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Abstract

Single nucleotide polymorphisms (SNPs) have been increasingly popular for
a wide range of genetic studies. A high-throughput genotyping technolo-
gies usually involves a statistical genotype calling algorithm. Most calling
algorithms in the literature, using methods such as k-means and mixture-
models, rely on elliptical structures of the genotyping data; they may fail
when the minor allele homozygous cluster is small or absent, or when the
data have extreme tails or linear patterns.

We propose an automatic genotype calling algorithm by further devel-
oping a linear grouping algorithm (Van Aelst et al., 2006). The proposed
algorithm clusters unnormalized data points around lines as against around
centroids. In addition, we associate a quality value, silhouette width, with
each DNA sample and a whole plate as well. This algorithm shows promise
for genotyping data generated from TaqMan technology (Applied Biosys-
tems). A key feature of the proposed algorithm is that it applies to un-
normalized fluorescent signals when the TaqMan SNP assay is used. The
algorithm could also be potentially adapted to other fluorescence-based SNP
genotyping technologies such as Invader Assay.

Motivated by the SNP genotyping problem, we propose a partial likeli-
hood approach to linear clustering which explores potential linear clusters
in a data set. Instead of fully modelling the data, we assume only the signed
orthogonal distance from each data point to a hyperplane is normally dis-
tributed. Its relationships with several existing clustering methods are dis-
cussed. Some existing methods to determine the number of components in a
data set are adapted to this linear clustering setting. Several simulated and
real data sets are analyzed for comparison and illustration purpose. We also
investigate some asymptotic properties of the partial likelihood approach.

A Bayesian version of this methodology is helpful if some clusters are
sparse but there is strong prior information about their approximate loca-
tions or properties. We propose a Bayesian hierarchical approach which is
particularly appropriate for identifying sparse linear clusters. We show that
the sparse cluster in SNP genotyping datasets can be successfully identified
after a careful specification of the prior distributions.
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Chapter 1

Introduction

This thesis work investigates methods to detect linearly shaped clusters in
a dataset. It is motivated by a clustering problem in SNP (single nucleotide
polymorphism) genotyping and much effort of this thesis has been devoted
to automatic genotype calling algorithms in TaqMan SNP genotyping tech-
nology. In this chapter, we introduce the SNP genotyping problem, review
several clustering algorithms used in the rest of the thesis and give an outline
of the thesis.

1.1 SNP genotyping

1.1.1 SNPs and their applications

A single nucleotide polymorphism (SNP, pronounced as “snip”) is a single-
base variation in a genome. The genetic code is specified by the four nu-
cleotide “letters”: A (adenine), C (cytosine), T (thymine) and G (guanine).
There are two complimentary DNA strands. It is sufficient to consider only
one. SNP variation occurs when a single nucleotide, such as an A, is re-
placed by one of the other three letters C, G or T at a particular base of the
target strand. An example of a SNP is the alteration of the DNA segment
AAGGTTA to ATGGTTA, where the second A in the first snippet is re-
placed with a T (www.ncbi.nlm.nih.gov). A SNP variation usually involves
only two nucleotides; the two possible nucleotides are called two SNP alleles.
Throughout we shall use “X” to generically represent the common wild-type
allele and “Y” the variant allele. The DNA sequences of any two individuals
are mostly identical and SNPs are found about every 250 − 350 base pairs
in the human genome (Niu et al., 2002).

Approximately 3 to 5 percent of a person’s DNA sequence codes for
the production of proteins, most SNPs are found outside of these “coding
sequences”. SNPs found within a coding sequence, cSNPs, are of particular
interest to researchers because they are more likely to alter the biological
function of a protein (www.ncbi.nlm.nih.gov). Moreover, the abundance of
SNPs makes them useful markers for genetic association studies that work

1



Chapter 1. Introduction

to localize the genes involved in complex diseases or adverse drug reactions.
The popularity of SNPs is also due to their usual biallelic property which
makes them amenable to automated genotyping. (Ranade et al., 2001).

1.1.2 TaqMan SNP genotyping technology

Determination of the alleles at a single nucleotide polymorphism site is called
genotyping. The nature of large-scale association studies requires rapid, re-
liable and cost-effective SNP genotyping. Various SNP genotyping technolo-
gies have been developed. The choice of a technology depends on whether a
few SNPs are to be typed in many individuals or many different SNPs are
to be examined in a few individuals (Callegaro et al., 2006).

The TaqMan SNP Genotyping Assay (Applied Biosystems) is a widely
used fluorescence-based high-throughput genotyping technology suitable for
the former case. In this method, the region flanking the SNP site of interest
is amplified in the presence of two probes each specific for one or the other
allele. Probes haves a fluor, called “reporter” at one end but do not fluoresce
when free in solution because they have a “quencher” at the other end that
absorbs fluorescence from the reporter. During the amplification in which
many copies of the same sequence are produced, the probe specifically base-
paired with the target is unwound, its reporter liberated from the quencher
and the fluorescence is increased. The presence of two probes, each labelled
with a different fluor, allows the detection of both alleles in a single tube
(De La Vega et al., 2005; Ranade et al., 2001).

In the TaqMan SNP genotyping technology, DNA samples of many in-
dividuals are arranged in a 96- or 384-well plate and they are amplified
simultaneously. For each individual, two quantitative fluorescent signals are
measured at the end of amplification for the two alternative SNP alleles,
indicating their presence or absence. The pair of signals for an individual
forms a point in a scatterplot. Ideally there are four distinct clusters in a
scatterplot. The NTC (no template control) cluster lies in the lower-left cor-
ner, close to the origin, containing negative control cases (a few cases that do
not have DNA samples) and samples that fail to amplify. In the lower-right,
upper-left, and upper-right corners are three clusters presumably containing
samples of wild-type homozygotes, variant homozygotes, and heterozygotes,
respectively.

Genotype calls for individual samples are made by a clustering algorithm
in the propriety Sequence Detection Software (Applied Biosystems). How-
ever, considerable manual intervention of an expert operator is required to
assess the data quality, to set fluorescent signal thresholds and to decide the

2



Chapter 1. Introduction

genotypes, especially when the variant allele Y is rare.
The accuracy of SNP genotype calls is critical to later studies. Even

the slightest amount of genotyping errors can lead to serious consequences
on haplotype analysis, linkage analysis, genetics distance estimation and
background linkage disequilibrium estimation (Kang et al., 2004). For a
brief review of clustering algorithms in fluorescence-based SNP genotyping,
see Chapter 2. One aim of this thesis to develop a reliable automated SNP
genotype calling algorithm in the TaqMan SNP genotyping technology that
involves minimal manual intervention and should also work well even the
variant allele homozygous cluster YY is sparse. We conclude this subsection
by noting that any genotyping calling algorithm proposed in the TaqMan
SNP genotyping technology should be applicable to other fluorescence-based
genotyping method, such as Invader Assay (Mein et al., 2000).

In next section, we review several competing clustering algorithms used
in the rest of the thesis.

1.2 Review of several clustering algorithms

1.2.1 MCLUST: normal mixture model-based clustering

Finite mixture model has long been proposed for clustering problems. See
for example, Banfield and Raftery (1993), Fraley and Raftery (1998), Fraley
and Raftery (2002), MacLachlan and Peel (2000). In this approach, data
are assumed arising from a mixture of probability distributions; each com-
ponent of the mixture is regarded as a cluster. This model-based method
has some advantage over a heuristic approach. First of all, it is somehow
data dependent via a variety of parameter restrictions coupled with a model
selection mechanism, for example in the packages MCLUST (Fraley and AE,
2006) and EMMIX (McLachlan et al., 1999). Second, some early proposed
heuristic clustering criteria, including the most widely used kmeans method,
were later formulated in model frameworks. A statistical model helps people
understand for what data sets a particular clustering algorithm is likely to
work well. Third, within a model framework, many statistical procedures
are readily applicable. For example, maximum likelihood is naturally used
as an optimizing criterion; the estimated probabilities of a data point con-
forming to the components is an appealing measure of uncertainty of the
resulting classification; a component in a mixture model, which has a clear
meaning in the assumed model, can be interpreted as a cluster; the deter-
mination of clustering methods and the number of clusters is then a model
selection problem.

3



Chapter 1. Introduction

MCLUST is a contributed R package for normal mixture modeling and
model-based clustering. It provides a number of functions for normal mix-
ture model-bases clustering, classification likelihood-based hierarchical clus-
tering, normal mixture model-based density estimation and discriminant
analysis etc. In this subsection, we review only the normal mixture model-
based clustering which is relevant to the thesis.

Given observations x1, . . ., xn, MCLUST assumes a normal mixture
model

p(xi|θ) =
K

∑

k=1

pkφk(xi|µk, Σk), i = 1, . . . , n,

where K is the number of components, pk is the mixing proportion, pk > 0,
∑K

k=1 pk = 1, φ(·|µk, Σk) is the multivariate normal density with mean
vector µk and covariance matrix Σk and θ is the collection of all parameters.

Banfield and Raftery (1993) proposed a general framework for geomet-
ric cross-cluster constraint by parameterizing covariance matrices through
eigenvalue decomposition

Σk = λkDkAkD
T
k ,

where Dk is the orthogonal matrix of eigenvectors, Ak is a diagonal matrix
whose elements are proportional to the eigenvalues, and λk is an associated
constant of proportionality. The orientation of principal components of Σk

is determined by Dk, while Ak determines the shape of the density contours;
λk specifies the volume of the corresponding ellipsoid. Characteristics (ori-
entation, shape and volume) of distributions are usually estimated from the
data and can be allowed to vary between clusters or constrained to be the
same for all clusters. This parameterization is very flexible; it includes but
is not restricted to earlier proposals such as equal-volume spherical variance
(Σk = λI) which has a close relationship with the k-means method, constant
variance (Σk = Σ) and the most general unconstrained variance.

The EM algorithm is used for maximum likelihood estimation; details are
omitted. All models corresponding to the above parameterization possibili-
ties are usually tried. Selection of the number K of components/clusters as
well as models is through the Bayesian Information Criterion (BIC), which
relates to the Bayes factor. The BIC has the form

BIC = 2l − log(n)v,

where l is the log-likelihood of the model and v is the number of independent
parameters in the model.

4



Chapter 1. Introduction

For noisy data, MCLUST adds a first order Poisson process to the normal
mixture model,

p(xi|θ) =
p0

V
+

K
∑

k=1

pkφk(xi|µk, Σk),

where V is the hyper-volume of the data region, p0 > 0 and
∑K

k=0 pk = 1.

1.2.2 MIXREG: mixture of linear regressions

Mixtures of linear regressions may be regarded as a special case of mixture
models. The response of interest is assumed univariate. Let (y1,x1), . . .,
(yn,xn) be the observations. The mixture of regression models is

p(yi|θ,xi) =
K

∑

k=1

pkφ(yi|xT
i βk, σ

2
k), i = 1, . . . , n,

where K is the number of components, pk is a mixing proportion, pk > 0,
∑K

k=1 pk = 1, βk is the vector of regression coefficients, φ(·|xT
i βk, σ

2
k) is the

univariate normal density with mean xT
i βk and variance σ2

k. For ease of
notation, we assume that an intercept is already included in βk if necessary.

The EM algorithm can be used for maximum likelihood estimation.
MIXREG is also a contributed R package (Turner, 2006); the computational
details are in Turner (2000).

The package allows for the selection of equal variances (σ2
k = σ2) or

unequal variances. Model selection can be performed using BIC outside the
package MIXREG.

1.2.3 LGA: linear grouping algorithm

Van Aelst et al. (2006) proposed a linear grouping algorithm to detect linear
patterns in a dataset. It combines ideas of k-means, orthogonal regression
and resampling and can uncover linear patterns when most traditional algo-
rithms do not work well. LGA is the corresponding contributed R package
(Harrington, 2007). Suppose that we are to uncover k linear groups in a data
set with n points in d dimensions. The linear grouping algorithm works as
follows:

1. Initialization. Starting values are generated by randomly selecting k
mutually exclusive subsets of d points (d-subsets). For each of these
d-subsets, a hyperplane through the d points is computed.
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2. Updating group assignment. Each point is assigned to its closest hy-
perplane in the sense of orthogonal distance; each hyperplane is re-
computed from the updated grouping using orthogonal regression.

3. Iterative refinement. The objective function is set to be the aggre-
gated sum of the squared orthogonal distances of the data points from
their closest hyperplane. Repeat step 2 until no significant improve-
ment is attained. A moderate number of iterations (say, 10) is usually
sufficient.

4. Resampling. Repeat steps 1 − 3 a number of times (say, 100) and
select the solution with the lowest aggregated sum of squared orthog-
onal distances. This solution is refined further as in step 3 until no
improvement is achieved.

The idea of silhouette width (Rousseeuw, 1987) is adapted to the linear
grouping scenario to measure the strength of the group assignment. Denote
by s1(i) and s2(i) the orthogonal distances of point i from its closest and
second closest hyperplanes, respectively. The silhouette width for point i is
defined as

w(i) = 1 − s1(i)

s2(i)
.

The GAP statistic (Tibshirani et al., 2001) is used to determine the number
of linear groups in a data set.

1.3 Outline of the thesis

In Chapter 2, we propose a genotype calling algorithm by further adapting
the linear grouping algorithm (Van Aelst et al., 2006). A key feature of this
algorithm is that it applies to unnormalized fluorescent signals.

Whereas there is no explicit statistical model in Chapter 2, a partial
likelihood approach to linear clustering is proposed in Chapter 3. It borrows
ideas from normal mixture models and mixtures of regressions and provides
an extension to the heuristic linear grouping algorithm. The SNP genotyping
problem is revisited in this model framework.

The method in Chapter 3 is more flexible than that in Chapter 2, but still
cannot handle sparse (homozygous variant) clusters well. In Chapter 4, we
move to a Bayesian hierarchical approach to the SNP genotyping problem.
With careful specification of the prior structures, the Bayesian approach is
able to handle a sparse variant allele homozygous cluster.
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Chapter 5 includes the technical details of the asymptotic results for the
partial likelihood approach in Chapter 3.

Chapter 6 summarizes a few possible future research directions.
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Chapter 2

Automatic genotype calling
of single nucleotide
polymorphisms using a linear
grouping algorithm

2.1 Background

2.1.1 TaqMan SNP genotyping

Single nucleotide polymorphisms (SNPs) make up about 90% of all human
genetic variations. They occur approximately every 100 to 300 bases along
the 3.2-billion-base human genome. They have been investigated as pop-
ular biological markers for a wide range of genetic studies. Such studies
require reliable and cost-effective high-throughput genotyping technologies.
Various SNP genotyping technologies have been developed and commercial-
ized. Shi (2001) provides a review of some SNP genotyping technologies.
De La Vega et al. (2005) give an elaborate assessment of two popular SNP
genotyping technologies, TaqMan SNP Genotyping Assay and the SNPlex
Genotyping System (Applied Biosystems). Kang et al. (2004) give a brief
overview of three widely used high-throughput technologies, the TaqMan
SNP Genotyping Assay, the OLA (Oligonucleotide Ligation Assay) and the
MassARRAY system. Although they employ different mechanisms, the most
popular high-throughput technologies share the same conceptual framework:
for each DNA sample, two quantitative signal intensities are measured after
amplification for two alternative SNP alleles, indicating their presence or
absence; these pairs of signal intensities are used to call genotypes by an ex-

A version of this chapter will be submitted for publication. Authors: Guohua Yan,

William J. Welch, Ruben H. Zamar, Loubna Akhabir and Treena McDonald.
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pert manually or by a clustering algorithm. The two alleles are generically
called X and Y hereafter.
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Figure 2.1: Scatterplots of ROX-normalized data for (a): a good plate; (b)
& (c): messy plates; (d): a plate with only a few points in the YY cluster;
(e): a plate with no points in the YY cluster; (f): a plate with only one
cluster.

Figure 2.1 illustrates several scenarios that are typical in genotyping
data from the TaqMan SNP Genotyping Assays (Applied Biosystems) at the
James Hogg iCAPTURE Centre. In this technology, two alleles are labelled
by fluorescent dyes VIC and FAM; in addition, a third dye ROX, which
is assumed unchanged during the amplification, is used to normalize the
data. The proprietary ABI PRISM r© 7900HT Sequence Detection System
Plate Utility Software (referred to as SDS system hereafter) actually uses
VIC/ROX and FAM/ROX (referred to as ROX-normalized data hereafter)
to make genotype calls. In Figure 2.1, ROX-normalized signals are shown.

Ideally, there are four distinct clusters in a scatterplot as in Figure 2.1
(a). The NTC (no template control) cluster lies in the lower-left corner,
close to the origin, containing negative control cases (a few cases that do
not have DNA samples) and samples that fail to amplify. In the lower-
right, upper-left and upper-right corners are three clusters labelled XX, YY
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and XY, presumably containing samples of wild-type homozygotes, variant
homozygotes, and heterozygotes, respectively. Owing to various artifacts,
however, segregation can be poor with points lying between clusters, which
make the calls less trustworthy (Figure 2.1 (b) and (c)). Furthermore, in
some plates there are only a few points or even no points in the variant allele
homozygous cluster YY, which often causes classical clustering algorithms
to fail or to make genotype calls incorrectly (Figure 2.1 (d) and (e)). To our
knowledge, the proprietary clustering algorithm incorporated in the SDS
system cannot make genotyping calls in this situation and one has to call
manually. In extreme cases, there is only one cluster present (Figure 2.1 (f)),
which usually indicates that something has gone wrong in the amplification
procedure.

2.1.2 Review of some genotype calling algorithms

For a small project, it is possible to make genotype calls manually. In most
cases, it is not hard for an expert to perform this job, and the “eyeballing”
procedure usually gives reasonable results due to its sophisticated incorpo-
ration of prior information. For large-scale studies, however, manual scoring
can become a daunting challenge. Furthermore, humans are likely to make
errors due to fatigue or oversight when a job becomes routine and different
readers may have different views (Kang et al., 2004; van den Oord et al.,
2003). van den Oord et al. (2003) conducted a study on the error rates
of manual scoring and three statistical procedures and report that these
statistical procedures uniformly outperform the manual procedure in error
rates.

Perhaps the most widely used clustering method in the SNP genotyping
literature is the classical k-means, possibly with minor modification (Akula
et al., 2002; Olivier et al., 2002; Ranade et al., 2001). Olivier et al. (2002)
notice that k-means algorithms often split one genotype group of the data,
especially when the variant allele homozygous cluster has only a few data
points or when there is no sharp distinction between one of the genotype
clusters and the NTC cluster. They develop a new algorithm, the CA al-
gorithm, that initially examines all data points and determines the approx-
imate location of the centroid for each cluster by dividing the space into
sections for each expected cluster. They report that the heuristic algorithm
works better than classical k-means.

Ranade et al. (2001) and Akula et al. (2002) assign a “quality score” to
each sample. After the genotype assignments are made, they assume that
each genotype cluster is bivariate normally distributed. For each sample,
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they calculate the probability density value of the normal distribution for
its genotype cluster as the quality score that this sample is called. Akula
et al. (2002) also assume equal covariance matrices across the clusters, argu-
ing that this assumption gives conservative but better results than otherwise.
Lovmar et al. (2005) propose using “silhouette scores” to assess the qual-
ity of SNP genotype clusters, the idea of which originates from Rousseeuw
(1987). They report that the measure is satisfactory and empirically the
genotypes can be unequivocally assigned without manual inspection when
the silhouette score is greater than 0.65.

van den Oord et al. (2003) propose a mixture model approach, in which
each cluster is assumed to follow a normal distribution. The number of
component clusters and the initial values of the parameters are set upon
inspecting the scatterplot. This is a more delicate approach than the k-
means approach since it considers the elliptical structures in the assignments
of genotypes and the k-means algorithm can be regarded as a special case
of the mixture models approach. Kang et al. (2004) go one step further
in this direction. They assume a bivariate t-mixture model, in which a t
distribution with small degrees of freedom is assumed for each cluster. They
argue that clusters from SNP genotyping data usually have heavier tails than
the normal distribution and report that the t-mixture model is less sensitive
to outlying points and has advantages over the normal mixture model or the
k-means approach. Fujisawa et al. (2004) also use a model-based approach
in which only angle data are used.

2.1.3 ROX-normalized versus unnormalized data

The datasets illustrated in Figure 2.1 are after ROX-normalization. An
important feature of our approach is that it uses data without ROX-nor-
malization. We now discuss four reasons why we prefer to work with the
unnormalized data.

First, the motivation for ROX-normalization is presumably to form spher-
ical clusters for which classical clustering algorithms such as k-means can
be used. Inspecting the ROX-normalized scatterplots, there are quite a few
plates for which the normalization does not produce reasonable spherical
structures as expected, e.g., Figure 2.1 (c).

Second, the incorporation of ROX intensities is aiming to correct system-
atic biases in the chemistry such as plate to plate variation. However, there
are scenarios where some points may be pulled away from their home clus-
ters merely by this correction and fail to be called a genotype; by the same
token, points which fail to amplify may be assigned a genotype incorrectly
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due to this correction. In the left panel of Figure 2.2, points a, b, c are away
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Figure 2.2: Scatterplots of unnormalized and ROX-normalized data for a
plate. Both points and letters represent samples.

from the heterozygous cluster when the data are ROX-normalized, but are
within a linear arranged cluster in the right panel when the unnormalized
data are used. Similarly, point d is away from the variant allele homozygous
cluster in the left panel, but is much closer to the variant allele homozygous
cluster in the right panel. The proprietary software assigns very low quality
values for these points. Intuitively, these points “should” be classified into
one of the genotype clusters, or at least with higher “confidence” than their
“quality” values indicate. Point e is outlying in both panels; in this case,
normalization will not help any way.

Third, the undisclosed, proprietary algorithm used by the SDS system for
clustering, and hence calling genotypes, seems to have difficulty with samples
with extreme (small or large) ROX values, as evidenced in Figure 2.3. The
curve in Figure 2.3 shows that the empirical chance of calling a genotype by
the proprietary algorithm decreases when the ROX value is too low or too
high.

Unnormalized data, like in Figure 2.2, often show well-separated clusters,
but they are along lines. The linear grouping algorithm (LGA) (Van Aelst
et al., 2006) can identify such clusters. When we apply LGA to the unnor-
malized data, the problem of low-call rate for extreme ROX values is much
alleviated. Figure 2.4 contrasts the silhouette width (a measure of calling
quality) versus ROX value when the LGA algorithm is applied to unnormal-
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Figure 2.3: Probability of calling a genotype versus ROX

ized data and when the k-means method is used for ROX-normalized data.
For k-means, the definition of silhouette width in Rousseeuw (1987) is used;
for the LGA, the definition of silhouette width in Van Aelst et al. (2006) is
used (see also equation (2.1)).

Last, the positions of positive control points in scatterplots of ROX-
normalized data suggest the use of unnormalized data. In a TaqMan SNP
genotyping assay, individual samples are usually arranged in a 96- or 384-
well plate and are amplified simultaneously. For quality assessment purpose,
some wells have DNA samples with known genotypes (in our example 12 in
a 384-well plate), called positive controls, while some other wells have no
DNA samples (typically 8 in a 384-well plate), called negative controls or
no template controls (NTC). The positions of control points in one plate
are shown in Figure 2.5. The positive control points are represented by
“P”. Note that quite a few control points are outside of their corresponding
genotype clusters in the left panel where ROX-normalized data are used. In
the right panel, however, these points are well within their corresponding
linear clusters.

In conclusion, we shall use unnormalized data hereafter in our method
of making genotype calls.
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Figure 2.4: Silhouette width versus ROX value. Left panel: k-means results
using ROX-normalized data; right panel: LGA result using unnormalized
data.
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Figure 2.5: Control points in scatterplots of ROX-normalized and unnor-
malized data for a plate. Letter “P” represents a positive control point and
”N” a negative control point.
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2.2 Results

As an illustration, we apply the LGA approach to the unnormalized data in
Figure 2.2. The silhouette threshold is set to be 0.75, which means a point
is called if its distance from the nearest line is one quarter of its distance
from the second nearest line. We set the signal threshold empirically. Let
mx and my be the median values for X signals (“Allele.X”) and Y signals
(“Allele.Y”) respectively. Any points with X signal less than 0.5mx and Y
signal less than 0.5my are not called. The results are in Figure 2.6. More
points are called compared with the SDS software.
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Figure 2.6: Left panel: the calling result of SDS software displayed in the
scatterplot of unnormalized data. Right panel: the scoring results of LGA
using unnormalized data. The symbol ◦ represents noncalls.

2.3 Conclusions

We have proposed an automatic genotype calling algorithm by taking ad-
vantage of a linear grouping algorithm (Van Aelst et al., 2006). The pro-
posed method uses unnormalized signals and clusters points around lines as
against centroids. In addition, we associate a quality value, silhouette width
(Rousseeuw, 1987; Van Aelst et al., 2006), with each DNA sample and a
whole plate as well. This algorithm shows promise for genotyping data
from TaqMan technology (Applied Biosystems). The algorithm is reliable.
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It could be potentially adapted to other fluorescent-based SNP genotyping
technologies as well, such as the Invader Assay.

2.4 Methods

In the proposed calling algorithm, unnormalized data are used and each
genotype cluster is represented by a straight line.

2.4.1 Data preprocessing

In a TaqMan SNP genotyping assay, the quality of a plate is monitored by
making sure that all positive controls go to the correct genotype clusters
and negative controls stay in the NTC clusters. Without well to well con-
tamination, the negative controls should have low signals for both VIC and
FAM dyes (horizontal and vertical coordinates in a scatterplot, respectively)
since there are no samples in these wells to be amplified. It is advantageous
that we empirically discard negative control points and a portion (5% or
10%, say) of points with very low signals (close to the origin) prior to apply-
ing LGA to locate the lines. Negative control points should not contribute
to the lines which decide the orientations of the genotype clusters. (Some
points with low signals are assigned to lines afterwards.)

2.4.2 Fitting lines using LGA

In SNP genotyping, there are at most three clusters, ignoring the NTC
cluster. Two clusters are possible when there are very few or no points
in the upper-left, YY cluster. We shall fit three lines and two lines to
the data separately using LGA. LGA minimizes aggregated sum of squared
orthogonal distances of points to their closest hyperplanes. We made some
modification specific to the genotyping setting.

Grid based initialization. LGA usually depends on multiple starts to
have large probability of attaining the global minimum. In the genotyping
setting, it is computationally affordable to try a sequence of initializations
such that the global minimum is very likely attained. We set the intercepts
to 0 for all lines and choose the slopes from a set of values {s1, · · · , sm},
where atan(si) are an equally spaced grid from 0 to π/2, since the slopes
should always be positive in the SNP genotyping setting.

Given a set of intercepts and slopes, points are assigned to their nearest
lines; these lines are recalculated. These two steps are iterated until conver-
gence. Denote by s1(i) and s2(i) the orthogonal distances of point i from its
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closest and second closest lines, respectively. The silhouette width for point
i is defined as

w(i) = 1 − s1(i)

s2(i)
. (2.1)

From the multiple starts, we choose the solution that has the largest average
silhouette width. (This criterion respects small clusters and penalizes two
lines which are too close.)

In addition, we shall restrict the slope for the XX cluster be smaller
than that of the XY cluster and the slope of the XY cluster be smaller
than that of the YY cluster. Another restriction is added such that there
are few points in YY than XX and XY. For each LGA, we associate the
lines with smallest, second-smallest and largest slopes to XX, XY, and YY,
respectively. We simply discard solutions in which any slope is negative or
there are more points in the cluster with the largest slope than one of the
other clusters.

Number of lines. We also choose between the best two line solution
and the best three line solution according to this average silhouette width. If
the three line solution has large average silhouette width, each line represents
a genotype cluster; if the two line solution is chosen, they correspond to XX
and XY.

2.4.3 Genotype assignment

For genotype assignment, we could empirically set a signal threshold before-
hand, below which a point is not called, labelled as “Undetermined”, and
assigned to the “NTC” cluster. The threshold can be set based on previous
genotyping practice in a laboratory. In this case, a point beyond the thresh-
old is assigned to its closest line and its genotype is called accordingly; a
silhouette width value is calculated for each point to measure adequacy of
the fitted line structures. A cutoff point for the silhouette widths is also pre-
determined such that outlying points with low silhouettes are also labelled
as “Undetermined”.

Our code adapts LGA to deal with thresholding of points as follows. Let

mx = median(xi),

and
my = median(yi),

where xi and yi are the X signal and Y signal of sample i respectively. Points
with xi ≤ 0.5mx and yi ≤ 0.5my are not called.
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As an alternative to an empirical signal threshold, we could penalize
points closer to the origin by modifying the definition of silhouette width.
For example,

w(i) = 1 − s1(i) + c

s2(i) + c
, (2.2)

where the tuning parameter c is also set empirically such that points too
close to the origin are not called.

Another version we tried is as follows. Let

ri =
√

x2
i + y2

i ,

be the distance of point i from the origin. Let

m = min{ri},

and
M = median{ri}.

Let

ci =

(

min(ri, M) − m
2

M − m
2

)
1
2

.

The adjusted value for silhouette width si is

s∗i = cisi. (2.3)

This downweights the silhouette score for points with weak xi and yi signals.

2.4.4 Quality assessment of DNA samples and plates

The silhouette width for a DNA sample serves as a quality value of the
genotype call. In addition, for each plate, the average silhouette width can
be computed. An expert may decide upon a threshold such that plates
with lower average silhouette width are regarded as unreliable. Meanwhile,
the average silhouette width of positive controls in a plate and the average
silhouette width of negative controls are also indications of the quality of
genotype calls for a specific plate.

2.5 Discussion

The existing methods assume spherical or elliptical clusters. The unnormal-
ized signals tend to fall on lines, however, forcing normalization to try to
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produce clusters with elliptical shapes, but the ROX normalization signal
may be noisy. We take a quite different approach, identifying the linear clus-
ters associated with the unnormalized signals. As seen in Figure 2.6, fewer
uncalled samples results. We call only samples with at least one strong
signal. The definition of “strong” will vary from plate to plate. We normal-
ize internally by not calling points having weak signals relative to median
signals, rather than externally with respect to ROX.
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Chapter 3

A partial likelihood approach
to linear clustering

3.1 Introduction

In this paper we are concerned with detecting linearly shaped clusters in a
data set. This work is motivated by a clustering problem in a SNP (single
nucleotide polymorphism) genotyping setting. Data of this type are bivari-
ate, consisting of two signals, and conform mostly to linear clusters. More
detailed discussion of these genotyping data appears in Section 3.7.

Van Aelst et al. (2006) proposed a method called the Linear Grouping
Algorithm (LGA) for linear clustering problems. For earlier approaches to
linear clustering, see the references therein. There is a need for algorithms
specialized in linear clustering. First, the usual mixture of normal or t dis-
tributions (see for example, Banfield and Raftery, 1993; Fraley and Raftery,
1998, 2002; MacLachlan and Peel, 2000, among others) aims at elliptical
structures in a data set; when a data set displays highly linear patterns,
especially when these patterns are not well separated from each other, we
need a different criterion for detecting linear patterns. Second, most ear-
lier linear clustering approaches assume that a response variable is available
supervising the search for linear clusters, see for example, Spath (1982),
DeSarbo and Cron (1988) and Turner (2000). Van Aelst et al. (2006) have
a simulated data set illustrating that the selection of a response variable
is not trivial. In that data set, two linear clusters are obvious in the first
two dimensions; the third dimension is merely noise. If the second variable
is selected as response, the mixture of regressions method by Spath (1982)
successfully recovers the linear structures; it fails when the third variable is
used as the response. Chen et al. (2001) proposed a method to detect linear

A version of this chapter has been submitted for publication. Authors: Guohua Yan,

William J. Welch and Ruben H. Zamar.
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structures one by one without assuming a response variable in the computer
vision context.

We propose in this paper a partial likelihood approach and compare it
with existing algorithms such as LGA (Harrington, 2007), MCLUST (Fraley
and Raftery, 2007) and MIXREG (Turner, 2006). Our approach borrows
ideas from finite mixture model-based clustering and from mixture of regres-
sions. Each linear cluster is characterized by a hyperplane; the orthogonal
deviation of a data point from that hyperplane is assumed to be normally
distributed but the position of the data on the hyperplane is not modelled.
With this strategy, all variables are treated symmetrically, as compared with
the mixture of regressions approach.

The rest of the paper is organized as follows. In Section 3.2, we describe
a partial likelihood-based objective function, leading to a model-based linear
clustering algorithm, MLC. In Section 3.3, an EM algorithm to maximize
the partial likelihood function is presented. In Section 3.4, we discuss the
asymptotic properties of MLC. In Section 3.5, we briefly discuss its relation-
ships with existing algorithms such as MCLUST, LGA and MIXREG. In
Section 3.6, we propose several methods for determining the number of lin-
ear clusters. In Section 3.7, several real and simulated datasets are used to
compare MLC with LGA, MCLUST and MIXREG. Some closing remarks
are given in Section 3.8.

3.2 Partial likelihood-based objective function

for linear clustering

3.2.1 Partial likelihood for orthogonal regression

First, we formulate a partial likelihood representation for orthogonal regres-
sion (see for example, Fuller, 1987). To model a single linear cluster, assume
that the vector-valued data x1, . . . ,xn are independently drawn from a ran-
dom mechanism represented by a random vector X in a d-dimensional space.
We do not model the distribution of X except for the deviation from an also
unknown hyperplane.

Let {x : a′x − b = 0} be a hyperplane. For identifiability purpose, we
assume that a′a = 1 and that the first nonzero element of a is positive. We
assume that the signed orthogonal deviation a′X − b from the hyperplane
{x : a′x − b = 0}, is normally distributed, i.e.,

a′X − b ∼ N(0, σ2). (3.1)
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Since a and b are unknown, a′X − b is also unknown. Nevertheless, we can
still estimate a, b and σ2 through the following partial likelihood function

n
∏

i=1

N(a′xi − b; 0, σ2), (3.2)

where N(· ; 0, σ2) is the density function of the normal distribution with
mean 0 and variance σ2.

Let x̄ and S be the sample mean and sample covariance matrix of
x1, . . . ,xn respectively. Then the maximum partial likelihood estimate σ̂2 of
σ2 is the smallest eigenvalue of S; the maximum partial likelihood estimate
â of a is the (standardized) eigenvector associated with σ̂2, which is not
necessarily unique. Finally, the maximum partial likelihood estimate b̂ of b
is b̂ = â′x̄. See for example Fuller (1987).

Note that model (3.1) and the partial likelihood (3.2) treat the compo-
nents of x symmetrically.

3.2.2 Partial likelihood for linear clustering

Now we assume that the data x1, . . . ,xn are independently drawn from a
more complicated random mechanism, still represented by a random vector
X in a d-dimensional space which we do not model fully. The data now lie
around K hyperplanes {x : a′

kx = bk}, k = 1, . . . , K. Let Z = (Z1, . . . , ZK)′

be a random vector indicating these hyperplanes, where Zk = 1 with prob-
ability pk for k = 1, . . . , K. Let p = (p1, . . . , pK)′. We assume that, condi-
tional on Zk = 1,

a′
kX − bk ∼ N(0, σ2

k), k = 1, . . . , K.

Let z1, . . . , zn be the corresponding unobservable indicators for the data
x1, . . . ,xn. Let κ be the collection of component parameters, κ = (a′

1, b1,
σ2

1, . . ., a′
K , bK , σ2

K)′, and θ = (κ′,p′)′.
When the indicators z1, . . . , zn are regarded as unknown parameters, the

partial likelihood function for parameters (θ′, z′1, . . . , z
′
n)′ is

L(θ, z1, . . . , zn|x1, . . . ,xn) =
n

∏

i=1

K
∏

k=1

[pkN(a′
kxi − bk; 0, σ2

k)]
zik . (3.3)

This is a so-called classification likelihood. See for example Scott and
Symons (1971) and Banfield and Raftery (1993) in the context of mixture
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models for elliptical clusters. In this approach, the parameters θ and indi-
cators z1, . . . , zn are chosen to maximize (3.3) and data points are classified
according to these indicators.

In another view (see for example, Fraley and Raftery, 1998, 2002), the in-
dicators z1, . . ., zn are regarded as realizations of random vectors Z1, . . . ,Zn,
which in turn are an independent and identically distributed sample from Z.
After integrating out the indicators z1, . . . , zn, the partial likelihood function
for θ is

L(θ|x1, . . . ,xn) =
n

∏

i=1

K
∑

k=1

pkN(a′
kxi − bk; 0, σ2

k). (3.4)

The latter is a mixture likelihood approach. Celeux and Govaert (1993)
did simulation studies of classification likelihood approaches and mixture
likelihood approaches in normal mixture models for elliptical clusters and
reported that no likelihood method uniformly outperforms the others. It is
noted that the classification approach cannot consistently estimate parame-
ters due to the “all-or-nothing” classification bias (Bryant and Williamson,
1978; Ganesalingam, 1989; Marriott, 1975). In our experience with linear
clustering, both approaches give practically very similar clustering results.
We shall pursue in this paper the mixture likelihood (3.4), as many existing
model selection criteria like BIC can be used and allows for a more feasible
asymptotic theory (see Section 3.4).

As in the usual normal mixture model for elliptical clusters, the partial
likelihood function (3.4) is unbounded: when a cluster consists of only points
lying on a hyperplane, the contribution of each of these points to the partial
likelihood tends to infinity as the variance tends to zero. The infinity occurs
on the boundary of the parameter space.

Hathaway (1985) proposed a constrained formulation of the maximum
likelihood estimation in the univariate normal mixture model. Specifically,
the author added a constraint on the standard deviations,

min
1≤i6=j≤K

(σi/σj) ≥ c > 0, (3.5)

where c is a known constant determined a priori. We shall incorporate the
constraint (3.5) into the partial likelihood function (3.4) (See Step 2 in the
EM algorithm in Section 3.3). The solution may depend on the choice of
the constant c. A usual strategy is to decrease c gradually and monitor
the resulting solutions (Hathaway, 1986). [Chen and Kalbfleisch (1996);
Ciuperca et al. (2003) proposed penalized approaches to this unboundedness
problem which are also readily applicable to linear clustering although not
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adopted in this paper; on the other hand, the Hathaway’s constraint can
also be regarded as a form of penalization on the likelihood.]

The partial likelihood function (3.4) naturally brings the clustering prob-
lem into a finite mixture model framework. Standard EM algorithms can be
adapted to maximize (3.4); once the maximum partial likelihood estimate θ̂

is obtained, data point xi can be assigned to the component with the largest
posterior probability. The probabilities are given by

ŵik =
p̂kN(â′

kxi − b̂k; 0, σ̂2
k)

∑K
k=1 p̂kN(â′

kxi − b̂k; 0, σ̂2
k)

, i = 1, . . . , n; k = 1, . . . , K, (3.6)

which also serve as a measure of uncertainty of classifying data point xi.

3.3 The EM algorithm

Now we describe an EM algorithm for maximizing the partial likelihood
(3.4). It is straightforward and works well in our experience.

The completed log partial likelihood is

l(θ|x1, . . . ,xn, z1, . . . , zn) =
n

∑

i=1

K
∑

k=1

zik{log(pk) + log(N(a′
kxi − bk; 0, σ2

k))}.

(3.7)
In the E-step, with θ(t−1) from the previous iteration, we have

w
(t)
ik ≡ E(Zik|θ(t−1),x1, . . . ,xn)

=
p
(t−1)
k N(a′(t−1)

k xi − b
(t−1)
k ; 0, σ2

k
(t−1)

)
∑K

k=1 p
(t−1)
k N(a′(t−1)

k xi − b
(t−1)
k ; 0, σ2

k
(t−1)

)
. (3.8)

In the M-step, we have

p
(t)
k =

∑n
i=1 w

(t)
ik

n
. (3.9)

Let

x̄
(t)
k =

∑n
i=1 w

(t)
ik xi

∑n
i=1 w

(t)
ik

,

and

Σ
(t)
k =

n
∑

i=1

w
(t)
ik (xi − x̄

(t)
(k))(xi − x̄

(t)
(k))

′.
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Then

a
(t)
k is the eigenvector associated with the smallest eigenvalue of Σ

(t)
k ,
(3.10)

b
(t)
k = a′(t)

k x̄
(t)
(k), (3.11)

and

σ2
k
(t)

=

∑n
i=1 w

(t)
ik (a′(t)

k xi − b
(t)
k )2

∑n
i=1 w

(t)
ik

. (3.12)

If all σ2
k in equation (3.4) are assumed to be equal, then the common value

is estimated by

σ2(t)
=

∑n
i=1

∑K
k=1 w

(t)
ik (a′(t)

k xi − b
(t)
k )2

n
. (3.13)

The MLC algorithm is described as follows.

1. Initialize with θ(0). To initialize the EM algorithm, we adopt the strat-
egy of Van Aelst et al. (2006). We randomly select K mutually exclu-
sive subsets of d + 1 observations from x1, . . . ,xn. For k = 1, . . . , K,

we compute the maximum partial likelihood estimates a
(0)
k , b

(0)
k and

(σ2
k)

(0) from the kth subset of d+1 observations (see Subsection 3.2.1).

The proportions p
(0)
k are all set as 1/K. The initial values are then

θ(0) = ((a′
1)

(0), b
(0)
1 , (σ2

1)
(0), . . . , (a′

K)(0), b
(0)
K , (σ2

K)(0), p
(0)
1 , . . . , p

(0)
K )′.

2. If constraint (3.5) is not satisfied, go back to step 1; otherwise go to
step 3.

3. Update θ(0) for a predefined number of iterations or until the improve-
ment in the partial likelihood (3.7) is less than a predefined threshold.
At iteration t,

• E-step. Update w
(t)
ik by equation (3.8).

• M-step. Update p
(t)
k , a

(t)
k , b

(t)
k and (σ2

k)
(t) by equations (3.9),

(3.10), (3.11) and (3.12), respectively. If c = 1, which corresponds
to equal variances across clusters, use (3.13) in place of (3.12).

4. Repeat steps 1 – 3 for a predefined number of times. The final clus-
ter labels ẑ1, . . . , ẑn and parameter estimates θ̂ are the solution that
has the largest completed log partial likelihood (3.4) and satisfies con-
straint (3.5).
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For the classification likelihood (3.3), we can use a so-called CEM (classi-
fication EM) algorithm. A C-step is inserted between the E-step and M-step

of step 3. In the C-step, xi is assigned to the cluster with the largest w
(t)
ik ,

i.e., the maximum w
(t)
ik is replaced by the value 1 and all other w

(t)
ik take the

value 0. If the maximum value of w
(t)
ik is not unique, choose one of the tying

clusters at random.

3.4 Asymptotic properties

Let

f(x; θ) =
K

∑

k=1

pkN(a′
kx − bk; 0, σ2

k),

which is the contribution of one observation to the partial likelihood (3.4).
The constrained parameter space is

Θc =







θ = (a1, b1, σ
2
1, . . . ,aK , bK , σ2

K , p1, . . . , pK) :
a′

kak = 1,−∞ < bk < ∞, σk > 0, k = 1, . . . , K.

mini,j σi/σj ≥ c > 0, 0 < pk < 1,
∑K

k=1 pk = 1.







.

Assuming that the data arise from a probability distribution measure P , we
have the following results.

Theorem 3.1 Let P be an absolutely continuous probability measure with
finite second moments. Let

g(θ) ≡
∫

log f(x; θ)dP (x).

Then the supremum of g over Θc is finite and attainable.

Since the function f(·, θ) is not a density function, this theorem and
the following ones cannot be proved by verifying some regularity conditions.
The proofs find their roots in Wald (1949), Redner (1981), Hathaway (1983,
1985) and Garćıa-Escudero et al. (2007) and are available on request.

Theorem 3.2 Let P be an absolutely continuous probability measure with
finite second moments. Let X1, . . . ,Xn be a random sample from P . Then
a global maximizer of the partial likelihood function L(θ |X1, . . ., Xn) in
(3.4) over Θc exists almost surely if n ≥ Kd + 1.
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Note that points in Θc are not identifiable for f(x; · ). The function
f(x; · ) remains the same if we permute the labels 1, . . ., K; pk1 and pk2 are
not identifiable if (ak1 , bk1 , σ

2
k1

) = (ak2 , bk2 , σ
2
k2

). Thus the consistency result
is in a quotient topology space. Let ∼ be an equivalent relation on Θc such
that θ1 ∼ θ2 if and only if f(x; θ1) = f(x; θ2) almost surely in P . Denote
by Θq

c the quotient topological space consisting of all equivalent classes of
∼. For a point θ0 that maximizes g(θ) =

∫

log f(x; θ)dP (x), its equivalent
class in Θq

c is denoted by θ
q
0.

Theorem 3.3 (Consistency). Let X1, . . . ,Xn be a sample from an abso-
lutely continuous probability measure P with finite second moments. Let

θ̂
(n)

be a global maximizer of the partial likelihood function L(θ|X1, . . .,

Xn) in (3.4) over Θc. Then θ̂
(n) → θ

q
0 almost surely in the topological space

Θq
c.

Let

v1(θ) = E

{(

∂ log f(X; θ)

∂θ

) (

∂ log f(X; θ)

∂θ

)′}

,

and

v2(θ) = E

{

∂2 log f(X; θ)

∂θ∂θ′

}

,

where the expectations are taken with respect to P .

Theorem 3.4 (Asymptotic normality). Let X1, . . . ,Xn be a sample from
an absolutely continuous probability measure P with finite sixth moments.

Let θ̂
(n)

be a subsequence of global maximizers of the partial likelihood func-
tion L(θ|X1, . . . ,Xn) in (3.4) over Θc, which tends to an interior point θ0.
Then √

n(θ̂
(n) − θ0)

L→ N(0, v(θ0)),

where v(θ0) = [v2(θ0)]
+v1(θ0)[v2(θ0)]

+ and A+ is the Moore-Penrose in-
verse of A.

In equation (3.6), ŵik is a function of xi and θ̂. Denote ŵik = hk(xi, θ̂),
k = 1, . . . , K. By the Delta method, we have

Corollary 3.1 Let X1, . . . ,Xn be a sample from an absolutely continuous

probability measure P with finite sixth moments. Let θ̂
(n)

be a subsequence
of global maximizers of the partial likelihood function L(θ|X1, . . . ,Xn) in
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(3.4) over Θc, which tends to an interior point θ0. Let x be a data point.
Then for k = 1, . . . , K,

√
n(hk(x, θ̂

(n)
) − hk(x, θ0))

L→ N(0, [h
(0)
k (x, θ0)]

′v(θ0)[h
(0)
k (x, θ0)]),

where

h
(0)
k (x, θ0) =

∂hk(x, θ)

∂θ

∣

∣

∣

∣ θ = θ0
.

Using this corollary, we can build approximate confidence intervals for
wik by replacing θ0 with θ̂ and hence evaluate the clustering of a data point.

3.5 Relationships with other clustering methods

3.5.1 With LGA

In the LGA of Van Aelst et al. (2006), the objective function is the aggre-
gated sum of squared orthogonal distances of the data points to their closest
hyperplanes. Using our notation, LGA minimizes

d(κ, z1:n) =
n

∑

i=1

K
∑

k=1

zik(a
′
kxi − bk)

2. (3.14)

In the classification likelihood (3.3), if we assume that the variances σ2
k are

equal across all components (or equivalently, c = 1 in (3.5)) and the mixing
proportions pk are equal, the log completed partial likelihood is

l(κ, z1:n) =
n

∑

i=1

K
∑

k=1

zik log[N(a′
kxi − bk; 0, σ2)]. (3.15)

It is straightforward to check that the minimization of (3.14) and the max-
imization of (3.15) are equivalent. Hence the iterative procedure in LGA
coincides with the CEM algorithm, which is discussed in Section 3.3, for
maximizing (3.15).

In this sense, the proposed partial likelihood approach, or the classifica-
tion partial likelihood (3.3), is an extension and a model for LGA. The pro-
posed approach permits one dispersion parameter σ2

k for each cluster while
LGA implicitly uses one dispersion parameter for all clusters. Furthermore,
in our model framework, we are able to use the membership probability wik

(see (3.6)) to assess the uncertainty of clustering a data point while an ad
hoc measure, silhouette width, is used in LGA.
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3.5.2 With normal mixture models

In the M-step in Section 3.3, we can see that the proposed approach is
closely related to normal mixture models. The difference resides in the E-
step: the proposed approach weighs distances to hyperplanes while the latter
compares distances to cluster centres.

In the use of normal mixture models one is forced to estimate the means
and also the covariance matrix of each component. Banfield and Raftery
(1993) reparameterized the covariance matrices and lead to a variety of par-
simonious covariance matrix structures. The unrestricted covariance matrix
requires K(d + d(d + 1)/2) parameters and the most parsimonious model,
equal spherical covariance matrices, requires only Kd + 1 parameters. The
proposed approach can be regarded as a parsimonious simplification of an-
other type which is appropriate for highly linear data sets. It requires d + 1
parameters per cluster, i.e., d first order parameters for the location of a
hyperplane and one second order parameter for the dispersion around the
hyperplane.

3.5.3 With mixture of ordinary regressions

As mentioned in the introduction, a mixture of ordinary regressions ap-
proach requires a response variable for guidance. A response variable suit-
able for clustering purpose may not exist. Furthermore, due to the “re-
gression to the mean” phenomenon, the regression hyperplanes are different
when different variables are selected as the response. The proposed ap-
proach treats each variable symmetrically, and therefore is more suitable in
a clustering setting.

3.6 Choosing the number of linear clusters

In some problems, the number of linear clusters is obvious from subject-
matter knowledge; in other problems, it has to be estimated from the data.
Too many components exploit the randomness of the data and make it hard
to interpret the clustering; too few clusters lose information and may be
misleading.

3.6.1 Bootstrapping the partial likelihood ratio

A natural approach is to apply the partial likelihood ratio test to a sequences
of hypotheses K = K0 against K = K0 +1, starting from K0 = 1. However,
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−2 lnλ, where λ is the likelihood ratio, does not have a usual asymptotic
χ2 distribution under the null hypothesis. The reason is that the regularity
conditions are violated as the parameter space under the null hypothesis is
on the edge of the parameter space under the alternative hypothesis when
the former is embedded into the latter. Much theoretic research has been
done on likelihood ratios for mixture problems (Chen and Chen, 2001a,c,b;
Chen et al., 2001; Chen, 1998; Chen and Kalbfleisch, 2005; Everitt and Hand,
1981; Thode Jr et al., 1988, among others).

We adapt the bootstrap approach in McLachlan (1987) to our setting.
The log likelihood ratio statistic −2 log λ for the test of the null hypothesis
of K = K1 versus the alternative K = K2 can be bootstrapped as follows.
Let θ̂ be the maximum partial likelihood estimate of all parameters from the
original sample under the null hypothesis. For i = 1, . . . , n, sample zi from
the multinomial distribution with probabilities (p̂1, . . ., p̂K1); if zik = 1,
sample orthogonal distance ei from N(0, σ̂2

k). The ith data point in the

bootstrap sample is xi + (ei − b̂k)âk. Suppose B copies of n samples are
generated. The value of −2 log λi is computed after fitting mixture models
for K = K1 and K = K2, i = 1, . . . , B. The significance level of the
test is obtained by comparing −2 log λ with the empirical distribution of
−2 log λ1, . . . ,−2 log λB.

3.6.2 Information criteria

The partial likelihood approach enables us to use an approximate Bayes fac-
tor to determine the number of linear clusters. Banfield and Raftery (1993)
used a heuristically derived approximation to twice the log Bayes factor,
called AWE (approximate weight of evidence) to determine the number of
clusters. Fraley and Raftery (2002) used BIC (Bayesian information crite-
rion) as a more reliable approximation to twice the log Bayes factor,

BIC(K) = 2L(K) − vK log(n), (3.16)

where L(K) is the log partial likelihood of a mixture of K components
and vK is the number of independent parameters to be estimated in a K
component mixture. As stated in Fraley and Raftery (2002), although the
regularity conditions that underly the approximation are not satisfied in
finite mixture models, there are some theoretical and practical support of its
use for determining the number of clusters. Keribin (2000) showed that the
estimator of the number of clusters based on BIC is consistent; Fraley and
Raftery (1998, 2002) included a range of applications in which estimating
the number of clusters based on BIC has given good results.
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A large number of criteria have been proposed in the literature, including
NEC (Biernacki et al., 1999; Celeux and Soromenho, 1996), ICL (Biernacki
et al., 2000), and cross validation likelihood (Smyth, 2000). The performance
of some of these criteria were compared by Biernacki et al. (1999).

As we are adopting a partial likelihood approach, in principle almost
all methods proposed in a model framework are approximately applicable
although we do not fully model the data. As pointed out by Everitt et al.
(2001), “it is advisable not to depend on a single rule for selecting the
number of groups, but to synthesize the results of several techniques”. In
our experience, though, all the methods mentioned above work well if there
do exist obvious linear patterns in a data set.

3.7 Examples

3.7.1 Simulated data I

One data set of size 300 in two dimensions is simulated to illustrate the
different behaviours of MCLUST, LGA and the proposed MLC. The xi1

are uniformly sampled from the interval (0, 15); for the first 250 points,
xi2 = xi1 + 3εi and for the last 50 points, xi2 = 8 + 1.5xi1 + εi, where εi

are independent and identically standard normal distributed. The data are
shown in the top-left panel of Figure 3.1.

For this data set, MCLUST chooses a model of three clusters with differ-
ent volumes, different shapes and different orientations by the BIC criterion.
LGA favours one cluster using the gap statistic. MLC selects two clusters by
BIC, ICL, NEC and the bootstrapping likelihood ratio test (see Table 3.1).
We set the threshold c = 0.05. The result of MIXREG, which is omitted, is
similar to that of MLC as we generate the data in favour of it. Figure 3.1
displays the clustering results from MCLUST, LGA and MLC when the
numbers of clusters are all set as 2.

This simulated data helps us understand how these algorithms work.
MCLUST tries to find elliptical structures, but the two linear clusters have
data distributions along the lines not well modelled by normal distributions.
For LGA, when two clusters are roughly parallel and touching, it imposes
a structure to the data set and tends to partition the data set into bands
with equal width.

35



Chapter 3. A partial likelihood approach to linear clustering

0 5 10 15

0
10

20
30

True classification

x1

x 2

0 5 10 15

0
10

20
30

MLC

x1

x 2

0 5 10 15

0
10

20
30

LGA

x1

x 2

0 5 10 15

0
10

20
30

MCLUST

x1

x 2

Figure 3.1: Comparison of clustering results of simulated data I. Upper-left
panel displays the true classification; upper-right, lower-left and lower-right
are that of MLC, LGA and MCLUST.
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Table 3.1: Criteria for choosing the numbers of clusters, K, when MLC is
applied to simulated data I. “Boot p-value” is the p-value using the boot-
strapping partial likelihood ratio test for H0 : K = K0 vs H1 : K = K0 + 1
where 99 bootstrapping samples are used

Criterion
K BIC ICL NEC Boot p-value

1 -1541.61 – – 0
2 -1461.63 -1477.28 0.14 1
3 -1468.25 -1712.08 0.69 –

3.7.2 Simulated data II

Another dataset is simulated to demonstrate the difference between MIX-
REG and the other three algorithms, MLC, MCLUST and LGA. This
dataset has 200 data points in four dimensional space. For the first 100
data points, the first two components, xi1 and xi2, are linearly related while
the third and the fourth components, xi3 and xi4, are randomly scattered:

xi1 = ti + εi1, xi2 = 0.5ti + εi2, xi3, xi4 ∼ N(0, 52), for i = 1, . . . , 100.
(3.17)

Here εij ∼ N(0, 1) and ti ∼ N(0, 52). For the remaining 100 data points, the
first two components are randomly scattered while the last two components
are linearly related:

xi1, xi2 ∼ N(0, 52), xi3 = ti + εi3, xi4 = 0.5ti + εi4, for i = 101, . . . , 200.
(3.18)

Again, εij ∼ N(0, 1) and ti ∼ N(0, 52). The pairwise scatterplots of the
simulated data are in Figure 3.2.

From the way the dataset is simulated, it is not possible to find a nat-
ural response variable to discriminate the two linear clusters. As a result,
MIXREG does not work well for this dataset and the two clusters are not
well separated. The misclassification matrices of the four algorithms are in
Table 3.2. MLC, MCLUST and LGA have the same good performance here.
Note that (3.17) and (3.18) generate (elongated) multivariate normal clus-
ters in x1 and x2 or in x3 and x4, respectively. The assumptions of MCLUST
are therefore satisfied, but MLC nonetheless has the same performance.

3.7.3 Australia rock crab data

Now we consider the rock crab data set of Campbell and Mahon (1974) on
the genus Leptograpsus. We focus on the 100 blue crabs, 50 of which are
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Figure 3.2: Pairwise scatterplots of simulated data II.

Table 3.2: Misclassification matrices of simulated data II from MLC,
MCLUST, LGA and MIXREG.

MLC,
MCLUST, MIXREG

LGA Resp= x1 or x2 Resp= x3 Resp= x4

True class 1 2 1 2 1 2 1 2
1 88 12 26 74 5 95 63 37
2 9 91 25 75 10 90 75 25
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Table 3.3: Criteria for choosing the number of clusters, K, when MLC
is applied to the blue crab data. “Boot p-value” is the p-value using the
bootstrapping partial likelihood ratio test for H0 : K = K0 vs H1 : K =
K0 + 1 where 99 bootstrapping samples are used.

Criterion
K BIC ICL NEC Boot p-value

1 476.13 – – 0
2 518.88 500.77 0.24 0.63
3 506.35 446.83 0.51 –

males and 50 are females. Each crab has five measurements, FL, the width
of frontal lip, RW, the rear width, CL, the length along the midline, CW,
the maximum width of the carapace, and BD, the body depth in mm. As in
Peel and McLachlan (2000), we are interested in the classification of male
and female crabs. Peel and McLachlan (2000) had 18 crabs misclassified
applying a mixture of two t distributions using all the five measurements.
Using a mixture of two normal distributions resulted in one more crab being
misclassified.

Inspecting all pairwise scatter plots of the data set, RW and CL display
two fairly well separated lines as in Figure 3.3. We apply MLC, MCLUST,
LGA and MIXREG to these two measurements.

For this data set, MCLUST chooses two clusters with different volumes,
different shapes and different orientations by the BIC criterion. LGA chooses
two clusters by the gap statistic. MLC also chooses two clusters by the var-
ious criteria in Table 3.3. MCLUST has 13 cases misclassified. LGA and
MLC both have 7 cases misclassified. Inspecting the posterior probabili-
ties of classification, MLC assigns roughly equal probabilities to the two
clusters for two of the misclassified cases. In other words, there is extreme
uncertainty about the assignment of these two cases, and their misclassifi-
cations are not surprising. There are no such diagnostic probabilities for
LGA. MIXREG has eight cases misclassified when RW is regarded as the
response; it has seven cases misclassified if CL is taken as the response.

If we take logarithms of RW and CL, only five crabs are misclassified by
LGA and MLC. MIXREG has five cases misclassified, if CL is taken as the
response; it has 15 cases if RW is taken as the response. The results are
summarized in Table 3.4. The clustering results are displayed in Figure 3.4.
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Figure 3.3: Pairwise scatterplots of the blue crab data.

Table 3.4: Misclassification matrices of the blue crab data (using log scales)
from MLC, MCLUST, LGA and MIXREG.

MLC MCLUST LGA MIXREG MIXREG
(Response: CL) (Response: RW)

True class 1 2 1 2 1 2 1 2 1 2

1 50 0 50 0 50 0 50 0 38 12
2 5 45 14 36 5 45 5 45 3 47
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from MLC, MCLUST, LGA and MIXREG. CL is used as the response in
MIXREG.
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3.7.4 Taqman single nucleotide polymorphism genotyping
data

A single nucleotide polymorphism (SNP) is a single-base variation in a
genome. The genetic code is specified by the four nucleotide “letters”: A
(adenine), C (cytosine), T (thymine) and G (guanine). A SNP involves
usually only two possibilities of these four letters, referred to as allele X
and allele Y . An individual has two copies of genetic information passed
from both parents. So the genotypes at this specific genetic position has
three possible types: homozygote for allele X, homozygote for allele Y and
heterozygote for both alleles. SNP genotyping, determination of genotypes
of individuals, plays an increasing role in genetics studies.

Taqman assay is a fluorescence-based high-throughput genotyping tech-
nology. Two fluorescent signals, x1 and x2, called Allele.X and Allele.Y
below, are used to detect the presence or absence of the two alleles, and
their intensities determine the genotypes. (There is a third fluorescent sig-
nal presumably for normalizing the signal intensities. However, its effective-
ness is suspicious in some situations. We choose to use signals without this
normalization.)

Blood samples of many individuals are assayed in wells of a plate si-
multaneously. For quality controls purpose, there are usually some blood
samples with known genotypes, called positive controls, and there are some
wells without genetic material, called negative controls.

In the scatterplot of a SNP data set, there are typically four clusters:
three clusters for the three possible genotypes and one for negative controls.
In addition, there may be some failed samples. A clustering algorithm is
usually employed to classify the samples. Algorithms commonly used include
k-means algorithms (Olivier et al., 2002; Ranade et al., 2001) and model-
based algorithms (Fujisawa et al., 2004; Kang et al., 2004). Finding an
algorithm that works for all plates/SNPs is a challenge.

We fit a mixture of five components to the SNP genotyping data, for
the three genotype clusters, the negative controls, and failed samples, re-
spectively. The three genotype components are modelled linearly with the
mixture likelihood (3.4). The fourth component is modelled with a bivari-
ate normal distribution, and the fifth is a uniform component for possible
outlying points.

In the model fitting, we use the known labels for the negative controls.
All the negative controls are assigned to the fourth component a priori,
as are all points with both signals less than the corresponding maximum
intensities of negative controls. Denote the set of these points by N . We
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Table 3.5: Largest membership probabilities of the 7 points labelled in
Figure 3.5 by MCLUST and MLC.

Points
1 2 3 4 5 6 7

MLC 0.99 1.00 1.00 0.99 0.98 0.86 0.99
MCLUST 0.96 0.93 1.00 1.00 1.00 0.97 0.50

do not use the known labels of the positive controls; these samples are used
only for evaluating the clustering results.

Hence, the modified mixture likelihood for the problem is

L(κ, p1, . . . , p5|x1, . . . ,xn)

=
∏

i6∈N

{

3
∑

k=1

pkN(a′
kxi − bk; 0, σ2

k) + p4N(xi; µ, Σ) + p5U(xi; R)

}

×
∏

i∈N

N(xi; µ, Σ), (3.19)

where U is the uniform distribution on the rectangular region R given by
(min(xi1), max(xi1)) × (min(xi2), max(xi2)). This mix of linear, ellipti-
cal and uniform components demonstrates the flexibility of our modelling
approach.

Figure 3.5 displays the clustering results of one plate using four different
algorithms: MLC, MCLUST, LGA and MIXREG. Note that the majority
of the points lie on three lines, hence the need for linear clustering. The
results of modified MLC and MCLUST are displayed in the upper-left and
the upper-right panels of Figure 3.5. All the points assigned to one of the
three genotype clusters by MCLUST are assigned exactly the same way
by MLC. Points 1 to 7, however, are assigned by MCLUST as background
noise while MLC classifies all these points to one of the genotype clusters.
Indeed, we know that these points should belong to the genotype clusters,
and furthermore, points 1, 3, 6 and 7 are positive controls, all classified
correctly by MLC. Table 3.5 displays the largest membership probabilities
of these seven points by MCLUST and MLC, respectively. For the first six
of the seven points, the two methods are very confident of their different
assignments. We speculate here that, MCLUST does not place these points
in the genotype clusters because they appear to be outliers with respect to
the normality assumptions. In contrast, MLC classifies a point only using
the proximity to a line and does not model the position along a line.
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Figure 3.5: Clustering results from four methods applied to a Taqman data
set plate. ◦, + and 4 denote the labels assigned for the three linear clusters
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The lower-left panel of Figure 3.5 displays the results from LGA. Since
LGA is formulated to deal with only linear clusters, we set the number of
clusters to three. (If four or five clusters are chosen, the genotype clusters are
mixed up.) The restriction to linear clusters means that LGA has difficulty
separating the three genotype clusters from the negative controls and the
failed samples. In the lower-right panel, we choose the signal for Allele Y as
the response to implement MIXREG and set the number of regression lines
to 3. MIXREG fails completely here. It finds only one of the three linear
clusters. We obtained similar results if the signal for Allele X is chosen as
the response.

3.8 Discussion

We have proposed a flexible model-based approach to linear clustering. It
is flexible in the sense that only the deviation from a hyperplane is mod-
elled parametrically; the position on the hyperplane is not modelled. The
advantage of this approach is illustrated in the genotyping example, where
the distribution along the line is complex and difficult to model. Further-
more, as was also illustrated in this example, we can incorporate elliptical
clusters as necessary and a background cluster, borrowing from standard
model-based clustering.

Robustness to outliers is desirable, as the assumption of normal devia-
tions around hyperplanes is sensitive to large deviations in the orthogonal
direction. In addition to the inclusion of a uniform background cluster (Ban-
field and Raftery, 1993), one option would be to use a heavier tailed distribu-
tion, for example, Student’s t distribution with small degrees of freedom or
with degrees of freedom depending on the data. This would adapt Peel and
McLachlan (2000)’s EM algorithm for t mixture models from the elliptical
context to the linear. The adaptation is straightforward but computationally
more expensive. Further ideas include estimating the component covariance
matrices in the M-step in a robust way, for example, trimming off some
points.

With a′x = b, we are specifying a hyperplane in d− 1 dimensions. With
little effort, this could be generalized to a mixture of partial likelihoods, each
of which specifies a hyperplane of dimension q < d,

l(κ,p|x1:n) =

n
∏

i=1

K
∑

k=1

pkN(A′
kxi − bk;0, Σk), (3.20)

where A is of dimension d × (d − q), b is a vector of dimension d − q,
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and Σk is a (d − q) × (d − q) covariance matrix for the deviation from the
hyperplane. In the extreme case of a 0-dimension hyperplane, which is a
point, we have the usual mixture of multivariate normal distributions. A
mixture of components with various dimensions could be considered.

A Bayesian version of this methodology would be helpful if some clusters
are sparse but there is strong prior information about their approximate
locations or properties (e.g., the parameters defining lines).
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Chapter 4

Bayesian linear clustering
with application to single
nucleotide polymorphism
genotyping

4.1 Introduction

This paper was motivated by a clustering problem in single nucleotide poly-
morphism (SNP) genotyping. A single nucleotide polymorphism (SNP, pro-
nounced as “snip”) is a single-base variation in a genome. The genetic code
of life is specified by the four nucleotide “letters”: A (adenine), C (cyto-
sine), G (guanine) and T (thymine). There are two complementary DNA
strands. It is sufficient to consider only one. SNP variation occurs when a
single nucleotide, such as an A, is replaced by one of the other three letters
C, G or T. One SNP usually involves only two letters, referred to generi-
cally throughout this paper as allele X and allele Y . An individual has two
copies of genetic information passed from both parents. So the genotypes
at a specific genetic position have three possibilities: homozygote for allele
X, homozygote for allele Y and heterozygote for both alleles. SNP geno-
typing, determination of genotypes of individuals, plays an increasing role
in genetics studies.

For a small project, it is possible to make genotype calls manually. In
most cases, it is not hard for an expert to perform this job, and the “eye-
balling” procedure usually gives reasonable results due to its sophisticated
incorporation of prior information. For large-scale studies, however, manual

A version of this chapter will be submitted for publication. Authors: Guohua Yan,

William J. Welch and Ruben H. Zamar.
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scoring can become a daunting challenge. Typical SNP genotyping applica-
tions involve thousands of patients and hundreds of SNPs. Hence, reliable
automated genotyping methods are highly needed.

TaqMan SNP Genotyping Assay (Applied Biosystems) is a fluorescence-
based high-throughput genotyping technology. Blood samples of many in-
dividuals are arranged in a 96- or 384-well plate and are assayed simultane-
ously. Two fluorescent signals, x1 and x2, also called Allele.X and Allele.Y
below, are used to detect the presence or absence of the two alleles. There is
a third fluorescent signal presumably for normalizing the signal intensities.
However, its effectiveness is suspicious in some situations. See Chapter 2.

For quality controls purpose, some blood samples with known genotypes
are also included in a plate; these samples are called positive controls. As
well, some wells do not have genetic material; these are called negative
controls.

In the scatterplot of a SNP data set, there are typically four clusters,
as in Figure 4.1. In the lower-right, upper-left, and upper-right corners are
three clusters, presumably containing samples of wild-type homozygotes,
variant homozygotes, and heterozygotes, respectively. In the lower-left cor-
ner, the cluster may contain negative controls and/or some failed samples.
A clustering algorithm is usually employed to call the SNP genotypes. Al-
gorithms commonly used in the literature include k-means (Olivier et al.,
2002; Ranade et al., 2001) and model-based algorithms (Fujisawa et al.,
2004; Kang et al., 2004). The proprietary software Sequence Detection Sys-
tem is included in a thermal cycler. Usually human intervention of an expert
operator is usually needed to review the genotype calling results. Finding an
algorithm that works well for all plates/SNPs is a challenge, especially when
the variant allele homozygous genotype cluster is sparse, in which standard
clustering algorithms often fail.

Several clustering algorithms k-means, MCLUST (Fraley and AE, 2006),
LGA (Harrington, 2007), MIXREG (Turner, 2006) and MLC (Yan et al.,
2008) are applied to the genotyping data in Figure 4.1. Figure 4.2 dis-
plays their corresponding clustering results. We can see that all of these
algorithms fail to identify the five points in the upper-left corner as vari-
ant allele homozygotes while an expert operator would do with confidence.
These algorithms fail because the variant allele homozygous genotype cluster
is very sparse. This motivates us to adopt a Bayesian approach to incorpo-
rate available prior information. In addition, we found that it is convenient
to model the genotype clusters as linear structures.

Most clustering methods and algorithms cluster data points around “cen-
ters”. However, some data sets, as in the SNP genotype setting, form groups
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Figure 4.1: Scatterplot of one plate in which the variant allele homozygous
cluster has only five points (upper-left).

through linear relationships and standard clustering techniques are usually
not able to find these linear patterns. By linear clustering, we mean detect-
ing these linear clusters in a data set.

Van Aelst et al. (2006) proposed a method called Linear Grouping Al-
gorithm (LGA) for linear clustering problems without assuming a response
variable. Yan et al. (2008) proposed a partial likelihood approach which
models only the signed orthogonal distance from each data point to a hy-
pothesized hyperplane and treats all variables symmetrically.

In this paper we introduce a hierarchical modeling approach, which is
particularly appropriate for identifying sparse linear clusters. We show that
the sparse cluster in our SNP genotyping dataset can be successfully iden-
tified after a careful specification of the prior distributions. The rest of this
paper is organized as follows. In Section 2, we describe a hierarchical model
framework for linear clustering. In Section 3, we discuss in details sampling
issues. Our approach to linear clustering is illustrated with a relatively sim-
ple dataset (crab dataset) in Section 4. In Section 5, we revisit the SNP
genotyping motivating dataset and show that a careful specification of the
prior distributions is critical for the success of the clustering algorithm. A
brief discussion follows in Section 6.
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Figure 4.2: Clustering results of several clustering algorithms. For k-means
and MCLUST, the number of clusters are set to 4; for the remaining algo-
rithms, the number of lines are set to 3.
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4.2 Model specification

4.2.1 Model for one cluster: orthogonal regression

We first introduce a Bayesian approach for orthogonal regression (see e.g.,
Fuller, 1987). To model a single cluster, assume that the vector-valued data
x1, . . . ,xn are drawn by a random mechanism represented by a random
vector X in a d-dimensional space. We do not model the distribution of X
except for its deviation from an unknown hyperplane.

Let {x : a′x − b = 0} be a hyperplane. For identifiability purpose, we
assume that a′a = 1 and that the first nonzero element of a is positive. Our
prior information about this hyperplane is summarized by a prior distribu-
tion π(a, b). Given a and b, the signed orthogonal deviation a′X−b from the
hyperplane {x : a′x− b = 0} has a density function p(· |σ). Let π(σ) be the
prior distribution for σ. Denote θ = (a′, b, σ)′. The posterior distribution of
θ is

π(θ|x1, . . . ,xn) ∝
{

n
∏

i=1

p(a′xi − b|σ)

}

π(a, b)π(σ). (4.1)

Let x̄ and S be the sample mean and sample covariance matrix of
x1, . . . ,xn respectively. If we take p(·|σ) to be the normal density func-
tion N(· |0, σ2) and set π(a, b) ∝ 1 and π(σ) ∝ 1, the maximum a posteriori
estimator of θ is (â′, b̂, σ̂)′, where σ̂2 is the smallest eigenvalue of S, â is the
(standardized) eigenvector associated with σ̂2 and b̂ = â′x̄. This is a con-
nection with orthogonal regression, see for example, Fuller (1987); for the
distributions of the eigenvalue σ̂2 and the eigenvector â when X is normal,
see Anderson (2003).

4.2.2 Model for linear clustering

Now we assume that the data x1, . . . ,xn are drawn by a more complicated
random mechanism, still represented by random vector X in a d-dimensional
space which we do not model fully. The data now lie around K hyperplanes
{x : a′

kx = bk}, k = 1, . . . , K, for which our prior knowledge is summarized
in π(a1, b1, . . . ,aK , bK). Let Z = (Z1, . . . , ZK)′ be a random vector indicat-
ing these hyperplanes, Zk = 1 with probability pk for k = 1, . . . , K, Zk = 0
or 1 and

∑K
k=1 Zk = 1. Let p = (p1, . . . , pK)′. We denote by π(p) the prior

distribution for p. We assume that, conditional on Zk = 1, the signed or-
thogonal deviation a′

kX− bk has a density function p(·|σk) for k = 1, . . . , K.
Let π(σ1, . . . , σK) be the prior distribution for (σ1, . . . , σK)′. Let z1, . . . , zn

be the corresponding unobservable indicators for the data x1, . . . ,xn, where
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zi = (zi1, . . . , ziK)′ for i = 1, . . . , n. Let θ be the collection of all the param-
eters,

θ = (a′
1, b1, σ1, . . . ,a

′
K , bK , σK ,p′)′.

Formally, the posterior distribution of the unobservable cluster indicators
z1, . . ., zn and θ is

π(z1, . . . , zn, θ|x1, . . . ,xn)

∝
{

n
∏

i=1

K
∏

k=1

[pkp(a′
kxi − bk|σk)]

zik

}

π(a1, b1, . . . ,aK , bK)π(σ1, . . . , σK)π(p).

(4.2)

This formula is the basis for our linear clustering, in which we are primar-
ily interested in the cluster indicators z1, . . . , zn and the elements of θ are
nuisance parameters. A Gibbs sampling scheme based on this formula is
detailed in next section.

In addition, if we sum out the indicators z1, . . . , zn, the marginal distri-
bution for θ is

π(θ|x1, . . . ,xn)

∝
{

n
∏

i=1

K
∑

k=1

pkp(a′
kxi − bk|σk)

}

π(a1, b1, . . . ,aK , bK)π(σ1, . . . , σK)π(p).

(4.3)

This marginal distribution can be used if we would like to set up other
sampling schemes such as Metropolis-Hastings, tempering MCMC or SMC
methods. Once a MCMC sample for θ is available, it is straightforward to
sample cluster labels at each iteration. At iteration t, with θ(t), sample zi

from multinomial distribution

Pr(zi = k) ∝ p
(t)
k p((a′)(t)k xi − b

(t)
k |σ(t)

k ). (4.4)

After a sequence of iterations, we have a sample (z
(1)
i , . . . , z

(T )
i ) from pos-

terior marginal distribution π(zi|x1, . . . ,xn), for i = 1, . . . , n. The point xi

can be classified into the cluster with the largest frequency in the posterior
sample; and the largest frequency provides a good measure of the cluster
membership.
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4.3 Sampling algorithms

4.3.1 Gibbs sampling

The model framework in (4.2) is conceptually straightforward; the posterior
sampling, however, can be difficult, as in any Bayesian mixture modelling
(Celeux et al., 2000). We present here a sampling algorithm for normal
orthogonal deviations and, to make the algorithm more efficient, we integrate
some parameters by using conjugate priors. For ease of presentation, we
assume the data are in a 2-dimensional space.

The density functions for normal orthogonal deviations are

p(a′
kx − bk|σk) = N(a′

kx − bk; 0, σ2
k), (4.5)

for k = 1, . . . , K, where N(· ; 0, σ2) is the normal density function with mean
0 and variance σ2

k. The priors for (σ2
1, . . . , σ

2
K) follow independent inverse

Gamma distributions,

π(σ2
1, . . . , σ

2
K) =

K
∏

k=1

IG(σ2
k; δ1k, δ2k), (4.6)

where IG(· ; δk1, δk2) is the density function of inverse Gamma with shape
parameter δk1 and rate parameter δk2. In the case of equal variances, σ2

1 =
. . . = σ2

K = σ2, we assume

π(σ2) = IG(σ2; δ1, δ2), (4.7)

For b1, . . . , bK , we set

π(b1, . . . , bK |σ2
1, . . . , σ

2
K) =

K
∏

k=1

N(bk; κ1k, σ
2
k/κ2k). (4.8)

With these specifications, we consider the following special case of the pos-
terior distribution (4.2),

π(z1, . . . , zn, θ|x1, . . . ,xn)

∝
{

n
∏

i=1

K
∏

k=1

[pkN(a′
kxi − bk; 0, σ2

k)]
zik

}

×
{

K
∏

k=1

N(bk; κ1k, σ
2
k/κ2k)IG(σ2

k; δ1k, δ2k)

}

π(a1, . . . ,aK)π(p). (4.9)
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Conditional on θ and the data x1, . . . ,xn, z1, . . . , zn are independently dis-
tributed,

zi|(θ,xi) ∼ M(1, (p1N(a′
1xi − b1; 0, σ2

1), . . . , pKN(a′
Kxi − bK ; 0, σ2

K))′),
(4.10)

for i = 1, . . . , n, where M(n,p) is the probability mass function for multi-
nomial distribution with n trials and probability vector p. Let

nk =
n

∑

i=1

zik, x̄k =
1

nk

n
∑

i=1

zikxi, (4.11)

and

Ak =
n

∑

i=1

zik(xi − x̄k)(xi − x̄k)
′. (4.12)

The full conditional distribution of bk is

bk|e.e. = bk|(z1, . . . , zn,ak, σ
2
k,x1, . . . ,xn)

∼ N(
κ1kκ2k + nka

′
kx̄k

nk + κ2k
,

σ2
k

nk + κ2k
), (4.13)

for k = 1, . . . , K, where “e.e.” stands for “everything else”. We integrate
out b1, . . . , bK from (4.9) and get

π(z1, . . . , zn,a1, σ
2
1, . . . ,aK , σ2

K ,p|x1, . . . ,xn)

∝
{

K
∏

k=1

pnk

k (σ2
k)

−nk/2(nk + κ2k)
−1/2 exp(− δ∗2k

2σ2
k

)

}

×
{

K
∏

k=1

IG(σ2
k; δ1k, δ2k)

}

π(a1, . . . ,aK)π(p), (4.14)

where

δ∗2k = a′
kAkak + nk(a

′
kx̄k)

2 + κ2
1kκ2k − (κ1kκ2k + nka

′
kx̄k)

2

nk + κ2k
. (4.15)

The distribution of σ2
k conditioning on everything else except bk is

σ2
k|(z1, . . . , zn,ak,x1, . . . ,xn) ∼ IG(δ1k +

nk

2
, δ2k +

δ∗2k

2
). (4.16)
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If we assume that σ2
1 = . . . = σ2

K = σ2, then the distribution of σ2 condi-
tioning on z1, . . . , zn,a1, . . . ,aK ,p is

σ2|(z1, . . . , zn,a1, . . . ,aK ,x1, . . . ,xn) ∼ IG(δ1 +
n

2
, δ2 +

K
∑

k=1

δ∗2k

2
). (4.17)

We further integrate out σ2
1, . . . , σ

2
K from (4.14) and get

π(z1, . . . , zn,a1, . . . ,aK ,p|x1, . . . ,xn)

∝
{

K
∏

k=1

pnk

k (nk + κ2k)
−1/2Γ(δ1k +

nk

2
)(δ2k +

δ∗2k

2
)−(δ1k+

nk
2

)

}

× π(a1, . . . ,aK)π(p). (4.18)

For proportions p, we use a Dirichlet prior,

π(p) = D(p; α), (4.19)

where D(· ; α) is the Dirichlet density function with parameter α = (α1, . . .,
αK)′. The full conditional distribution of p is

p|e.e. = p|(z1, . . . , zn) ∼ D(α∗), (4.20)

where α∗ = (α∗
1, . . . , α

∗
K)′ with α∗

k = α + nk for k = 1, . . . , K. Therefore,

π(z1, . . . , zn,a1, . . . ,aK |x1, . . . ,xn)

∝
{

1

Γ(
∑K

i=1 α∗
k)

K
∏

k=1

Γ(α∗
k)(nk + κ2k)

−1/2Γ(δ1k +
nk

2
)(δ2k +

δ∗2k

2
)−(δ1k+

nk
2

)

}

× π(a1, . . . ,aK). (4.21)

Note that a′
kak = 1 for k = 1, . . . , K. We re-parameterize ak as

ak = (
1

√

1 + a2
k

,
ak

√

1 + a2
k

)′,

for k = 1, . . . , K and use normal priors for (a1, . . . , aK)′,

π(a1, . . . , aK) =
K
∏

k=1

N(ak; ν1k, ν
2
2k). (4.22)
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The conditional distribution of ak on cluster indicators is

π(ak|z1, . . . , zn,x1, . . . ,xn) ∝ Γ(δ1k+
nk

2
)(δ2k+

δ∗2k

2
)−(δ1k+

nk
2

)N(ak; ν1k, ν
2
2k).

(4.23)
From the above, discussion, a possible sampling algorithm is as follows.

Algorithm 1:

1. Initialize the algorithm with θ(0).

2. At iteration t,

(a) Sample cluster indicators z
(t)
1 , . . . , z

(t)
n from multinomial distribu-

tion (4.10), where θ is replaced with θ(t−1).

(b) i. Sample p(t) from Dirichlet distribution (4.20), where the clus-

ter indicators are replaced with z
(t)
1 , . . ., z

(t)
n .

ii. Sample a
(t)
1 , . . . , a

(t)
K using a random walk Metropolis-Has-

tings scheme from (4.23), where cluster indicators are re-

placed by z
(t)
1 , . . ., z

(t)
n , respectively.

iii. Sample (σ2
1)

(t), . . . , (σ2
K)(t) from inverse Gamma distribution

(4.16), where z1, . . . , zn, a1, . . . , aK are replaced by z
(t)
1 , . . .,

z
(t)
n , a

(t)
1 , . . ., a

(t)
K , respectively; in the case of equal variances

σ2
1 = . . . = σ2

K = σ2, sample (σ2)(t) from (4.17).

iv. Sample b1, . . . , bK from normal distribution (4.13), with all
parameters and cluster indicators replaced with those in the
current iteration.

4.3.2 Metropolis-Hastings sampling

Alternatively, we can sum out the indicators z1, . . . , zn and sample θ from
the marginal posterior distribution π(θ|x1, . . . ,xn) in (4.3). Standard ran-
dom walk Metropolis-Hastings algorithms can be used directly to sample
from the marginal posterior distribution π(θ|x1, . . . ,xn). However, we found
that it is advantageous to reparameterize θ so that the constraints such as
∑K

k=1 pk = 1 and a′a = 1 are implicitly incorporated (see Section 4.5).
Since the proposal distribution and the posterior distribution have the same
support, the sampling schemes on the transformed parameters are more
efficient. Suppose we reparameterize θ as

θ = φ(η),
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such that φ is a one-to-one map and that the domain of η is <q, where q is
the dimension of η. Let J be the Jacobian

J =
∂θ

∂η
,

with the understanding that only q free components of θ are used. Then
the marginal posterior distribution of η is

π(η|x1, . . . ,xn) = π(θ|x1, . . . ,xn)|J |. (4.24)

To sample η, we first run a Gibbs sampler, within which a random walk
Metropolis step is used if a full conditional distribution is not of an explicit
form.

Algorithm 2.0:

1. Initialize the algorithm with η(0).

2. At iteration t, update η
(t−1)
1 , . . . , η

(t−1)
q sequentially. For the jth com-

ponent,

(a) Sample ν from N(η
(t−1)
j , s2

j ).

(b) Compute r = min{1,
π(η

(t)
1 ,...,η

(t)
j−1,ν,η

(t−1)
j+1 ,...,η

(t−1)
q |x1,...,xn)

π(η
(t)
1 ,...,η

(t)
j−1,η

(t−1)
j ,η

(t−1)
j+1 ,...,η

(t−1)
q |x1,...,xn)

}.

(c) Update η
(t)
j = ν with probability r.

After a burn-in period, we can get a crude estimate Σ̂ of the covariance
matrix of η. In the second stage of the algorithm, we update η using a
Metropolis-Hastings sampler in one block.

Algorithm 2:

1. Initialize the algorithm with η(0).

2. At iteration t,

(a) Sample ν from N(η(t−1), s2Σ̂).

(b) Compute r = min{1, π(ν|x1,...,xn)

π(η(t−1)|x1,...,xn)
}.

(c) Update η(t) = ν with probability r.

Here we use an adaptive strategy; see page 307, Gelman et al. (2004).
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4.4 Australia rock crab data

Now we consider the rock crab data set of Campbell and Mahon (1974) on
the genus Leptograpsus. We focus on the 100 blue crabs, 50 of which are
males and 50 are females. Each crab has five measurements, FL, the width
of frontal lip, RW, the rear width, CL, the length along the midline, CW,
the maximum width of the carapace, and BD, the body depth in mm. As in
Peel and McLachlan (2000), we are interested in the classification of male
and female crabs. Peel and McLachlan (2000) had 18 crabs misclassified
applying a mixture of two t distributions using all the five measurements.
Using a mixture of two normal distributions resulted in one more crab being
misclassified.

Inspecting all pairwise scatter plots of the data set, RW and CL display
two fairly well separated lines as in Figure 4.3. We shall classify these crabs
using only RW and CL. The number of clusters is set to 2. We run the
Gibbs sampler “Algorithm 1” based on (4.2).

To initialize the sampler, we adopt the strategy of Van Aelst et al.
(2006). We randomly select K = 2 mutually exclusive subsets of d + 1 = 3
observations from x1, . . . ,xn. For k = 1, . . . , K, we compute the maxi-

mum partial likelihood estimates a
(0)
k , b

(0)
k and (σ2

k)
(0) from the kth sub-

set of d + 1 observations (see Subsection 2 of Yan et al. (2008)). The

proportions p
(0)
k are all set as 1/K. The initial values for θ are then

θ(0) = ((a′
1)

(0), b
(0)
1 , (σ2

1)
(0), . . . , (a′

K)(0), b
(0)
K , (σ2

K)(0), p
(0)
1 , . . . , p

(0)
K )′. We then

monitor the evolution of cluster indicators z1, . . . , zn. If the number of points
in one cluster has fallen below d + 1, the sampler will get stuck and never
recover from it; we then re-initialize the sampler with the above strategy.

With the above initialization strategy, we actually impose a constraint on
the distribution of cluster labels such that any allocation leading to less than
d + 1 points for a cluster is not allowed, i.e., has a probability of zero. As a
result, we can then specify the prior distributions of component parameters
with vague priors. Specifically, we set the priors as follows.

ak ∼ N(0, 1000002), π(bk) ∝ 1, σ2
k ∼ IG(0.0001, 0.0001), pk ∝ 1, for k = 1, 2.

To alleviate the effect of autocorrelations, we keep only one simulated
point for every ten iterations. Hereafter the iteration numbers are based on
the “thinned” samples.

Figure 4.4 displays the evolution of sampled values of θ for 11, 000 it-
erations. Figure 4.5 displays the evolution of log unnormalized posterior
density values of sampled values for (θ, z1, . . ., zn) for 11, 000 iterations.
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Figure 4.3: Pairwise scatter plots of the blue crab data.
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From these two figures we found no reason to suspect that the sampler has
reached a stationary distribution. Figure 4.6 displays the autocorrelations
of sampled values for θ for 11, 000 iterations. The autocorrelations decay
fast, especially for variances σ2

1 and σ2
2 and proportions p1 and p2.

Further checking the density curves in Figure 4.7 of sampled values for
θ for 10, 000 iterations after a burn-in of 1000 iterations, we observe that
all the estimated density curves are roughly unimodal. There is no obvious
reason for the existence of minor modes. In Figure 4.8, we demonstrate
the isolation of the two modes of the marginal posterior distribution of θ.
One mode is estimated by maximum a posteriori estimation; the other one
is obtained by permutation of cluster indices. The horizontal axis t ranges
from 0 to 1, the vertical axis is the unnormalized marginal posterior density
value of (1−t)θ̂1 +tθ̂2, where θ̂1 and θ̂2 are the two estimated modes. From
this plot, we can see that the two modes are very peaky and isolated. It
is then understandable that label-switching does not occur. While Gibbs
sampling is generally criticized for not traversing the whole support of the
posterior distribution for θ, it is reasonable to think that it has fully explored
the support around one isolated mode in this data set.

Figure 4.9 shows the posterior probabilities of being classified into Class
1 of the 100 crabs estimated from 10, 000 iterations using the Gibbs sampler
Algorithm 1, after a burn-in of 1000 iterations. If we were to classify all
the crabs, i.e., classifying a crab to the class with larger posterior proba-
bility, five crabs are misclassified, as indicated in the upper-left corner of
Figure 4.9. The number of misclassification is the same as that of the par-
tial likelihood approach in Chapter 3; this result is expected as we used
essentially noninformative priors in this example. When informative priors
are necessary, as in our next example, the Bayesian approach does have an
advantage.

We have also run the adaptive Metropolis-Hastings algorithm for the
simulation of marginal posterior distribution for θ and get very similar re-
sults. It runs much slower than the Gibbs sampler though.

4.5 Taqman single nucleotide polymorphism
genotyping data

Now we analyze the SNP genotyping data in Figure 4.1 using the linear clus-
tering strategy. We fit a mixture of five components to the SNP genotyping
data, to represent the three genotype clusters, the negative controls, and the
failed samples, respectively. The three genotype components are modelled
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Figure 4.4: Evolution of sampled values for θ for 11, 000 iterations using
Algorithm 1 for blue crab data.
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Figure 4.5: Evolution of log unnormalized posterior density of sampled
values for (θ, z1, . . ., zn) for 11, 000 iterations using Algorithm 1 for blue
crab data.

linearly. The fourth component is modelled with a bivariate distribution
with diagonal covariance matrix, and the fifth is a uniform component for
possible outlying points.

In the model fitting, we use the known labels for the negative controls.
All the negative controls are assigned to the fourth component a priori,
as are all points with both signals less than the corresponding maximum
intensities of negative controls. Denote the set of these points by N .

Hence, the modified mixture likelihood for the problem is

L(θ|x1, . . . ,xn)

=
∏

i6∈N







3
∑

k=1

pk
1

σk
t2(

xi1 + akxi2

σk

√

1 + a2
k

− bk

σk
) + p4t2(xi; µ, Σ) + p5U(xi; R)







×
∏

i∈N

t2(xi; µ, Σ), (4.25)

where t2 is the density for Student’s t distribution with 2 degrees of freedom,

Σ =

[

σ11 0
0 σ22

]

and U is the uniform distribution on the rectangular re-

gion R given by (min(xi1), max(xi1)) × (min(xi2), max(xi2)). For robustness
consideration, we use Student’s t distribution for orthogonal deviation of a
point from a line and also for the elliptical distribution for negative control
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Figure 4.6: Autocorrelations of sampled values for θ for 11, 000 iterations
using Algorithm 1 for blue crab data.
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Figure 4.7: Density curves of sampled values for θ for 10, 000 iterations
using Algorithm 1, after a burn-in of 1000 iterations for blue crab data.
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points. This mix of linear, elliptical and uniform components demonstrates
the flexibility of our modelling approach.

Based on the subject matter knowledge, we add various constraints in
the specification of priors. For the slopes −1/ak of lines,

0 < − 1

a1
< − 1

a2
< − 1

a3
, − 1

a3
+

1

a2
> − 1

a2
+

1

a1
, (4.26)

which maintains the order of positive slopes of the three genotype clusters
and requires that the “gap” between the two lines of the heterozygotic clus-
ters and the variant allele homozygotic clusters cannot be too small relative
to the “gap” between the lines of the wild type allele homozygotic clus-
ters and the heterozygotic clusters. These constraints on slopes are natural
for SNP genotyping data. To implement Algorithm 2, we reparameterize
(a1, a2, a3) into (η1, η2, η3),







a1 = −1/ exp(η1),
a2 = −1/(exp(η1) + exp(η2)),
a3 = −1/(exp(η1) + 2 exp(η2) + exp(η3)).

(4.27)

It is obvious that the constraint (4.26) is satisfied.
In the case of few points in the variant allele homozygotic cluster, the

orthogonal variance σ2
3 may not be estimated reliably. Hence we require

σ2
3 = σ2

1, (4.28)

and then apply a log transformation to (σ2
1, σ

2
2),

σ2
1 = exp(η7), σ2

2 = exp(η8), (4.29)

For variances (σ11, σ22), a log transformation is applied,

σ11 = exp(η11), σ22 = exp(η12). (4.30)

For the proportions, we add the constraint

p3 < p1, p3 < p2, (4.31)

which requires the proportion of variant allele homozygotic points is less than
that of the other two genotype clusters. We reparameterize the proportions
p first with q for constraint (4.31),























p1 = q1 + q3/3,
p2 = q2 + q3/3,
p3 = q3/3,
p4 = q4,
p5 = q5.

(4.32)
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and then apply a logit transformation to q,







q1 = exp(η13)/(1 + (exp(η13) + . . . + exp(η16))),
. . . ,
q4 = exp(η16)/(1 + (exp(η13) + . . . + exp(η16))).

(4.33)

With the constraints (4.26), (4.28) and (4.31), we can fully identify the
five components of the mixture. Label-switching is effectively prevented by
these informative constraints. In addition, conforming to these constraints,
noninformative priors cause no problem to guarantee a proper posterior
distribution.

From (4.27), (4.29), (4.30) and (4.33), we obtain a one-to-one map from

θ = (a1, a2, a3, b1, b2, b3, σ
2
1, σ

2
2, σ

2
3, µ1, µ2, σ11, σ22, p1, . . . , p5)

to
η = (η1, η2, η3, b1, b2, b3, η7, η8, µ1, µ2, η11, η12, η13, η14, η15, η16),

in which the constraints (4.26), (4.28) and (4.31) are satisfied. The absolute
value of the Jacobian of the transformation is

|J | =

∣

∣

∣

∣

∂θ

∂η

∣

∣

∣

∣

=|a2
3(a1 − a2)(a2 − 2a1)/a1|σ2

1σ
2
2σ11σ22(p1 − p3)(p2 − p3)p3p4p5. (4.34)

We set the priors as follows.

ηk ∼ N(0, 1010), bk ∼ N(0, 10−6), σ2
k ∼ IG(0.0001, 0.0001), for k = 1, 2, 3,

and

π(µ, σ11, σ22) ∝
1

σ11σ22
, π(q) ∝ 1.

The priors for b1, b2, b3 is strong with the implication that all three lines
should roughly pass through the origin; all priors for others parameters are
vague except the constraints specified above.

The five-component mixture model is applied to the plate shown in Fig-
ure 4.1. For an algorithm to work in this relatively high dimensional prob-
lem, it is essential that the initial state be close to the substantial support of
the posterior distribution. We first run the “optim” function in the R lan-
guage multiple times, which is initialized with standard normal N(0, I16).
Then we initialize the algorithm with the solution with the largest posterior
density, say η(0).
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Figure 4.10: Evolution of log unnormalized posterior density of sampled
values for η for 11, 000 iterations using Algorithm 2 for the SNP genotyping
data.

We first run Algorithm 2.0, which is relatively slow, to get a rough
estimate of the covariance matrix of η. Next we run the faster Algorithm 2.
To alleviate the effect of autocorrelations, we keep only one simulated point
for every ten iterations. Hereafter the iteration numbers are based on the
“thinned” samples.

Figure 4.10 displays the evolution of log unnormalized posterior density
values of sampled values for η for 11, 000 iterations. Figure 4.11 displays
the evolution of sampled values of θ for 11, 000 iterations. The first three
panels are for slopes of the three lines −1/a1, −1/a2 and −1/a3. From
these two figures we conclude empirically that the sampler has reached a
stationary distribution. Figure 4.12 displays the autocorrelations of sampled
values for θ for 11, 000 iterations. There are high autocorrelations in most
parameters indicating that the sampler is not very efficient; more efficient
transformations/samplers shall be investigated in future research.

Further checking the density curves in Figure 4.13 of sampled values for
θ for 11, 000 iterations, we observe that all the estimated density curves are
roughly unimodal.

The clustering results of this plate is displayed in Figure 4.14 where
each point is classified into the cluster with the largest posterior member-
ship probability. We note that the Bayesian method does identify several
points into the variant allele homozygous genotype clusters (represented by
“4” in Figure 4.14). Quite a few points are classified as background noise
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Figure 4.11: Evolution of sampled values for θ for 11, 000 iterations using
Algorithm 2 for the SNP genotyping data. The first three panels are for
slopes.
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Figure 4.12: Autocorrelations of sampled values for θ for 11, 000 iterations
using Algorithm 2 for the SNP genotyping data.
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Figure 4.13: Density curves of sampled values for θ for 11, 000 iterations
using Algorithm 2 for the SNP genotyping data.
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Figure 4.14: Clustering results of the SNP genotyping data in which points
are classified into the cluster with the largest posterior membership proba-
bility.

(represented by “5”); this is conservative because the orthogonal variation
in the wild-type allele homozygous genotype cluster XX is very small and
the orthogonal variation of cluster YY is linked to that of cluster XX.

By depleting points in the YY cluster, we have observed that the Bayesian
method also works if only one point is present in the YY cluster, which is
due to the informative priors and constraints. Some other plates with sparse
clusters are also analyzed using the Bayesian approach and the clustering
results are satisfactory; the clustering results are omitted. For plates with-
out sparse clusters, the effect of the above prior specification is minimal, we
usually obtain similar clustering results to that of the partial likelihood ap-
proach in Chapter 3. Figure 4.15 shows the clustering results of the Bayesian
approach for the plate analyzed in Chapter 3.

4.6 Discussion

We have proposed a Bayesian approach to linear clustering. It is flexible in
the sense that only the deviation from a hyperplane is modelled parametri-
cally; the position on the hyperplane is not modelled. The advantage of this
approach is illustrated in the genotyping example, where the distribution
along the line is complex and difficult to model. Furthermore, as was also
illustrated in the SNP genotyping, we can incorporate elliptical clusters as
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Figure 4.15: Clustering results of the Bayesian approach for a plate without
a sparse cluster.

necessary and a background cluster, borrowing from standard model-based
clustering.

In our examples, label-switching is prevented either by a Gibbs sampler
applied to a posterior distribution with isolated modes or by informative pri-
ors. In more general situations, we may need the ideas of tempering MCMC
or Sequential Monte Carlo to explore the whole support of the posterior
distribution and to deal with the label-switching problem.

In this paper, the number of linear clusters are assumed known. In the
situation of unknown number of clusters, our first thought is to investi-
gate the feasibility of the Reversible Jump MCMC of Richardson and Green
(1997). This may imply heavy computational burden. A related problem is
the scalability of the Bayesian approach to large datasets and high dimen-
sions. We leave these problems for further research.
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Chapter 5

Consistency and asymptotic
normality in a partial
likelihood approach to linear
clustering

5.1 Introduction

By linear clustering, we mean detecting linearly shaped clusters in a data
set. We proposed in Yan et al. (2008) a parsimonious partial likelihood
approach to linear clustering. Assume that the data x1, . . . ,xn are drawn by
a random mechanism, represented by random vector X in a d-dimensional
space which we do not model fully. Assume that The data lie around K
hyperplanes {x : a′

kx = bk}, k = 1, . . . , K. Let Z = (Z1, . . . , ZK)′ be a
random vector indicating these hyperplanes and Zk = 1 with probability pk

for k = 1, . . . , K. Let p = (p1, . . . , pK)′. We assume that, conditional on
Zk = 1,

a′
kX − bk ∼ N(0, σ2

k), k = 1, . . . , K.

Let z1, . . . , zn be the corresponding unobservable indicators for the data
x1, . . . ,xn. Let κ be the collection of component parameters, κ = (a′

1, b1,
σ2

1, . . ., a′
K , bK , σ2

K)′, and θ = (κ′,p′)′. The indicators z1, . . . , zn can be
regarded as realizations of random vectors Z1, . . . ,Zn, which in turn are an
independent and identically distributed sample from Z. After integrating
out the indicators z1, . . . , zn, the partial likelihood function for parameters

A version of this chapter will be submitted for publication. Authors: Guohua Yan,

William J. Welch and Ruben H. Zamar.
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Chapter 5. Consistency and asymptotic normality

θ is

L(θ|x1, . . . ,xn) =
n

∏

i=1

K
∑

k=1

pkN(a′
kxi − bk; 0, σ2

k). (5.1)

As in the usual normal mixture model, the partial likelihood function
(5.1) is unbounded: when a cluster consists only of points lying on a hyper-
plane, the contribution of each of these points to the partial likelihood tends
to infinity. The infinity occurs on the boundary of the parameter space.
We adopt the constraint of Hathaway (1985). Specifically, the following
constraint is imposed on the standard deviations,

min
1≤i6=j≤K

(σi/σj) ≥ c > 0, (5.2)

where c is a known constant determined a priori. In this article, con-
straint (5.2) is assumed whenever we refer to the partial likelihood func-
tion (5.1).

The partial likelihood function (5.1) naturally brings the clustering prob-
lem into a finite mixture model framework. An EM algorithm can be used to
maximize (5.1); once an maximum partial likelihood estimate θ̂ is obtained,
data point xi can be assigned to the component with the largest posterior
probability. The probabilities are given by

ŵik =
p̂kN(â′

kxi − b̂k; 0, σ̂2
k)

∑K
k=1 p̂kN(â′

kxi − b̂k; 0, σ̂2
k)

, i = 1, . . . , n; k = 1, . . . , K, (5.3)

which also serve as a measure of uncertainty of classifying data point xi.
We shall investigate the asymptotic properties of solutions to the partial

likelihood function (5.1). As (5.1), regarded as a function of x, is not a den-
sity function for X, classical results of asymptotics on maximum likelihood
estimators cannot be used directly. We borrow ideas in the formulation and
in the proofs of results from Garćıa-Escudero et al. (2007), Wald (1949),
Redner (1981) and Hathaway (1983, 1985).

The rest of this article is organized as follows. Section 5.2 discusses
the population counterpart of the partial likelihood function (5.1) and es-
tablishes the existence of its maximum. Section 5.3 proves the consistency
of a maximum of the partial likelihood function (5.1) to the maximum of
the population counterpart. The asymptotic normality of a solution of the
partial likelihood function (5.1) is investigated in section 5.4.
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Chapter 5. Consistency and asymptotic normality

5.2 Population version of the objective function

To motivate the population version of the objective function (5.1), we first
review the connection between maximum likelihood estimation and the Kull-
back-Leibler divergence. See for example Kullback and Leibler (1951) and
Eguchi and Copas (2006).

Suppose that probability distributions P and Q are absolutely continu-
ous with respect to the Lebesgue measure λ. Let p(x) and q(x) be the density
functions (Radon-Nikodym derivatives) of P and Q respectively with respect
to λ. Then the Kullback-Leibler divergence from P to Q is defined as

DKL(P‖Q) =

∫

log
p(x)

q(x)
dP (x).

Given a random sample x1, x2, . . . , xn from the underlying distribution
P , let Pn be the empirical distribution. Now let Qθ be a statistical model
having density f(x; θ) with respect to λ, where θ is a collection of unknown
parameters. The Kullback-Leibler divergence from P to Qθ is

DKL(P‖Qθ) =

∫

[log p(x) − log f(x; θ)]dP (x).

The empirical version of DKL(P ||Qθ) is

DKL(Pn‖Qθ) =
1

n

n
∑

i=1

[log(1/n) − log f(xi; θ)]

= log(1/n) − 1

n

n
∑

i=1

log f(xi; θ).

Apart from the factor 1/n, the second term is just the log likelihood function.
Hence, maximizing the likelihood function is equivalent to minimizing the
Kullback-Leibler divergence DKL(Pn‖Qθ). If P = Qθ0 for some θ0, then
a maximum likelihood estimator is strongly consistent under some regular
conditions, i.e., it converges almost surely to arg minθ DKL(P‖Qθ).

Back to the linear clustering setting, let

f(x; θ) =

K
∑

k=1

pkfk(x; θ), (5.4)

where

fk(x; θ) =
1√

2πσk

exp

(

−(a′
kx − bk)

2

2σ2
k

)

,
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Chapter 5. Consistency and asymptotic normality

and x is a generic point in <d. We still use P to denote the underlying
distribution of the data and use p(x) to denote the density of P with respect
to the Lebesgue measure λd. Although f(x; θ) cannot be a density as a
function of x, we can nevertheless define

DKL(P‖f(·; θ)) =

∫

[log p(x) − log f(x; θ)]dP (x),

or equivalently define

g(θ) =

∫

log f(x; θ)dP (x), (5.5)

and show that the maximum partial likelihood solution of (5.1) converges
to the set

{θ0 : g(θ0) = max
θ

g(θ)}.

With constraint (5.2), The parameter space is

Θc =







θ = (a1, b1, σ
2
1, . . . ,aK , bK , σ2

K , p1, . . . , pK) :
0 < pk < 1,a′

kak = 1,−∞ < bk < ∞, σk > 0, k = 1, . . . , K.
∑K

k=1 pk = 1, mini,j σi/σj ≥ c > 0.







.

We show in this section that the supremum of g is finite and attainable.
First we prove the following lemma.

Lemma 5.1 Let P be an absolutely continuous probability measure with
finite second moments. Let 0 < c < 1, if c ≤ σk ≤ 1/c, for all k = 1, . . . , K.
Let

s(κ) ≡
∫

min
k

(a′
kx − bk)

2

σ2
k

dP (x).

Then s(κ) attains its infimum s0 > 0 under constraint (5.2) at some κ0.

Proof It is obvious that 0 < s(κ) < ∞. First we show that it is possible to
bound bk, k = 1, . . . , K and the infimum is not missed.

Suppose that there is a positive number r < |bk|, for k = 1, . . . , K. Let
r0 > 0 such that Prob(|X| ≤ r0) > 0. Then when r > r0,

s(θ) ≥ c2(r − r0)
2Prob(|X| ≤ r0) → ∞, as r → ∞.
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Chapter 5. Consistency and asymptotic normality

Now without loss of generality, we assume that |bk| ≤ v for some v and
for k = 1, . . . , K − 1. Let r = c2(|bK | − v). Then when |bK | is getting large,

s(κ) ≥
∫

|x|≤r
min

1≤k≤K

(a′
kx − bk)

2

σ2
k

dP (x)

=

∫

|x|≤r
min

1≤k≤K−1

(a′
kx − bk)

2

σ2
k

dP (x)

→
∫

min
1≤k≤K−1

(a′
kx − bk)

2

σ2
k

dP (x), as |bK | → ∞

≥
∫

min
1≤k≤K

(a′
kx − bk)

2

σ2
k

dP (x),

where the |bK | in the last term is arbitrary number bounded from below by
v.

Since

min
k

(a′
kx − bk)

2

σ2
k

≤ 2(|x|2 + v2)

c2
,

by Lebesgue’s dominated convergence theorem, s is continuous. Now it is
constrained on a compact set, the infimum of s is attainable for some κ0 as
s0 = s(κ0) > 0.

Theorem 5.1 Let P be an absolutely continuous probability measure with
finite second moments. Then the supremum of g, which is defined in (5.5),
over Θc is finite and attainable.

Proof Let σ2
k = τ2

kσ2 for k = 1, . . . , K. For every x and θ, we have

log f(x, θ) ≤ log max
k

fk(x, θ) = max
k

log fk(x, θ).

Therefore,

g(θ) ≤
∫

max
k

log fk(x, θ)dP (x)

=

∫

−min
k

{

1

2
log(2πτ2

kσ2) +
(a′

kx − bk)
2

2τ2
kσ2

}

dP (x)

≤ −1

2
log(2πc2) − log σ − 1

2σ2

{
∫

min
k

(a′
kx − bk)

2

τ2
k

dP (x)

}

≤ −1

2
log(2πc2) − log σ − s0

2σ2
,
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where Lemma 5.1 is used. Clearly, the last term attains its maximum at
σ2 = s0 and it goes to −∞ as σ → 0 or ∞. Take an arbitrary θ0, there exist
positive numbers s1 and s2 such that g(θ) < g(θ0) uniformly for θ such that
σ < s1/c or σ > cs2.

Now if we bound s1/c ≤ σ ≤ cs2, we have

log f(x, θ) ≥ log min
k

fk(x, θ)

= min log fk(x, θ)

= min(−1

2
log(2πτ2

kσ2) − (a′
kx − bk)

2

2τ2
kσ2

)

≥ −1

2
log(2πs2

2) −
2(|x|2 + maxk |bk|2)

2s2
1

,

and

log f(x, θ) ≤ log max
k

fk(x, θ) ≤ −1

2
log(2πs2

1).

By Lebesgue’s dominated convergence theorem, g is continuous.
If bk → ±∞ for some k, then by Fatou’s lemma, we have

lim sup
bk→±∞

g(θ) ≤
∫

lim sup
bk→±∞

log f(x, θ)dP (x) =

∫

log
∑

k′ 6=k

pk′fk′(x, θ)dP (x).

Therefore, there exist real numbers t1 and t2 such that we would not
miss the supremum of g, if we bound θ in the compact set

{θ : s1 ≤ σ2
k ≤ s2, t1 ≤ bk ≤ t2, for all k = 1, . . . , K}.

Since g is continuous, its supremum is attainable.

Remark In the proof it is not ruled out that some pk may be 0 for g to
attain its maximum.

5.3 Consistency

First we prove that there exists a global maximizer of the partial likelihood
function (5.1) over Θc.

Theorem 5.2 Let {x1, . . . ,xn} be a set of points in <d that cannot fit in
K hyperplanes. That is, there do not exist {(ak, bk) : k = 1, . . . , K} such
that, for every xi, a′

kxi = bk for some k (which may depend on i). Let

l(θ) =
n

∑

i=1

log f(xi, θ).
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Then a constrained global maximizer of l(θ) over Θc exists.

Proof Let B(0, r) = {x : |x| ≤ r} be a ball that contains all the points
x1, . . . ,xn. For any θ, if there is some bk such that |bk| > r, then (a′

kxi −
bk)

2 ≥ (a′
kxi − rsgn(bk))

2. So l(θ) is not decreased if bk is replaced with
rsgn(bk) whenever |bk| ≥ r. So we can bound θ such that |bk| ≤ r, for all
k = 1, . . . , K.

Let

s0 = min
{(a1,b1,...,aK ,bK):a′

k
ak=1,|bk|≤r}

max
i

min
k

(a′
kxi − bk)

2.

Since the points x1, . . . ,xn cannot fit in K hyperplanes, we have s0 > 0.
There exists a point xj such that (a′

kxj − bk)
2 ≥ s0 for all k = 1, . . . , K.

Note also that 1/σk ≤ 1/(cσ1) and that 1/σk ≥ c/σ1, we have

l(θ) ≤
∑

i6=j

log(
∑

k

pk
1√

2πσk

) + log(
∑

k

pk
1√

2πσk

exp(− s0

2σ2
k

))

≤ (n − 1) log(
∑

k

pk
1√

2πcσ1

) + log(
∑

k

pk
1√

2πcσ1

exp(− cs0

2σ2
1

))

= −n log(
√

2πcσ1) −
cs0

2σ2
1

.

The last term tends to −∞ as σ2
1 tends to zero. If some σ2

k tends to zero,
so do all other σ2

ks. Thus, there exists a positive number s1 such that
l(θ) ≤ l(θ0) whenever a σ2

k < s1.
On the other hand,

l(θ) ≤
∑

i

log(
∑

k

pk
1√

2πσk

) ≤ n log(max
k

1√
2πσk

) = −n min
k

log(
√

2πσk).

If some σ2
k tends to ∞, so do all other σ2

k’s and then l(θ) decreases to −∞.
Similarly, there is a positive number s2 such that l(θ) ≤ l(θ0) whenever a
σ2

k > s2.
Therefore, we can bound θ in a compact set

{θ : |bk| ≤ r, s1 ≤ σ2
k ≤ s2, for all k = 1, . . . , K}.

As l is continuous, a global maximizer over Θc exists.

Corollary 5.1 Let P be an absolutely continuous probability measure with
finite second moments. Let X1, . . . ,Xn be a sample from P . Then a con-
strained global maximizer of l(θ|X1, . . . ,Xn) exists almost surely if n ≥
Kd + 1.
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Proof As P is absolute continuous, X1, . . . ,Xn are distinct with probability
1. We need Kd points to determine K hyperplanes. Each of the remaining
points lies on one of these hyperplanes with probability 0, since the set of
points in K hyperplanes has zero probability.

To prove the consistency result, we need some preliminary results.

Lemma 5.2 If the probability measure P has finite second moments, then
∫

| log f(x, θ)|dP (x) < ∞.

Proof
∫

| log f(x, θ)| dP (x)

=

∫

[log f(x, θ)]+ dP (x) +

∫

[log f(x, θ)]−dP (x)

≤
∫

{x:f(x,θ)≥1}
[log max

k
fk(x, θ)]+dP (x)

+

∫

{x:f(x,θ)<1}
[log min

k
fk(x, θ)]−dP (x)

≤
∫

{x:f(x,θ)≥1}

∑

k

[log fk(x, θ)]+dP (x)

+

∫

{x:f(x,θ)<1}

∑

k

[log fk(x, θ)]−dP (x)

=
∑

k

∫

| log fk(x, θ)|dP (x)

≤
∑

k

[| log(
√

2πσk)| +
∫

(a′
kx − bk)

2

2σ2
k

dP (x)]

<∞.

Lemma 5.3 Let

w(x, θ, ρ) = sup
{θ′:|θ′−θ|≤ρ}

f(x, θ′).

Then
∫

[log w(x, θ, ρ)]+dP (x) < ∞.
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Proof In fact,

w(x, θ, ρ) ≤ sup
{θ′:|θ′−θ|≤ρ}

∑

k

fk(x, θ)

≤ sup
{θ′:|θ′−θ|≤ρ}

∑

k

1√
2πσk

≡ M(θ, ρ).

Therefore,
∫

[log w(x, θ, ρ)]+dP (x) ≤
∫

[log M(θ, ρ)]+dP (x) < ∞.

Lemma 5.4

lim
ρ→0

∫

log w(x, θ, ρ)dP (x) =

∫

log f(x, θ)dP (x).

Proof Since log w(x, θ, ·) is an increasing function of ρ, as ρ → 0, [log w(x,
θ, ρ)]− increases. By the monotone convergence theorem,

lim
ρ→0

∫

[log w(x, θ, ρ)]−dP (x) =

∫

[log f(x, θ)]−dP (x).

When ρ is sufficiently small, [log w(x, θ, ρ)]+ is dominated by [log w(x, θ,
ρ0)]

+ for some ρ0. And the latter is integrable by Lemma 5.3. By Lebesgue’s
dominated convergence theorem,

lim
ρ→0

∫

[log w(x, θ, ρ)]+dP (x) =

∫

[log f(x, θ)]+dP (x).

Notice that
∫

[log w(x, θ, ρ)]+dP (x) and
∫

[log f(x, θ)]+dP (x) are finite, the
lemma is proved.

Note that points in Θc are not identifiable for f(x; ·). The function f(x; ·)
remains the same if we permutate the labels 1, . . ., K; pk1 and pk2 are not
identifiable if (ak1 , bk1 , σ

2
k1

) = (ak2 , bk2 , σ
2
k2

). Thus the consistency result is
in a quotient topology space. Let ∼ be an equivalent relation on Θc such
that θ1 ∼ θ2 if and only if f(x; θ1) = f(x; θ2) almost surely in P . Denote
by Θq

c the quotient topological space consisting of all equivalent classes of
∼. For a point θ0 that maximizes

∫

log f(x; θ)dP (x), its equivalent class in
Θq

c is denoted by θ
q
0.
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Theorem 5.3 Let X1, . . . ,Xn be a sample from P which is absolutely con-
tinuous with finite second moments. Let B be a compact subset of Θc that

contains C0. Let θ̂
(n)

be a global maximizer of l(θ|X1, . . . ,Xn) on B. Then

θ̂
(n) → θ

q
0 almost surely in the topological space Bq.

Proof Let ω be a closed subset of B which does not intersect with C0. For
each point θ in ω, we associate a positive value ρθ such that

E log w(X, θ, ρθ) < E log f(X, θ0),

where θ0 is a point in C0. The existence of such a ρθ follows from Lemma 5.4
and the definition of C0 (C0 exists because P has finite second moments,

by Theorem 5.1; θ̂
(n)

exists because P is absolutely continuous, by Theo-
rem 5.2).

Since B is compact, its closed subset ω is also compact. There exists a
finite number of points θ1, . . . ,θh in ω such that

ω ⊂
h
⋃

j=1

{θ′ : |θ′ − θj | ≤ ρθj
}.

Then

0 ≤ sup
θ∈ω

f(x1, θ) . . . f(xn, θ) ≤
h

∑

j=1

w(x1, θj , ρθj
) . . . w(xn, θj , ρθj

).

By the strong law of large numbers,

Prob

{

lim
n→∞

n
∑

i=1

[log w(Xi, θj , ρθj
) − log f(Xi, θ0)] = −∞

}

= 1,

for j = 1, . . . , h. That is,

Prob

{

lim
n→∞

w(X1, θj , ρθj
) . . . w(Xn, θj , ρθj

)

f(X1, θ0) . . . f(Xn, θ0)
= 0

}

= 1,

for j = 1, . . . , h. Therefore, we have

Prob

{

lim
n→∞

supθ∈ω f(X1, θ) . . . f(Xn, θ)

f(X1, θ0) . . . f(Xn, θ0)
= 0

}

= 1. (5.6)

Denote |θ − C0| ≡ minθ0∈C0 |θ − θ0|. The minimum is attainable since
C is a closed set in B and hence compact. We need only to prove that
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all limit points θ∗ of the sequence θ̂
(n)

are in C0. If not, there exists a
limit point θ∗ and an ε > 0 such that |θ∗ − C0| ≥ ε. This implies that

there are infinitely many θ̂
(n)

that lie in ωε ≡ {θ : |θ − C0| ≥ ε}. Thus

f(x1, θ̂
(n)

) . . . f(xn, θ̂
(n)

) ≤ supθ∈ωε
f(x1, θ) . . . f(xn, θ) for infinitely many

n. Since f(x1, θ̂
(n)

) . . . f(xn, θ̂
(n)

) ≥ f(x1, θ0) . . . f(xn, θ0). We have

f(x1, θ0) . . . f(xn, θ0) ≤ sup
θ∈ωε

f(x1, θ) . . . f(xn, θ),

for infinitely many n. Since ωε is a closed set in B, this is an event with
probability zero according to equation 5.6. This completes the proof.

In next step, we shall show that limit points of the constrained global

maximizer θ̂
(n)

over Θc are almost surely in a compact space and hence
consistency follows from Theorem 5.3.

Lemma 5.5 Let X1, . . . ,Xn be a sample of P which is absolutely continu-

ous with finite second moments. Let θ̂
(n)

is a constrained global maximizer
of l(θ|X1, . . . ,Xn) over Θc. Then there exist positive numbers s1 and s2

such that
Prob{lim inf

n→∞
min

k
(σ̂

(n)
k )2 ≥ s1} = 1, (5.7)

and
Prob{lim sup

n→∞
max

k
(σ̂

(n)
k )2 ≤ s2} = 1. (5.8)

Proof First we prove Equation (5.7). Let σ̂
(n)
k = τ̂

(n)
k σ̂

(n)
1 for k = 1, . . . , K.

Then τ̂
(n)
k ∈ [c, 1/c]. We write

h(σ) = l(p̂
(n)
1 , . . . , p̂

(n)
K , â

(n)
1 , . . . , â

(n)
K , b̂

(n)
1 , . . . , b̂

(n)
K , τ̂

(n)
1 σ, . . . , τ̂

(n)
K σ).

Then it satisfies
dh(σ)

dσ
|
σ̂

(n)
1

= 0.

This gives rise to

n
∑

i=1

− 1

σ̂
(n)
1

f(Xi, θ̂
(n)

) + 1

(σ̂
(n)
1 )3

∑K
k=1

((â
(n)
k

)′Xi−b̂
(n)
k

)2

(τ̂
(n)
k

)2
p̂
(n)
k fk(Xi, θ̂

(n)
)

f(Xi, θ̂
(n)

)
= 0.
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Solving for σ̂
(n)
1 yields

(σ̂
(n)
1 )2 =

1

n

n
∑

i=1

∑K
k=1

((â
(n)
k

)′Xi−b̂
(n)
k

)2

(τ̂
(n)
k

)2
p̂
(n)
k fk(Xi, θ̂

(n)
)

f(Xi, θ̂
(n)

)
.

Then, we have

(σ̂
(n)
1 )2 ≥ c2 1

n

n
∑

i=1

min
1≤k≤K

((â
(n)
k )′Xi − b̂

(n)
k )2. (5.9)

We now show that for n0 ≥ Kd + 1,

s(n0) = E{ inf
{(a1,...,aK ,b1,...,bK):a′

k
ak=1}

n0
∑

i=1

min
1≤k≤K

(a′
kXi − bk)

2} > 0. (5.10)

In fact,
∫

inf
{(a1,...,aK ,b1,...,bK):a′

k
ak=1}

n0
∑

i=1

min
1≤k≤K

(a′
kxi − bk)

2dPn0(x)

=

∫

inf
{(a1,...,aK ,b1,...,bK):a′

k
ak=1,|bk|≤r(x1,...,xn0 )}

n0
∑

i=1

min
1≤k≤K

(a′
kxi − bk)

2dPn0(x)

=

∫

min
{(a1,...,aK ,b1,...,bK):a′

k
ak=1,|bk|≤r(x1,...,xn0 )}

n0
∑

i=1

min
1≤k≤K

(a′
kxi − bk)

2dPn0(x)

≡
∫

s0(x1, . . . ,xn0)dPn0(x) > 0,

since s0(X1, . . . ,Xn0) > 0 almost surely from Corollary5.1 and the argument
in Theorem 5.2. By the strong law of large numbers, we have

1

m

m
∑

j=1

{

inf
{(a1,...,aK ,b1,...,bK):a′

k
ak=1}

n0
∑

i=1

min
1≤k≤K

(a′
kX(j−1)n0+i − bk)

2

}

→ s(n0),

with probability 1. Let s1 = c2s(n0, P )/n0. Then by equation (5.9),

lim inf
n→∞

(σ̂
(n)
1 )2

≥c2 lim inf
m→∞

{ 1

mn0
inf

{(a1,...,aK ,b1,...,bK):a′

k
ak=1}

mn0
∑

i=1

min
1≤k≤K

(a′
kXi − bk)

2}

≥ c2

n0
lim

m→∞
1

m

m
∑

j=1

{ inf
{(a1,...,aK ,b1,...,bK):a′

k
ak=1}

n0
∑

i=1

min
1≤k≤K

(a′
kX(j−1)n0+i − bk)

2}

=s1,
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with probability 1. The same s1 serves as a lower bound of lim infn(σ̂
(n)
k )2

for k = 2, . . . , K as well. Noticing that s1 does not depend on a set of ob-
servations x1, . . . ,xn, we have proved Equation (5.7).

Now we prove Equation (5.8). Let Θs
c = {θ : θ ∈ Θc, σ

2
k > s for some k}.

Define
q(x, s) = sup

θ∈Θs
c

f(x, θ).

Then q(x, s) ≤ 1√
2πsc

. By Lemma 5.2, E| log f(X, θ0)| < ∞. There exists a

positive number s2, such that

E(log(q(X, s2))) < E(log f(X, θ0).

By the strong law of large numbers,

Prob{ lim
n→∞

n
∑

i=1

[log q(Xi, s2) − log f(Xi, θ0)] = −∞} = 1.

This implies that

Prob{ lim
n→∞

supθ∈Θ
s2
c

f(X1, θ) . . . f(Xn, θ)

f(X1, θ0) . . . f(Xn, θ0)
= 0} = 1.

Equation 5.8 follows immediately, since θ̂
(n)

always satisfies

f(X1, θ̂
(n)

) . . . f(Xn, θ̂
(n)

)

f(X1, θ0) . . . f(Xn, θ0)
≥ 1.

Now we prove the main consistency result.

Theorem 5.4 Let X1, . . . ,Xn be a sample from an absolutely continuous

probability measure P with finite second moments. Let θ̂
(n)

be a global max-

imizer of l(θ |X1, . . . ,Xn) over Θc. Then θ̂
(n) → θ

q
0 almost surely in the

topological space Θq
c.

Proof From Lemma 5.5, we need only to consider the subspace of Θc,

Θs
c = {θ ∈ Θc : s1 ≤ σ2

k ≤ s2, for all k = 1, . . . , K},
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Chapter 5. Consistency and asymptotic normality

where s1, s2 are positive numbers determined in Lemma 5.5.
Since Θs

c is not compact, Theorem 5.3 cannot be used directly. We shall
use the compactification device in Hathaway (1985) and also in Kiefer and
Wolfowitz (1956). In the space Θs

c, define the metric

δ(θ, θ′) =
∑

i

| arctanθi − arctanθ′
i|,

where | · | is the Euclidean distance and θi and θ′
i are components of θ and

θ′ respectively. Let Θ̄s
c be the set of Θs

c along with all its limit points. Then

Θ̄s
c =

{

θ : 0 ≤ pk ≤ 1,
∑K

k=1 pk = 1, mini,j σi/σj ≥ c > 0,
a′

kak = 1,−∞ ≤ bk ≤ ∞, s1 ≤ σk ≤ s2, k = 1, . . . , K.

}

is compact. Since f(x, ·) is continuous on Θs
c, it can be extended to Θ̄s

c as

f(x, θ) =
∑

k

pkI(∞ < bk < ∞)fk(x, θ).

We have shown g(θ) = E(log f(x, θ)) is continuous on Θs
c. It is continuous

on Θ̄s
c as well. To see this, let θ(n) be a sequence tending to θ. If all bk = ±∞,

or all pk = 0 whenever bk 6= ±∞, then f(x, θ) = 0 and g(θ) = −∞. In this
case,

g(θ(n)) =

∫

log f(x, θ(n))dP (x)

≤
∫

max
{k:pk>0}

log fk(x, θ(n))dP (x)

→
∫

− min
{k:pk>0}

[

1

2
log(2πσ2

k) +
(a′

kx − bk)
2

2σ2
k

]

dP (x)

= −∞.

If there is some k such that pk 6= 0 and bk 6= ±∞. Then

log f(x, θ(n)) ≤ log max fk(x, θ(n)) ≤ −1

2
log(2πs1),

and

log f(x, θ(n)) ≥ log min
{k:pk>0,bk 6=±∞}

p
(n)
k fk(x, θ(n))

≥ log min
{k:pk>0,bk 6=±∞}

pkfk(x, θ) − ε,
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Chapter 5. Consistency and asymptotic normality

for some ε > 0 when n is sufficiently large. By Lemma 5.2, the latter term is
integrable. By Lebesgue’s dominated convergence theorem, g is continuous
at θ.

Lemmas 5.3 and 5.4 are easily seen to hold and hence we can repeat
literally the proof of Theorem 5.3. This completes the proof.

5.4 Asymptotical normality

The global maximizer θ̂
(n)

converges in the above quotient topological space.

There is hence a subsequence, still denoted by θ̂
(n)

, which converges to a
point θ0 in C0 in the original space. If θ0 is an interior point of Θc, then we

can expand l′(θ̂
(n)

) about θ0,

l′(θ̂
(n)

)

=l′(θ0) + l′′(θ0)(θ̂
(n) − θ0)

+
1

2
[(θ̂

(n) − θ0)
T l′′′1 (θ∗)(θ̂

(n) − θ0)], . . . , (θ̂
(n) − θ0)

T l′′′s (θ∗)(θ̂
(n) − θ0)]

T ,

(5.11)

where s is the dimension of θ and θ∗ is a point on the line segment connecting

θ̂
(n)

and θ0; l′ is an s-dimensional vector of first derivatives of l, l′′ and l′′′j

are s× s matrices of second and third derivatives of l. For ease of notation,
we do not differentiate which components of p and ak are free parameters
and which are not; it is assumed that the constraints

∑

pk = 1 and a′
kak = 1

are taken care in the calculation of these derivatives.
The left-hand side of (5.11) is 0, because θ̂

(n)
satisfies the first order

conditions.
Let

v0(θ0) = E[((log f(X, θ0))
′].

Then v0(θ0) = g′(θ0) = 0 by Lebesgue’s dominated convergence theorem.
Let

v1(θ0) = E[((log f(X, θ0))
′)2].

It is straightforward to verify that all the entries of v1(θ0) are finite if the
underlying distribution P has finite fourth moments. Then by the central
limit theorem, the first derivative l′(θ0)/

√
n is asymptotical normal,

1√
n

l′(θ0)
L→ N(0, v1(θ0)).
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Let
v2(θ0) = E[(log f(X, θ0))

′′],

and
v3(θ0) = E[(log f(X, θ0))

′′′].

Again, it is straightforward but tedious to verify that all the entries of v2(θ0)
are finite if P has finite fourth moments and that all the entries of v3(θ0)
are finite if P has finite sixth moments.

By the strong law of large numbers, the second derivative l′′(θ0)/n tends
to a constant matrix,

1

n
l′′(θ0) → v2(θ0),

and the third derivative l′′′ is bounded entry-wise. So we have the following

Theorem 5.5 Let X1, . . . ,Xn be a sample from an absolutely continuous

probability measure P with finite sixth moments. Let θ̂
(n)

be a subsequence
of global maximizer of l(θ|X1, . . . ,Xn) over Θc, which tends to an interior
point θ0. Then √

n(θ̂
(n) − θ0)

L→ N(0, v(θ0)),

where v(θ0) = [v2(θ0)]
+v1(θ0)[v2(θ0)]

+ and A+ is the Moore-Penrose in-
verse of matrix A.

In equation (5.3), ŵik is a function of xi and θ̂. Denote ŵik = hk(xi, θ̂),
k = 1, . . . , K. By the Delta method, we have the following

Corollary 5.2 Let X1, . . . ,Xn be a sample from an absolutely continuous

probability measure P with finite sixth moments. Let θ̂
(n)

be a subsequence
of global maximizer of L(θ|X1, . . . ,Xn) over Θc, which tends to an interior
point θ0. Let x be a data point. Then

√
n(hk(x, θ̂

(n)
) − hk(x, θ0))

L→ N(0, [h
(0)
k (x, θ0)]

′v(θ0)[h
(0)
k (x, θ0)]),

for k = 1, . . . , K, where h
(0)
k (x, θ0) = ∂hk(x,θ)

∂θ
|θ=θ0.

Using this corollary, we can build approximate confidence intervals for
wik by replacing θ0 with θ̂ and hence evaluate the clustering of a data set.
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Chapter 6

Future Work

In this thesis work, we have developed a SNP genotype calling algorithm
based on the linear grouping algorithm (Van Aelst et al., 2006), proposed a
flexible model-based approach to linear clustering and introduced a Bayesian
approach to linear clustering with specific relevance to the SNP genotyping
problem. In this chapter, we briefly describe a few possible directions for
future research.

6.1 Robustness consideration

Robustness to outliers is desirable in linear clustering, as the assumption of
normal deviations around hyperplanes is sensitive to large deviations in the
orthogonal direction. In addition to the inclusion of a uniform background
cluster (Banfield and Raftery, 1993), one option would be to use a heavier
tailed distribution, for example, Student’s t distribution with small degrees
of freedom or with degrees of freedom depending on the data. In the par-
tial likelihood approach, this would adapt Peel and McLachlan (2000)’s EM
algorithm for t mixture models from the elliptical context to the linear clus-
tering setting. The adaptation is straightforward but computationally more
expensive. Further ideas include estimating the component covariance ma-
trices in the M-step in a robust way, for example, trimming off some points
as done by Garćıa-Escudero et al. (2007). In the Bayesian approach, we
have already used a Student’s t distribution with small degrees of freedom.

6.2 Asymptotics

For the partial likelihood approach, we produced some asymptotic results in
the case of normal orthogonal deviations. For more general cases, such as
Student’s t distribution, these results have not been established. We shall
study the asymptotic evaluation in more general cases.
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6.3 Model Extension

With a′x = b, we are specifying a hyperplane in d − 1 dimensions. With
little effort, this could be generalized to a mixture of partial likelihoods, each
of which specifies a hyperplane of dimension q < d,

l(κ,p|x1:n) =
n

∏

i=1

K
∑

k=1

pkN(A′
kxi − bk;0, Σk), (6.1)

where A is of dimension d × (d − q), b is a vector of dimension d − q,
and Σk is a (d − q) × (d − q) covariance matrix for the deviation from the
hyperplane. In the extreme case of a 0-dimension hyperplane, which is a
point, we have the usual mixture of multivariate normal distributions. A
mixture of components with various dimensions could be considered.

6.4 Variable/model selection

For a large, high dimensional dataset, efficient computation is essential in
order to uncover linear patterns. In addition to develop more efficient algo-
rithms, one idea is to use a subset of the data and/or a subset of variables.
To this end, we are interested in methods to screen variables as well as to
determine the number of linear structures.

6.5 Bayesian computation

In our examples in the Bayesian approach, label-switching is prevented either
by a Gibbs sampler applied to a posterior distribution with isolated modes or
by informative priors. In more general situations, we may need the ideas of
tempering MCMC or Sequential Monte Carlo to explore the whole support
of the posterior distribution and deal with the label-switching problem.

In addition, the number of linear clusters are assumed known in our
approach. In the situation of unknown number of clusters, our first thought
is to investigate the feasibility of the Reversible Jump MCMC of Richardson
and Green (1997). This may imply heavy computational burden. A related
problem is again the scalability of the Bayesian approach to large datasets
and high dimensions. We leave these problems for further research.
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Appendix A

Glossary of some genetic
terms

(Extracted from the website http://www.genome.gov/glossary.cfm.)

adenine (A) One of the four bases in DNA that make up the letters ATGC,

adenine is the ”A”. The others are guanine, cytosine, and thymine. Adenine

always pairs with thymine.

allele One of the variant forms of a gene at a particular locus, or location, on

a chromosome. Different alleles produce variation in inherited characteristics

such as hair color or blood type. In an individual, one form of the allele

(the dominant one) may be expressed more than another form (the recessive

one).

base pair Two bases which form a ”rung of the DNA ladder.” A DNA

nucleotide is made of a molecule of sugar, a molecule of phosphoric acid,

and a molecule called a base. The bases are the ”letters” that spell out the

genetic code. In DNA, the code letters are A, T, G, and C, which stand

for the chemicals adenine, thymine, guanine, and cytosine, respectively. In

base pairing, adenine always pairs with thymine, and guanine always pairs

with cytosine.

chromosome One of the thread-like ”packages” of genes and other DNA in

the nucleus of a cell. Different kinds of organisms have different numbers of

chromosome. Humans have 23 pairs of chromosomes, 46 in all: 44 autosomes

and two sex chromosomes. Each parent contributes one chromosome to each

pair, so children get half of their chromosomes from their mothers and half

from their fathers.
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cytosine One of the four bases in DNA that make up the letters ATGC,

cytosine is the ”C”. The others are adenine, guanine, and thymine. Cytosine

always pairs with guanine.

deoxyribonucleic acid (DNA) The chemical inside the nucleus of a cell

that carries the genetic instructions for making living organisms.

diploid The number of chromosomes in most cells except the gametes. In

humans, the diploid number is 46.

dominant A gene that almost always results in a specific physical charac-

teristic, for example, a disease, even though the patient’s genome possesses

only one copy. With a dominant gene, the chance of passing on the gene

(and therefore the disease) to children is 50-50 in each pregnancy.

gene The functional and physical unit of heredity passed from parent to

offspring. Genes are pieces of DNA, and most genes contain the information

for making a specific protein.

gene amplification An increase in the number of copies of any particular

piece of DNA. A tumor cell amplifies, or copies, DNA segments naturally as

a result of cell signals and sometimes environmental events.

gene expression The process by which proteins are made from the instruc-

tions encoded in DNA.

genetic code (ATCG) The instructions in a gene that tell the cell how

to make a specific protein. A, T, G, and C are the ”letters” of the DNA

code; they stand for the chemicals adenine, thymine, guanine, and cytosine,

respectively, that make up the nucleotide bases of DNA. Each gene’s code

combines the four chemicals in various ways to spell out 3-letter ”words”

that specify which amino acid is needed at every step in making a protein.

genetic marker A segment of DNA with an identifiable physical location

on a chromosome and whose inheritance can be followed. A marker can be

a gene, or it can be some section of DNA with no known function. Because

DNA segments that lie near each other on a chromosome tend to be inherited

together, markers are often used as indirect ways of tracking the inheritance
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pattern of a gene that has not yet been identified, but whose approximate

location is known.

genome All the DNA contained in an organism or a cell, which includes

both the chromosomes within the nucleus and the DNA in mitochondria.

genotype The genetic identity of an individual that does not show as out-

ward characteristics.

guanine One of the four bases in DNA that make up the letters ATGC,

guanine is the ”G”. The others are adenine, cytosine, and thymine. Guanine

always pairs with cytosine.

haploid The number of chromosomes in a sperm or egg cell, half the diploid

number.

Haplotype It refers to a set of SNPs found to be statistically associated on

a single chromatid. With this knowledge, the identification of a few alleles

of a haplotype block unambiguously identifies all other polymorphic sites

in this region. Such information is most valuable to investigate the genet-

ics behind common diseases and is collected by the International HapMap

Project (http://en.wikipedia.org/wiki/Haplotype).

Hardy-Weinberg equilibrium (HWE) It states that, under certain con-

ditions, after on generation of random mating, the genotype frequencies at

a single gene locus will become fixed at a particular equilibrium value. It

also specifies that those equilibrium frequencies can be represented as a sim-

ple function of the allele frequencies at that locus.(http://en.wikipedia.org

/wiki /Hardy-Weinberg equilibrium).

heterozygous Possessing two different forms of a particular gene, one in-

herited from each parent.

homozygous Possessing two identical forms of a particular gene, one in-

herited from each parent.

linkage The association of genes and/or markers that lie near each other

on a chromosome. Linked genes and markers tend to be inherited together.
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linkage disequilibrium (LD) The non-random association of alleles at

two or more loci on a chromosome. It describes a situation in which some

combinations of alleles or genetic markers occur more or less frequently in a

population than would be expected from a random formation of haplotypes

from alleles based on their frequencies. In population genetics, linkage dise-

quilibrium is said to characterize the haplotype distribution at two or more

loci (http://en.wikipedia.org/wiki/Linkage disequilibrium).

locus The place on a chromosome where a specific gene is located, a kind

of address for the gene. The plural is ”loci,” not ”locuses.”

non-coding DNA The strand of DNA that does not carry the information

necessary to make a protein. The non-coding strand is the mirror image of

the coding strand and is also known as the antisense strand.

nucleotide One of the structural components, or building blocks, of DNA

and RNA. A nucleotide consists of a base (one of four chemicals: adenine,

thymine, guanine, and cytosine) plus a molecule of sugar and one of phos-

phoric acid.

phenotype The observable traits or characteristics of an organism, for ex-

ample hair color, weight, or the presence or absence of a disease. Phenotypic

traits are not necessarily genetic.

polymerase chain reaction (PCR) A fast, inexpensive technique for

making an unlimited number of copies of any piece of DNA. Sometimes called

”molecular photocopying,” PCR has had an immense impact on biology and

medicine, especially genetic research.

polymorphism A common variation in the sequence of DNA among indi-

viduals.

primer A short oligonucleotide sequence used in a polymerase chain reac-

tion.

probe A piece of labeled DNA or RNA or an antibody used to detect the

function of a gene.
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single nucleotide polymorphism Common, but minute, variations that

occur in human DNA at a frequency of one every 1,000 bases. These vari-

ations can be used to track inheritance in families. SNP is pronounced

”snip”.

thymine One of the four bases in DNA that make up the letters ATGC,

thymine is the ”T”. The others are adenine, guanine, and cytosine. Thymine

always pairs with adenine.

wild-type allele The allele designated as the standard (“normal”) for a

strain of organism.

104


