robustbase.
In the next step, a common estimate of the dispersion matrix Σ of the three
gc densities (c ∈ {XX,XY,YY}) is obtained by a second application of the
robust MCD estimator after centering the data for each class with respect
to µ̂c from the first step.

4.3.2 Dynamic Ensemble based on Robust Mixture Models

For the test set, posterior probabilities corresponding to all three genotype
classes are calculated for all four base classifiers (see Table 4.2). As before,
the four classifiers are combined using an entropy-based weighting scheme.
If any one of the four redundant chemistries generates signals that appear
to come from the background distribution (h) for a particular test sample,
the corresponding robust classifier will assign roughly equal P

(i)
c to the three

classes and therefore receive small weight in the final probability calculation
for that sample.

We slightly modify our weighting scheme to have better performance
across all SNPs (compared to (4.1)). First, we introduce a new thresh-
old parameter, Q, to disqualify a base classifier if the maximum posterior
probability for the three predicted classes is less than Q. This attempts
to disqualify failed classifiers. Second, we apply the entropy-based weight-
ing scheme to the binary distribution formed by the combination of the
maximum posterior probability and its complement. This has the effect of
lowering the weight of classifiers with maximum probability close to 1/2. In
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Table 4.2: Posterior probabilities for the three genotypes from four mixture
model (MM) classifiers

Classifiers/Classes XX XY YY
MM(ASO.L) P

(1)
XX P

(1)
XY P

(1)
Y Y

MM(ASO.R) P
(2)
XX P

(2)
XY P

(2)
Y Y

MM(APEX.L) P
(3)
XX P

(3)
XY P

(3)
Y Y

MM(APEX.R) P
(4)
XX P

(4)
XY P

(4)
Y Y

summary, the modified weights are defined as follows: For the ith classifier,
let

P (i) = Max(P (i)
XX , P

(i)
XY , P

(i)
Y Y )

and
P̄ (i) = 1− P (i).

Define
E(i) = −[log(

1
2
)− {P (i) log(P (i)) + P̄ (i) log(P̄ (i))}]

and

Ei =
{

E(i) if P (i) > Q,
0 otherwise.

Here Q can be adjusted to maintain the quality of the classification.
As before, the weight for the ith classifiers is defined as

Wi =
Ei∑
i Ei

,

and the overall class probabilities are given by the weighted average over
the four classifiers:

Pc =
4∑

i=1

WiP
(i)
c .

Finally, an object is assigned to the class c with the maximum Pc. A further
threshold can be applied on max(Pc) if we wish to accept a lower call rate
in exchange for a higher accuracy level.
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4.4 Illustrative Examples Revisited

We gain further insight into the working of the robust ensemble of robustified
mixture models (and its potential advantages) by revisiting the two examples
introduced in Section 1.2 and examining the computations leading to the
genotyping of test sample number 12. In this case, we will show that SNP
1360590 is incorrectly genotyped by the dynamic ensemble of LDA classifiers
but correctly classified by the robust ensemble. On the other hand SNP
rs1981278 is incorrectly genotyped by both ensembles. In the latter case,
however, the robust approach has a lower maximum probability and could
be easily thresholded down as a “noninformative” case.

SNP rs1360590 and subject 12 For the SNP 1360590, the mixture
model ensemble places subject 12 in the correct class (AA) after combining
the four classifiers, whereas the non-robust LDA ensemble assigns subject
12 to the wrong class (AG). The results will be clearer if we analyze the raw
posterior probability matrices showing the behavior of the individual base
classifiers as well as the weights assigned to these classifiers.

The posterior probability matrix and the respective weights from the
ensemble of LDA classifiers are given in Table 4.3. From Figure 4.1 it is
seen that the probe data for ASO.L, ASO.R, and APEX.L are not good
for predicting subject 12. Particularly for ASO.R and APEX.L, subject
12 is an outlier, but the ASO.R classifier gives high probability (0.972) to
the wrong class, AG, thus assigning high weight to the misleading classifier.
This causes the final, wrong genotype call (AG) shown in the last row of
Table 4.3.

Table 4.4 gives the posterior probability matrix for the robust ensemble
of mixture models. We can see that the ASO.R and APEX.L classifiers
give roughly equal probability to the three classes and therefore they get
small weights. The good classifier, APEX.R, gets large weight because of
the high probability (0.998) for the correct class (AA). Thus after taking the
weighted average, the ensemble of mixture models assigns the correct class
with a high confidence score 0.919 (last row of Table 4.4).

Moreover, for the good working probe (APEX.R), the robust mixture
model assigns higher posterior probability (0.998) to the right class (Ta-
ble 4.4). Whereas, the non-robust LDA model assigns relatively small pos-
terior probability (0.951) to the right class (Table 4.3). This phenomenon
is actually addressing the point that the robust mixture model works more
efficiently for an individual probe chemistry with good signal for the test
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sample in the presence of several outliers from the training set (see Fig-
ure 4.1). This also indirectly helps to improve the quality of the weights
for the associated classifiers and thus assigning relatively more weight to a
good classifier.

Table 4.3: Posterior probabilities for the three genotypes of SNP rs1360590
from four LDA classifiers

Classifier/Class AA AG GG Weight
LDA(ASO.L) 0.128 0.864 0.008 0.216
LDA(ASO.R) 0.028 0.972 < 0.001 0.412

LDA(APEX.L) 0.579 0.421 < 0.001 0.009
LDA(APEX.R) 0.951 0.049 < 0.001 0.363
LDA(Ensemble) 0.389 0.609 0.002 —

SNP rs1981278 and subject 12 Here we illustrate a situation where
both models make the wrong call. However, the non-robust ensemble pre-
dicts the wrong class with relatively high confidence, whereas the robust
ensemble makes a “don’t know” call, which is reasonable in light of the poor
data in Figure 4.2.

From Figure 4.2, we see that only the data from APEX.L are reliable
for subject 12, indicating the correct class (TT). For the other three probes,
subject 12 falls on the edge of the CT class, and the corresponding LDA
classifiers produce high posterior probabilities for CT (see Table 4.5). Thus,
the ensemble assigns the wrong class (CT) with relatively high confidence
score (.71). On the other hand, the mixture model assigns high but smaller

Table 4.4: Posterior probabilities for the three genotypes for SNP rs1360590
from four robust mixture model classifiers

Classifier/Class AA AG GG Weight
MM(ASO.L) 0.625 0.357 0.018 0.040
MM(ASO.R) 0.304 0.392 0.304 0.030
MM(APEX.L) 0.331 0.341 0.328 0.065
MM(APEX.R) 0.998 0.001 0.001 0.865
MM(Ensemble) 0.919 0.049 0.032 —
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probabilities to the wrong class (CT) for these misleading probes (see Ta-
ble 4.6). Overall, the robust ensemble assigns less weight (.55) to the wrong
CT call (see the last row of Table 4.6).

In summary, if failed chemistries produce outliers, the robust ensemble
of classifiers can discard them. However, even the robust ensemble will
be adversely affected in the (hopefully less likely) case that several failed
chemistries produce signals that fall consistently close to the same wrong
cluster (as compared with the estimated scatter in the training data).

Table 4.5: Posterior probabilities for the three genotypes of SNP rs1981278
from four LDA classifiers

Classifier/Class CC CT TT Weight
LDA(ASO.L) < 0.001 0.938 0.062 0.186
LDA(ASO.R) < 0.001 0.996 0.004 0.268

LDA(APEX.L) < 0.001 0.001 0.999 0.276
LDA(APEX.R) < 0.001 0.997 0.003 0.270
LDA(Ensemble) < 0.001 0.711 0.289 —

4.5 Accuracy and Call Rate Results

For each of the 100 SNPs, we applied the non-robust and robust algorithms
taking the SIRS data as the training set and the Coriell data as the test set.
The true genotypes for both Coriell and SIRS are known, so we can validate
the models against the actual genotypes. We measure the performance of

Table 4.6: Posterior probabilities for the three genotypes for SNP rs1981278
from four robust mixture model classifiers

Classifier/Class CC CT TT Weight
MM(ASO.L) 0.089 0.819 0.092 0.128
MM(ASO.R) 0.013 0.965 0.022 0.316
MM(APEX.L) 0.001 0.002 0.997 0.391
MM(APEX.R) 0.071 0.858 0.071 0.165
MM(Ensemble) 0.027 0.552 0.420 —
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the two models in terms of concordance rate of the predicted and the true
genotypes. Different call rates are obtained by applying a threshold to the
final probability (confidence measure) of the selected class.

The robust mixture model ensemble achieves an overall concordance rate
of 99.44% for 100% call rate (for all 100 SNPs over the test set), whereas
the non-robust LDA model had an overall concordance rate of 99.28% for
100% call rate. Moreover, we can see from Figure 4.3, that using the robust
ensemble we can achieve 99.56% concordance rate in exchange for a very
small reduction in the call rate.
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Figure 4.3: Concordance rate versus call rate for 100 SNPs. The SIRS data
are used for training and the Coriell data for testing.

4.6 Simulation and Numerical Studies

4.6.1 Controlling the Amount of Contamination

We conducted a simulation study to further compare the performance of the
robust and non-robust ensembles. To mimic the motivating SNP classifica-
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tion problem, we consider three classes and four pairs of variables. For each
pair, the class-specific bivariate distributions are normal with means (0,25),
(25,25) and (25,0), respectively, and common covariance matrix

Σ =
(

45 25
25 45

)
.

The training data for each pair of variables and each of the three classes
have 100 observations in total, with 90 coming from the class-specific bivari-
ate normal distribution, and 10 outliers drawn from a uniform distribution
on the square (−40, 100) × (−40, 100). This is repeated independently for
four pairs of explanatory variables. Thus, there are four separate sets of
training samples, each with 3 × 100 labeled observations. The realization
simulated from these contaminated distributions and used for the study is
shown in Figure 4.4, where classes 1, 2, and 3 are denoted by ¤, 4, and ◦,
respectively. Note the resemblance with the real data sets in Figure 4.1
and 4.2.

For the simulation of the test data, we consider the following design. Of
the four pairs of variables, 0, 1, . . . , 4 may be contaminated. Consequently,
we draw test samples of size 200 under each of these five situations. We
fix the probability of contamination at λ = 0.1. We combine the perfor-
mances of these five types of test samples taking a weighted average of the
individual call rates and concordance rates. Here, the performances for
0, 1, . . . , 4 contaminated pairs are weighted using the binomial probabilities
(0.9)4, 4(0.9)3(0.1), . . . , (0.1)4, which assumes the pairs are contaminated or
not independently (an assumption not made elsewhere in this article).

Figure 4.5 shows the results of our simulation study for the two classifi-
cation ensembles. The robust model clearly dominates the non-robust one
in terms of the concordance/call-rate trade-off, especially when there are
two or three contaminated pairs of variables.

4.6.2 Training Versus Prediction Robustness

To gain further insight into the behavior of robust and non-robust clas-
sifiers, we consider a simple one-dimensional, two-class problem, with no
redundancy in the single explanatory variable (x).

Training sets of size 20 are generated for each class: 18 observations from
either N(0, 16) (class 1) or N(60, 16) (class 2), and two observations from the
noninformative U (−60, 120) distribution (see Figure 4.6). At the prediction
stage, we calculate the posterior probability of class 1 for x ∈ (−60, 120).
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Figure 4.4: Simulated training data for four pairs of variables.
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Figure 4.5: Concordance versus call rate trade-off with 1, 2, or 3 contami-
nated pairs of variables for prediction, and the overall average performance.
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Figure 4.6: Good-signal distributions for two classes are denoted by the
normal-density curves. Contaminated realized values of x for the two classes
are shown in the rug plots at the bottom (Class 1) or top (Class 2).
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Three classifiers are considered: LDA, robustified LDA, and a robust
mixture model (Section 4.3.1). The robustified LDA is obtained by replacing
sample means and standard deviations in training the model by sample
medians and MADs (median absolute deviations). That is, robustified LDA
is robust only at the training stage and not at the testing stage.

The posterior probability of class 1 is shown in Figure 4.7. In the top
panel, regular LDA switches from predicting class 1 to predicting class 2 as
x increases from the class 1 mean of 0 to the class 2 mean of 60. Note that
when x = 20, say, which is five standard deviations away from the class 1
mean of 0, the estimated probability of class 1 is still 0.8. Paradoxically,
the curve for the partially robustified LDA exhibits an even less desirable
behavior. It remains very confident about calling class 1 up to x = 30 and
then switches abruptly to a very confident class 2 call for larger values of
x. The explanation is that regular LDA “benefits” from the gross inflation
of the sample variances (214 and 280 in the realization leading to these
results) from outliers, which leads to less confident posterior probabilities.
The lower panel of Figure 4.7 shows that the robust mixture model behaves
well, allotting roughly 50% probability to noninformative test cases (values
of x lying more than three standard deviations from both population means).
Moreover, the posterior probability function does not vary much for values
of λ in the interval (0.005, 0.15).

4.7 Conclusions

Our approach to using multiple redundant sets of explanatory variables is
to train separate classifiers and then dynamically combine their calls test
sample by test sample. Entropy based measures of confidence are used as
weights in the ensemble. The alternative strategy of using all the variables
in one classifier was shown to be inferior by Podder et al (2006).

For data contaminated by outliers at the training and test stages, it is
important to have robustness at both levels. In fact, as illustrated by Figure
4.5, robustifying only at the training level may lead to an even less robust
call when the test sample is also contaminated. Robustness in training is
obtained by replacing sample means and covariances by their robust coun-
terparts (MCD estimates in this paper). Robustness at the testing stage
follows from a mixture model that allows for a fixed (relatively small) frac-
tion of outliers.

The fully robustified approach is shown to outperform the non-robust
method in an extensive simulation study and in a real data example.

81



4.7. Conclusions

−50 0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 LDA based models

x

P
os

te
rio

r 
pr

ob
ab

ili
ty

 o
f c

la
ss

 1

Robust LDA
Non−robust LDA

−50 0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Robust mixture models

x

P
os

te
rio

r 
pr

ob
ab

ili
ty

 o
f c

la
ss

 1

lamda=0.10
lamda=0.15
lamda=0.005

Figure 4.7: Posterior probability of class 1 as a function of the test value x
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Chapter 5

Further Extensions

In this thesis, we have proposed a robust, mixture–model based classifica-
tion approach for SNP genotyping. The proposed method introduces three
main new ideas for addressing the problem of automatic SNP genotyping:
(1) dynamic ensemble of several base classifiers; (2) construction of robust
classifiers at the testing level (mixture model); and (3) robust training of
base classifiers. This concluding chapter discusses some venues for future
research.

• Unknown grouping of the variables. The present APEX based SNP
genotype classification problem can be viewed as a particular case of
a general high dimensional classification problem where the set of ex-
planatory variable contains several naturally grouped subsets (e.g. for
the SNP genotyping problem, each base classifier corresponds to a dif-
ferent probe chemistry). The base classifiers have been constructed
using prior knowledge of the APEX chemistry. A more general appli-
cation can be considered in the absence of such prior knowledge. Given
a set of explanatory variables, it would be interesting to consider differ-
ent ways of grouping these variables to form separate base-classifiers.
The base classifiers would then be robustly trained and dynamically
combined to classify each test sample.

• Using the background data. The APEX microarray platform produces
four-channel microarray data which includes several background chan-
nels, depending on the allelic probe type. This background informa-
tion has not been used in our genotype classification model. A natural
extension is to investigate the utility of the background data.

• Pixel level data. For SNP genotype classification, it would be desir-
able to design a model based on just a single sample and classify the
SNP according to three possible genotypes for a biallelic SNP. More
precisely, in the APEX based genotyping problem, the explanatory
variables have been constructed based on the summary measurements
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of hundreds of pixel intensity values. These pixel values can be incor-
porated directly, e.g. in likelihood based genotype models like Di et al.
(2005) and Nicolae et al. (2006). The incorporation of the pixel-level
data would be straightforward but computationally expensive.

• Unequal mixture parameters and covariances. We have proposed a ro-
bust mixture model, which combines an informative distribution (when
the underlying model is true) and a non-informative distribution (for
the presence of outliers). The mixture parameter λ has been assumed
known and equal for all the classes. Naturally, λ could be assumed
to be unknown and different across classes. In such case, λc should
be estimated using the training data. We have also assumed that
the informative components are bivariate normal distributions with
equal covariances. A straight forward extension would be to assume
class specific covariances instead of the same covariances across classes.
This would lead to a robustified quadratic discriminant model. This
extension would still allow a natural combination of the base classifiers
based on the corresponding posterior probability matrix.

• Unsupervised learning approach. We have considered a supervised
learning setup to take advantage of the available genotyped data. An
obvious next stage of modeling would be to consider a unsupervised
learning approach. In the absence of training data, clustering based
methods could be used to label the data first. These labeled data
would then be used to train the base classifiers. A worthwhile ex-
tension would be to consider a hierarchical Bayes model for the base
classifiers.

• Nonlinear classification. We have used a robustified linear discrimi-
nant function for each base classifier and it has been straightforward to
combine the effects of the classifiers based on the matrix of posterior
probabilities. Instead, other classification models can be tried, e.g.
random forests, support vector machines, neural networks, etc. Com-
bining and robustifying the base classifier models, however, would not
be as straightforward as in the present modeling approach.

• Assessing the variability of the confidence measure. From the clinical
point of view, it would be useful to have a measure of the variability
of the confidence score associated with each genotype call. This can
be achieved in two ways: either using bootstrap or using individual
pixel-level probe data instead of their average (Di et al., 2005).
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