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Abstract

An ensemble of classifiers is proposed for predictive ranking of the observations in a dataset

so that the rare class observations are found in the top of the ranked list. Four drug-discovery

bioassay datasets, containing a few active and majority inactive chemical compounds, are

used in this thesis. The compounds’ activity status serves as the response variable while

a set of descriptors, describing the structures of chemical compounds, serve as predictors.

Five separate descriptor sets are used in each assay. The proposed ensemble aggregates over

the descriptor sets by averaging probabilities of activity from random forests applied to the

five descriptor sets. The resulting ensemble ensures better predictive ranking than the most

accurate random forest applied to a single descriptor set.

Motivated from the results of the ensemble of descriptor sets, an algorithm is developed

to uncover data-adaptive subsets of variables (we call phalanxes) in a variable rich descriptor

set. Capitalizing on the richness of variables, the algorithm looks for the sets of predictors

that work well together in a classifier. The data-adaptive phalanxes are so formed that they

help each other while forming an ensemble. The phalanxes are aggregated by averaging

probabilities of activity from random forests applied to the phalanxes. The ensemble of

phalanxes (EPX) outperforms random forests and regularized random forests in terms of

predictive ranking. In general, EPX performs very well in a descriptor set with many variables,

and in a bioassay containing a few active compounds.

The phalanxes are also aggregated within and across the descriptor sets. In all of the four

bioassays, the resulting ensemble outperforms the ensemble of descriptor sets, and random

forests applied to the pool of the five descriptor sets.

The ensemble of phalanxes is also adapted to a logistic regression model and applied to the

protein homology dataset downloaded from the KDD Cup 2004 competition. The ensembles

are applied to a real test set. The adapted version of the ensemble is found more powerful in

terms of predictive ranking and less computationally demanding than the original ensemble

of phalanxes with random forests.
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Chapter 1

Introduction

The theory of classification has received considerable attention in statistics and in machine

learning. A classifier places objects into different classes based on the characteristics of the

objects. In this thesis, I will be dealing with supervised classification only where a classifier

is learned on a dataset with objects of known classes and the learned classifier is then used

to predict the classes of test objects. The dataset with objects of known classes, where a

classifier is trained or learned, is known as training or learning dataset and the dataset for

which objects’ predictions are required is known as test dataset.

Suppose we wish to classify an incoming email as “Spam” or “Non-spam” using features

of the email like: email ID, subject, length, percentage of specific words etc. (DeBarr and

Wechsler, 2012). We build a classifier on previously received emails, already filtered as “Spam”

or “Non-spam”, and classify incoming emails based on their features. The collection of received

emails forms the training or learning data and the collection of incoming emails forms the

test data.

The application of statistical classification includes all disciplines of science and busi-

ness. Machine learners used classification methods in robotics, internet search engines, im-

age/face/speech recognitions, computer games and in many other systems. However, the goal

of my research is to identify relevant rare class objects from a large collection of objects.

The reason why an object is considered relevant depends on the context of a specific prob-

lem. For example, in terrorist detection the relevant objects are individual communications

deemed very suspicious (Fienberg, 2004); in credit card fraud detection the relevant objects

are individual transactions that are fraudulent (Srivastava et al., 2008); in spam detection the

relevant objects are individual emails that are highly likely to be spam (DeBarr and Wechsler,

2012); in drug discovery the relevant objects are chemical compounds that are active against

a specific biological target (Warmuth et al., 2001), for example, the human immunodeficiency

virus (HIV).

The goal is to rank the rare-class objects ahead of the majority class objects. The objects

in a test set are ranked using the probabilities of belonging to the rare-class from a classifier

learned on a training set. The top ranked objects may be shortlisted for further investigation.

The shortlist is intended to include most, if not all, of the rare-class objects in the test set.

The length of the shortlist will depend on the available resources in a study.

Although this rare class ranking problem is similar to those encountered in the two-class

classification problem, the underlying objective is different. In particular, automatic classifi-
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cation is of little interest. This is because further investigation of the top-ranked candidates is

almost always necessary. For example, in the fraud detection application, one seldom termi-

nates a credit card account without confirming the suspected fraud (Bolton and Hand, 2002).

Therefore, we are most interested in producing an effective ranking of all of the candidates so

that any further investigation is least likely to be carried out in vain.

With the advancement of computer speed, memory and different softwares, the number

of variables in recent statistical datasets has become very large. For example, the datasets in

drug discovery and in computational chemistry contain a few hundreds to thousands of vari-

ables. The analysis of such large datasets poses two types of problems: (i) large computational

time and (ii) poor model building in terms of low prediction power and high complexity of

the resulting model. The large computational time incurred by a model is usually handled by

developing fast computational tools or algorithms for fitting the model. The poor model build-

ing strategy is usually solved by filtering or selecting variables or by regularizing the model.

The problems relating to the large number of variables is popularly known as the “curse-

of-dimensionality”. Instead of repeating the conventional word “curse-of-dimensionality”, we

term this aspect of data as “rich-in-variables” as a variable-rich dataset may possess many

signals for modelling the response.

Ensembling is a fairly novel method of improving prediction accuracy of a classifier. In

an ensemble, a collection of classifiers is constructed and the class membership of an object

is determined by aggregating individual classifiers. Ensemble methods have been shown to

be more accurate than non-ensemble methods and insensitive to irrelevant feature variables

(e.g., Breiman, 1996a, 2001; Freund and Schapire, 1996a; Wang, 2005). Capitalizing on the

“richness-of-variables” in a dataset, I develop an ensemble method which outperforms existing

off-the-shelf ensembles in terms of predictive ranking of the rare class objects.

1.1 Objectives

The objectives of this thesis are:

1. Placing rare class objects before the majority class objects in highly unbalanced two-

class problems.

2. Developing an ensemble which capitalizes on the “richness-of-variables” in a dataset to

outperform existing ensembles.

1.2 Some Classifiers

In this section, I will briefly describe some popular non-ensemble classifiers. The first two

were the top performing non-ensembles in two-class ranking problems (Hughes-Oliver et al.,

2011; Wang, 2005).
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1.2.1 Classification Tree

A classification tree is a binary decision tree constructed by splitting a node into two child

nodes (descendants) repeatedly, beginning with the root node that contains the whole training

sample. The tree building procedure partitions the space of the feature variables successively

into smaller hyper-rectangles (nodes) so that the class variable in each hyper-rectangle is as

homogeneous as possible.

At a node, the tree growing process chooses a split from all possible splits so that the

resulting left and right descendants are as pure as possible. If all of the objects of a node

belong to a particular class, the node is called pure. The tree growing algorithm first finds

each feature’s best split and then finds the node’s best split choosing one that maximizes a

splitting criterion. The process then splits the node using the node’s best split if stopping

rules are not satisfied.

An example will make our understanding clear. For this, I used a toy dataset of size

60 with two classes (1 and 0) and two feature variables, x1 and x2. The observations are

generated as follows. Let µ1 = {2.5, 2.5}, µ2 = {7.5, 7.5}, µ3 = {2.5, 7.5}, µ4 = {7.5, 2.5}

be four mean vectors and Σ =

(
1.00 0.15

0.15 4.00

)
be the common variance-covariance matrix.

A total of 40 class 0 observations are generated from the mixture of two bivariate normal

distributions α N(µ1,Σ) + (1 − α) N(µ2,Σ), where α = 0.5 is the mixture parameter. The

other 20 class 1 observations are generated independently from the following distribution

α N(µ3,Σ) + (1 − α) N(µ4,Σ). Unlike the rare class problem, the classes are kept only

roughly unbalanced so that the tree partitioning method can be explained better.

The left panel of Figure 1.1 shows a typical classification tree grown on the simulated

dataset. The root node, which contains all 60 cases, is split using the feature variable x2 into

two child nodes: x2 < 2.256 (left descendant) and x2 ≥ 2.256 (right descendant). The left

descendant is an internal node, an internal node is represented by a circle, which contains 15

cases with 7 cases from class 0 and 8 cases from class 1. Thus, the predicted class for this node

is 1 with probability 8/15. This left internal node is further split using the feature variable x1

into two child nodes: x1 < 5.415 (left descendant) and x1 ≥ 5.415 (right descendant). Both

descendants are terminal nodes, represented by a rectangle, with predicted classes 0 and 1,

respectively, each with probability 1.

The right descendant of the root node is split using the feature variable x1 into two child

nodes: x1 < 6.716 (left descendant) and x1 ≥ 6.716 (right descendant). The right descendant

is a terminal node with predicted class and probability 0 and 18/19, respectively. The left

descendant, an internal node, is further split using the feature variable x2 into two terminal

nodes: x2 < 4.871 (left terminal) and x2 ≥ 4.871 (right terminal). If a test case is sent down

this tree and it reaches the right-most terminal node, the case will be predicted as from class

0 with probability 18/19.

The resulting hyper-rectangles obtained by splitting the two-dimensional space are dis-
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Figure 1.1: (a) An example of classification tree grown from a simulated dataset of size 60
with two classes and two feature variables. (b) The corresponding partitions of the two-
dimensional space into hyper-rectangles. Class 0 and class 1 cases are denoted by “o” and
“+”, respectively.

played in the right panel of Figure 1.1. It is evident that the space partitioning process of a

tree allows the effect of one feature variable to be different at various values of other feature

variables, and includes non-linear effect of features.

The tree building algorithm uses one of many splitting criteria to determine how homoge-

neous (i.e., pure) the response variable is in a child node: deviance, entropy, Gini index, and

misclassification error. Among them, deviance, entropy, Gini index are mainly used to grow a

tree and misclassification error is usually used to prune a tree. The rules that decide when to

stop growing a tree are called “stopping rules”. When growing a tree, a node will not be split

(i) if the node becomes pure, (ii) if all cases have identical values for each feature variable,

(iii) if the tree size reaches the user-specified maximum tree size, (iv) if the size of the node is

smaller than the user-specified minimum node size, (v) if the child node size is smaller than

the user-specified minimum child node size, and (vi) if the improvement of information gain

from the best split of the node is smaller than the user-specified minimum improvement. For

further reference, please see Breiman, Friedman, Olshen, and Stone (1984) and Chapter 9 of

Venables and Ripley (2002).

1.2.2 k-Nearest Neighbours

The k-nearest neighbours (KNN) classifier assigns a class to an object based on the majority

class of that object’s k nearest neighbours. The value of k, the number of nearest neighbours,

is usually chosen by the user. Hall, Park, and Samworth (2008) study the effect of the value
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Figure 1.2: (a) The 7-nearest neighbours for two test objects (?) using Euclidean distance
for the simulated dataset. (b) Two decision boundaries using k-nearest neighbours: the solid
line is for k = 1 and the dashed line is for k = 7. Class 0 and class 1 cases are denoted by “o”
and “+”, respectively.

of k on the misclassification error rate and present a number of methods for selecting the

value of this parameter. Often Euclidean distance is used to define the neighbourhood for

continuous features. The pioneers of KNN are Cover and Hart (1967), who investigated the

properties of 1-NN, the rule that uses one nearest neighbour. If there are ties, the predicted

class is determined by random mechanism.

The algorithm for KNN is very simple. For example, we want to predict classes of the

two test objects (2.34, 8.31) and (7.35, 4.56), using the simulated dataset (used in Section

1.2.1) of size 60. The left panel of Figure 1.2 shows two 7-nearest neighbourhoods of the test

objects. In the neighbourhood of the object (2.34, 8.31), we have seven training observations,

all are from class 1. Hence, this test object will be predicted as class 1 with probability 1.

The neighbourhood of the second test object (7.35, 4.56) contains 7 training observations:

five from class 0 and two from class 1. Thus this object will be classified as class 0 with

probability 5/7.

The right panel of Figure 1.2 contains two decision boundaries, one for k = 1 (the solid

line) and the other for k = 7 (the dashed line). It is evident that the decision boundary for

k = 1 is more irregular than k = 7. Seemingly, the classifier with k = 1 overfits the data and

captures noise variability. For low values of k we have low bias and high variance in prediction,

and vice versa. The balance between bias and variance is usually struck by choosing k via

cross validation.
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1.2.3 Discriminant Analysis

In discriminant analysis, the joint distributions of D dimensional feature variables for different

classes are usually assumed multivariate normal with class-specific mean vectors and covari-

ance matrices, and the posterior class probabilities conditional on features are determined

by Bayes rule. The unknown parameters (such as class prior probabilities, mean vectors and

covariance matrices) are usually computed from the training sample. The assumption of equal

covariance matrices results in linear discriminant analysis (LDA) (Fisher, 1936); whereas the

assumption of unequal covariance matrices results in quadratic discriminant analysis (QDA).

LDA works well when the feature space is linearly separable for classes, and QDA works well

when the decision boundary is quadratic in the feature space. Friedman (1989) proposed a

compromise between LDA and QDA, which allows shrinking of separate covariance matrices

in QDA toward a common covariance as in LDA by introducing a regularization parameter.

This method is known as regularized discriminant analysis (RDA). In some applications mix-

ture of Gaussian distributions is a good choice for the joint distributions of features, which

generates a classification method known as mixture discriminant analysis (MDA) (Hastie,

Tibshirani, and Friedman, 2009, Section 6.8). On the other hand, nonparametric discrim-

inant analysis (Hastie, Tibshirani, and Friedman, 2009, Section 6.6.2) uses kernel density

approach to determine the joint distribution of features in each class.

LDA is one of the oldest classification methods, but often found effective especially when

the decision boundary is linearly separable as it generates discriminant functions which are

linear combinations of features. The assumption of multivariate normal is not a requirement,

but it is helpful in determining cut-offs of the discriminant functions to help separating objects

in the two class problem. In a multi-class problem, the prediction for a new object can be made

by computing posterior probabilities for each class or by determining optimal discriminant

functions. Suppose we have c classes and s = min(c−1, D) discriminant functions wT
j x, where

wj is the vector of weights for the jth discriminant function, and x is the D dimensional vector

of feature variables. A new object with vector of features xnew will be assigned to class c if

s∑
j=1

[
wT

j (xnew − x̄c)
]2 ≤ s∑

j=1

[
wT

j (xnew − x̄i)
]2

; ∀i ̸= c, (1.1)

where x̄i is the mean vector of x’s for class i = 1, · · · , c. In words, the object xnew will be

classified as from class c if the transformed space (by common covariance matrix) of xnew is

closest to the centroid of class c.

1.2.4 Neural Networks

Neural networks (NN) are very popular in machine learning. The history of NN dates back

to McCulloch and Pitts (1943). The motivation goes back to Widrow and Hoff (1960) and

Rosenblatt (1962). The idea of neural networks mimics the structure of the human brain,

where many biological neurons are interconnected with each other to perform complicated
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tasks. In a neural network, each neuron receives linear combination of inputs as derived

features, transforms the derived features using a nonlinear function (usually the sigmoid

function) and passes the result to another neuron. The output function, generally the softmax

function (Hastie, Tibshirani, and Friedman, 2009, Section 11.3) in classification, allows a final

transformation. In general there are several layers of neurons in a network with many units

in each layer. The units in the middle of a network, computing the derived features, are

called hidden units because the values of the derived features are not directly observed. The

terminal neurons are sometimes allowed to receive linear combinations of the raw inputs to

skip hidden layer(s) simplifying the interpretation of a network. The structure of a neural

network is usually complex, but the central idea is to extract linear combinations of inputs as

derived features, and model the class variable as a nonlinear function of these features.

A neural network has unknown parameters, often called weights, and we seek values for

them so that the model fits the training data well. For classification, cross-entropy (deviance)

is generally used as a measure of fit which is minimized by gradient descent known as back-

propagation (Hastie, Tibshirani, and Friedman, 2009, Section 11.4). Typically we don’t want

the global minimizer of the cross-entropy, as this is likely to be an overfit solution. Instead

regularized cross-entropy is used with a penalty term, often called weight decay, which is

usually optimized via cross validation. Scaling of the input variables and multiple starting

values of the weights are often utilized to achieve optimal weights at the global minimum

of the cross entropy. The choice of the number of hidden layers is guided by background

knowledge and experimentation. It is better to have many hidden units than too few (see

Hastie, Tibshirani, and Friedman, 2009, Section 11.5.4). With too few hidden units, the model

might not have enough flexibility to capture the nonlinearities in the data; with many hidden

units, the extra weights can be shrunk toward zero if appropriate regularization is used.

1.2.5 Support Vector Machines

Support vector machine (SVM) is also a popular classifier with application in statistics and in

machine learning. SVM was introduced by Boser, Guyon, and Vapnik (1992) and the current

standard incarnation was proposed by Cortes and Vapnik (1995). The idea is to separate

the space of feature variables so that the classes become as distinct as possible. In a two

class problem, SVM separates the feature space by a linear hyperplane, and its parameters

are determined using a training sample by a constrained optimization technique. To produce

a nonlinear decision boundary, SVM constructs a linear boundary in a large, transformed

version of the feature space. Generally linear boundaries in the enlarged space achieve better

training-class separation, and translate to nonlinear boundaries in the original space. In SVM

the points well inside their class boundary do not play a big role in shaping the optimal

hyperplane; and this attractive criterion differentiates SVM from LDA. In LDA, the decision

boundary is usually determined by the property of the covariance of the class distributions

and the positions of class centroids. The support vector machine is usually extended to

7
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multi-class problems by solving many two-class problems. A classifier is built for each pair

of classes, and the final classifier is the one that dominates the most. However, SVM is slow

in high dimensions and does poorly in the presence of many noise feature variables (Hastie,

Tibshirani, and Friedman, 2009, Chapter 12).

1.2.6 LAGO

LAGO is a computationally efficient classifier, developed by Zhu, Su, and Chipman (2006),

to rank the rare class objects ahead in a two-class problem. LAGO only targets the rare

class for detection and saves much computation time for a large database. Whenever the

goal is ranking rare objects, a classifier computes posterior class probabilities conditional

on feature variables and uses the computed probabilities to rank the target. Zhu, Su, and

Chipman (2006) argued that, as far as ranking is concern, posterior class probabilities given

the features and the ratio of the distributions of features for the rare class to the background

class serve the same purpose, as the former is a monotone transformation of the latter for

fixed prior probabilities. In LAGO, the density for the rare class is computed by a Kernel

approach with mass only on the rare class objects. LAGO considers the distribution of the

features for the background class around a rare class object flat (i.e., Uniform) and reciprocal

to the bandwidth of the Kernel density determined earlier. Finally, the values of the ratio

of the distributions of features of the rare class to the background class are used to rank the

objects. Zhu, Su, and Chipman (2006) generalize LAGO to multivariate problem using the

naive Bayes principle, i.e., by multiplying the univariate feature’s distributions together as

if they are independent to each other. LAGO has a parameter k like KNN and is usually

determined adaptively by cross-validation.

1.3 Ensembles of Classifiers

An ensemble of classifiers is an aggregated collection of models/classifiers which can be con-

sidered as a model/classifier by itself. An ensemble can improve classification accuracy of

a non-ensemble classifier. In this section, I briefly present five ensembles: bagging, random

forests, regularized random forests, boosting, and ensemble of systematic subsets.

1.3.1 Bagging

Breiman (1996a) introduced an ensemble method, called bagging, which aggregates over sev-

eral tree classifiers constructed on bootstrap samples of the training observations. Bagging is

the acronym of bootstrap aggregating. A bootstrap sample is a sample with replacement of

equal size of the training observations (Efron and Tibshirani, 1994). The bootstrap samples

are used to construct multiple versions of tree predictors and bagging aggregates them into

an ensemble. The aggregation is done by majority vote when predicting a class variable and
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by averaging over the versions when predicting a numerical outcome. When aggregation is

done by majority vote, ties are handled by random mechanism.

The vital element for the success of bagging is the instability of the prediction method used

to build constituent classifiers. If perturbation of a training dataset causes significant changes

in prediction performances, then bagging can improve accuracy. Breiman (1996b) showed

that bagging can push a good but unstable procedure a significant step toward optimality.

On the other hand, bagging does not improve performance of a stable classifier. Instability

of a classifier is studied by Breiman (1996b), where it is pointed out that neural networks,

classification and regression trees, and subset selection in linear regression are unstable, while

k-nearest neighbour is stable.

1.3.2 Random Forests

In bagging, each tree is built using a bootstrap sample of a training dataset employing all of

the feature variables. Breiman (2001) incorporated one extra layer of randomness, random

selection of features at each node of a tree, to bagging and named the new ensemble as random

forests. In random forests, each tree is grown using a bootstrap sample of training data; and at

each node of the tree, the best split is chosen from a random sample of mtry variables instead

of all feature variables. Algorithm 1.1 shows the steps in learning a random forests classifier

using a training set and predicting the test observations. This extra layer of randomness is

used to break correlation between classifiers and thus to improve overall accuracy. Each tree

is grown to its maximal depth and aggregation is done by majority vote.

Algorithm 1.1 Random Forests

1. Let the number of training observations and predictor variables be n and D, respectively.

2. For ntree = 1 to M :

• Generate a synthetic training set by drawing a bootstrap sample of size n from the original
training set.

• Build a fully grown unpruned classification tree using the synthetic training set.

• At each node of the tree, randomly choose mtry =
√
D variables to find the split-point of

that node.

3. End For.

4. Predict test observations by aggregating the predictions from the M classification trees using
majority vote.

Breiman (2001) showed that the upper bound on prediction error of random forests de-

pends on the ratio of average correlation between classifiers and average strength of all classi-

fiers. Thus, a tighter upper bound of prediction error can be achieved by minimizing average

correlation and maximizing average strength of classifiers. The extra layer of randomness

helps to lower average correlation; and growing trees to maximal depth helps to increase

9
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average strength. Although growing trees to maximal depth increases prediction variability,

aggregation over many trees reduces overall variance and controls overfitting.

A random forests offers built-in estimation of test-set error via the out-of-bag (OOB)

samples. Approximately one third of training cases remains out on each bootstrap sample

and constitutes the OOB sample. Importance of feature variables can be assessed in random

forests. Each feature variable is randomly permuted in the OOB samples and its impact on

prediction error is measured; and variables with large changes in prediction error are deemed

important. Random forests also computes a proximity matrix by counting how often a pair of

points land in the same terminal node. The proximity matrix is useful for outlier detection,

clustering, and missing value replacement etc.

The algorithm for random forests is fast, and often faster than growing and pruning a single

tree. Random forests has only one tuning parameter mtry. Breiman suggests to use mtry =√
D, where D is the number of feature variables. To construct a random forests ensemble,

I grow 500 trees with tuning parameter mtry =
√
D using the R package randomForest.

Constructing 500 trees in a random forests is a common practice.

1.3.3 Regularized Random Forests

Deng and Runger (2012) proposed the regularized version of random forests. The goal is

to select high-quality feature subsets without reducing the prediction performance of the

ensemble itself.

The only difference between regularized random forests and random forests (Breiman,

2001) is in the tree growing process. A regularized random forests regularizes variables at

each node of the trees in the forest. In order to be selected for splitting a node, a variable

needs to produce substantially larger ‘information gain’ than the variables already selected in

previous splits. For example, let F be the feature set used in previous splits in a tree. To split

a node, the tree growing algorithm avoids selecting a new feature xj /∈ F unless its gain(xj) is

substantially larger than the max (gain(xi)) for xi ∈ F . To achieve this goal, the regularized

gain is calculated as:

gainR(xj) =

{
λ× gain(xj) xj /∈ F

gain(xi) xi ∈ F
(1.2)

where λ ∈ [0, 1] is the regularization coefficient. The gainR(xj) is used for splitting each non-

terminal nodes instead of gain(xj). In this thesis, I have used the R package RRF (Deng,

2012) to fit regularized random forests.

1.3.4 Boosting

Boosting, pioneered by the work of Schapire (1990), Freund (1995) and Freund and Schapire

(1996a,b, 1997), is an ensemble method. The boosting algorithm starts by assigning equal

weights to all observations and sequentially builds a series of classifiers by reweighting only
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the misclassified observations. It focuses more on the observations misclassified by previous

classifiers. At the end, each classifier in the ensemble casts a vote with appropriate weight

determined from its misclassification rate. The AdaBoost.M1 (Freund and Schapire, 1996a)

algorithm for classification is presented below.

Algorithm 1.2 AdaBoost.M1

Let we have n observations in the training data (xi, yi), i = 1, · · · , n, where the class variable is yi = 1
for class 1, and −1 for class 2 with xi be the vector of feature variables.

1. Initialize the observation weights wi = 1/n, i = 1, · · · , n.

2. For m = 1 to M :

• Fit a classifier to the training data with weights wi and get the prediction Cm(x) ∈ {−1, 1}
.

• Compute weighted misclassification error

errm =

∑n
i=1 wiI(yi ̸= Cm(xi))∑n

i=1 wi
.

• Compute weight for the mth classifier

αm = log

(
1− errm
errm

)
.

• Increase weights for the misclassified observations

wi ← wi. exp [αmI (yi ̸= Cm(xi))] ,

and scaled to sum 1, ∀i = 1, · · · , n.

3. Output aggregated classifier

C(x) = sign

(
M∑
i=1

αmCm(x)

)
.

Algorithm 1.2 aims to improve classification accuracy of a weak classifier. However, the

weak classifier needs to perform better than a random guess. If the current classifier misclas-

sifies an observation, then this observation will receive more weight in the next iteration. In

the final overall ensemble, classifiers that are accurate predictors of the training data receive

more weight, whereas, classifiers that are poor predictors receive less weight.

1.3.5 Ensemble of Systematic Subsets

The ensemble of systematic subsets (Wang, 2005) is particularly designed to rank objects

from a particular class ahead of the other class. Although this idea is intuitive for a two class

problem, it can be easily generalized to the multi-class problem, i.e., ranking objects from

a particular class ahead of the other classes. For this ensemble, the constituent classifiers

are constructed on the subsets of feature variables and aggregation is done by probability

11
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averaging, i.e., averaging probabilities of belonging to the target class from different classifiers

built on subsets of variables. The performance of this ensemble would depend on the strength

and diversity of the constituent classifiers constructed on the subsets of feature variables.

Consider that there are three feature variables in a dataset: x1, x2 and x3. The set

of all possible subsets is {x1, x2, x3, (x1, x2), (x1, x3), (x2, x3), (x1, x2, x3)}. A total of seven

classifiers can be constructed each using a subset of features, and the probability of belonging

to the target class is averaged over the seven classifiers. Such average probabilities are used

to rank the target objects ahead in the list of all objects. Many ensembles can be constructed

based on the orders of the subsets: the systematic subset of order one averages over the first

three classifiers, order two averages over the first six classifiers, and order three overages over

the seven classifiers.

Wang (2005) employed KNN and classification tree as base learners to construct the en-

semble of systematic subsets. When KNN is the base classifier, leave-one-out cross validation

was used to choose k, the number of nearest neighbours. Although the use of KNN was found

encouraging in terms of prediction performance by Wang (2005), it appeared computation-

ally expensive for large data. An increase in the number of feature variables exponentially

increases the number of possible subsets making the ensemble even slower.

1.4 Variable Selection via Filtering

Some of the classifiers presented in section 1.2 perform variable selection automatically. For

example, a tree growing algorithm selects the best split at each node from all possible avail-

able splits. Thus, while splitting a node, a classification tree performs variable selection

automatically. The other non-ensemble classifiers - LDA, KNN, NN, and SVM – do not

possess this attractive feature of automatic variable selection. Among LDA, KNN, NN, and

SVM, variable selection is usually performed by penalizing unimportant variables. For exam-

ple, penalized discriminant analysis uses regularization in disregarding useless and correlated

features (Hastie, Tibshirani, and Friedman, 2009, Section 12.6).

Among the ensembles, bagging and random forests possess the automatic variable selection

property, as their constituent models are built using tree based methods. Furthermore, both

of the ensembles aggregate constituent classifiers using majority vote. If aggregation is done

by majority vote, the performance of an ensemble with a few bad classifiers and many good

classifiers is not harmed much. A similar statement is also true for the ensemble of systematic

subsets. In this ensemble, aggregation is done by probability averaging. A few weak classifiers

based on unimportant feature variables cannot do much harm when aggregation is done

by probability averaging. But the number of good and weak classifiers plays a big role in

determining the performance of the ensemble. If an ensemble contains many weak classifiers

then its performance is highly likely to be decreased (Wang, 2005, Section 5.3).

Boosting and regularized random forests perform variable selection automatically as both

12
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of the ensembles use classification tree based algorithm to grow constituent classifiers. The

latter ensemble puts an extra effort through regularization to find a compact subset of impor-

tant features. Thus, in a sense, the regularized random forests is too aggressive in filtering

variables.

Often, high dimensional datasets contain many useless or unimportant variables. In the

presence of many useless variables, the performances of the predictive models applied to such

datasets become weak. This motivates me to perform model selection by filtering unimpor-

tant and useless variables. Wang (2005) proposed a permutation test to screen weak or noise

classifiers out constructed through irrelevant feature variables. She proposed random permu-

tation of training objects to obtain a distribution of random prediction. The classifiers with

cross-validated prediction performances exceeding 95% quantile of the distribution of random

prediction are proposed important; else filtered from the ensemble. A similar approach will

be adapted in this thesis to filter weak and useless variables.

1.5 Drug Discovery Datasets

I have used four PubChem BioAssay datasets (www.ncbi.nlm.nih.gov/pcassay). Each

dataset provides bioassay screens of chemical substances which are either active or inactive

against a biological target. The activity status of a chemical compound is determined through

high-throughput screening (HTS). The selected datasets are highly unbalanced: on average

the ratio is 1 active compound to 100 inactive compounds. The process of determining activity

status of many chemical compounds in a chemical library is costly and time consuming.

Chemists are able to understand the structures of chemical compounds at the atomic

level which provides quantitative representation of chemical structures. A set of variables

representing the quantitative structure of chemical compounds is also known as a descriptor

set. The molecule-based hypothesis is that compounds with similar chemical structures have

similar activities (Mezey et al., 2001). This hypothesis leads to the quantitative structure-

activity relationship (QSAR) models which relate the biological activity status of chemical

compounds with their quantitative structures. The QSAR models can be used to rank the test

compounds and the top ranked candidates can be passed through high-throughput screening

to determine their activity status. This process of virtual screening is much cheaper and faster

than the high-throughput screening of all of the compounds as it is very cheap and fast to

generate descriptor sets using computer softwares. There exist many molecular descriptor sets

in QSAR studies; (see Leach and Gillet, 2007; Todeschini and Consonni, 2000). I have used

five variable-rich descriptor sets for each of the four PubChem Assays. The drug discovery

datasets are described in detail in Sections 2.2 and 2.3 of Chapter 2.
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1.6 Protein Homology Dataset

Protein homology means biological homology between proteins. Two or more proteins are

homologous in the sense that they have a common evolutionary origin. Knowing homology

status helps scientists to infer the evolutionary sequences of many proteins (Koonin and

Galperin, 2003, Chapter 2). The protein homology dataset is downloaded from the 2004

KDD Cup website. The response variable is the homology status between a candidate protein

and a native protein. The predictors are the 74 feature variables which are derived from

the similarity search between a candidate protein and a native protein. A total of 303 native

proteins are considered in this dataset which represent 303 blocks. There are several candidate

proteins in each block which are tested for homology against a native protein. The 303 blocks

are randomly divided into training and test sets by the KDD Cup organizers. The training

set contains a total of 153 blocks for which the homology status is known to us. The test set

contains a total of 150 blocks for which the homology status is completely unknown to us.

The dataset is highly sparse: on average there are 5 homologous proteins in each block in the

training set. The protein homology dataset is described in detail in Section 5.2 of Chapter 5.

I fit an ensemble using the 153 blocks in the training set. The fitted ensemble is used to

rank the candidate proteins in each test block so that the rare homologous proteins are found

in the top. The estimated probabilities of being homologous are used to rank the candidate

proteins in each block. Thus, a performance metric is computed in each test block. The final

performance of the ensemble is measured by averaging the performance metric over the 150

test blocks. The method will be described in detail in Chapter 5.

1.7 Summary

The goal of this thesis is to rank the rare class objects ahead of the majority class objects

in a dataset in such a way that the rare objects are found at the top of the ranked list.

We propose ensemble methods to serve this goal. The ensembles are developed focusing on

datasets with many variables. Instead of regularization, I use the richness of variables in a

dataset to formulate the ensemble. The motivation for developing our ensemble comes from

the work described next in Chapter 2.
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Chapter 2

Ensembling Natural Subsets of

Variables

2.1 Introduction

In drug discovery, the compounds in a chemical library may be “active” or “inactive” against

a biological target. High-throughput screening (HTS) may be used to assay a portion of

the compounds to determine their activity status. In quantitative structure-activity relation-

ship (QSAR) studies, it is customary to model the biological activity of compounds by their

chemical structures or physiochemical properties known as molecular descriptors (Hughes-

Oliver et al., 2011; Merkwirth et al., 2004; Rusinko et al., 1999; Svetnik et al., 2003). In this

Chapter, I train a classifier using molecular descriptors of chemical compounds with known

activity status. The trained classifier is used to estimate the probability of activity for the

test compounds.

The classifiers are applied to four drug discovery bioassays (described in Section 2.2) which

contain very small proportions of active compounds compared to the proportion of inactive

compounds. Moreover, I am interested in identifying the rare active compounds only. In such

problems, a prediction model might perform poorly in classifying the rare active compounds.

For example, if the proportion of active compounds is smaller than 1%, a classifier that

classifies every compound to be inactive will have high correct classification rate of greater

than 99% without being able to correctly classify any active compound. Obviously, this does

not serve our purpose at all. Hence, unlike classification, I rank all of the compounds in a

dataset using the probabilities of activity so that the rare actives are found at the top of a

shortlist of all compounds. Thus, a classifier will be considered good as long as it ranks more

actives earlier in the shortlist – no matter whether this model can correctly classify any active

or not. As such, if a chemist becomes interested in finding the rare active compounds in a

huge chemical library, he/she can go through a shortlist of the top ranked compounds only

and can save time and money.

Many non-ensemble classifiers, such as neural networks, recursive partitioning, k-nearest

neighbours, support vector machines etc., have been successfully applied to QSAR studies

(see Aoyama et al., 1990; Doniger and Hofmann, 2002; Kauffman and Jurs, 2001; Rusinko

et al., 1999). In this chapter, I will be dealing with ensembles of classifiers. Merkwirth

et al. (2004) described the application of ensemble methods to binary classification problems
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in QSAR studies. They built ensembles by combining classifiers constructed on random

subspace of features using a particular modelling method chosen from k-nearest neighbours

and support vector machines. Their performances were compared with the non-ensemble k

-nearest neighbours, support vector machines, and linear regression model with ridge penalty.

The resulting ensembles were found better performing than the non-ensemble classifiers.

Bruce et al. (2007) presented a comparative assessment of several machine learning tools

for mining drug data, including support vector machines and decision tree based ensembles:

boosting, bagging, and random forests. The authors demonstrated that the ensemble “random

forests” can provide consistent improvement in predictive performance over single decision

tree in terms of classification accuracy. Svetnik et al. (2003) applied random forests for

classification of chemical compounds in QSAR studies. Their analysis demonstrates that

random forests is a powerful tool capable of delivering highly accurate performance.

Chen et al. (2004) proposed two techniques to deal with unbalanced classification problem

using random forests: one is based on assigning large (small) weight for the misclassification

of the minority (majority) class objects, and the other is based on under sampling of the

majority class objects while drawing bootstrap samples during training process. Both of

the approaches were shown to improve prediction accuracy for the minority class. Zhang

et al. (2009) proposed an ensemble of classification trees for QSAR studies by adaptively

determining the threshold of probability, instead of using the default 0.5, to classify classes of

chemical compounds. In this ensemble, the constituent classifiers were built by sampling 70%

of the feature variables and then growing classification trees optimized by pruning method.

This ensemble was shown to perform well in highly unbalanced QSAR data. Their works

(Chen et al., 2004; Zhang et al., 2009) dealt with the classification of the minority class,

whereas, in this chapter, I am interested in early ranking of the minority class objects.

Hughes-Oliver et al. (2011) compared a comprehensive collection of the state-of-the-art

QSAR models and five descriptor sets to rank the rare active compounds ahead of the inactive

compounds in several highly unbalanced two-class assay datasets. Among the models, there

were eleven non-ensemble and one ensemble classifiers. Repeatedly the ensemble random

forests with one of the five sets of descriptors appeared as the top performing model. But

clearly there was no clear winner among the descriptor sets. For example, in one of the

assay datasets, AID362, the performance of random forests using the descriptor sets ‘Burden

Numbers’ and ‘Atom Pairs’ (the descriptor sets will be described in Section 2.3) was in the top

and fourth position from the top, respectively - whereas, in another assay dataset, AID364,

the positions of the descriptor sets in terms of performance (using random forests, indeed)

swapped.

As noted earlier, the molecular descriptors play an important role in developing a classifier.

There exist many molecular descriptor sets in QSAR studies (see Leach and Gillet, 2007;

Todeschini and Consonni, 2000). Although the number of available descriptor sets is large,

there is no consensus on the types of input descriptors to build uniformly good performing
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QSARmodel (Zhang et al., 2009). In such a situation, rather than using a single set descriptor,

we use several sets to build our model.

Until recently, many researchers have either tried to find a good model/classifier or a good

set of descriptors of the chemical compounds in QSAR studies. But the performance of the

descriptor sets is target-specific, and we are not there yet to label the best set of descriptors.

As such, we have proposed an ensemble method which aggregates over several molecular

descriptor sets employing one of the most accurate QSAR classifiers: the random forests. I

rank compounds in a dataset by averaging the probabilities of activity from random forests

classifiers applied to different sets of molecular descriptors (the method is presented in Section

2.4). The proposed ensemble performs better than the most accurate random forests classifier

that uses a single descriptor set. Our method is found more computationally efficient than

the random forests classifier applied to the pool of descriptor sets. Moreover, for the most

part, the former model outperforms the latter.

2.2 BioAssay Data

I focus on the application of our methods to four BioAssay datasets made available by the

Molecular Libraries Screening Center Network (MLSCN) (http://mli.nih.gov/mli/mlscn).

The bioassay datasets were briefly introduced in Section 1.5 of Chapter 1. These assays

typically resulted in continuous responses (percent inhibition) from a primary screen and

binary responses (active versus inactive) from a secondary screen. In this thesis I focus on the

binary responses. Table 2.1 presents the biological targets, number of compounds, number of

active compounds and proportion of actives in the four assay datasets.

2.2.1 Assay AID364

Assay AID364 is a cytotoxicity assay conducted by The Scripps Research Institute - Molecular

Screening Center (http://mlpcn.florida.scripps.edu/). The cytotoxicity of a chemical

compound is the quality of being toxic to cells which is helpful to develop potential human

therapeutics (http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=364). In this as-

say the goal of the Scripps Research Institute was to screen for cytotoxic compounds which

were active against cancer cells. A total of 3311 compounds were tested, and 50 (1.51%) of

them were found active. This is the smallest dataset, in terms of the number of compounds,

among the four assays.

2.2.2 Assay AID371

Assay AID371, also a cytotoxic assay, was conducted by the Southern Research Molecular Li-

braries Screening Center (http://www.southernresearch.org/life-sciences/). The abil-

ity of a cytotoxic compound to inhibit the growth of the human non-small cell lung tumour

line, A549, is a preliminary indication of anti-cancer activity for treating patients with lung

17

http://mli.nih.gov/mli/mlscn
 http://mlpcn.florida.scripps.edu/ 
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=364
 http://www.southernresearch.org/life-sciences/ 


2.3. The Descriptor Sets / Natural Subsets of Variables

cancer (http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=371). This assay con-

tains a total of 3312 compounds with 278 actives (8.4%).

2.2.3 Assay AID362

Assay AID362 is a formylpeptide receptor ligand binding assay conducted by the New Mexico

Molecular Libraries Screening Center (http://nmmlsc.health.unm.edu/). The formylpep-

tide receptor (FPR) family of G-protein coupled receptors (GPCR) contributes to the local-

ization and activation of tissue-damaging leukocytes at sites of chronic inflammation (http://

pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=362). This assay contains 4279 unique

compounds out of which 60 are active (1.4%).

2.2.4 Assay AID348

According to Wikipedia, “Beta-glucocerebrosidase is an enzyme with glucosylceramidase ac-

tivity that is needed to cleave, by hydrolysis, the beta-glucosidic linkage of the chemical

glucocerebroside, an intermediate in glycolipid metabolism.” (http://en.wikipedia.org/

wiki/Glucocerebrosidase). The inherited deficiency of this enzyme results in Gaucher’s dis-

ease, a lysosomal storage disease characterized by an accumulation of glucocerebrosides. The

deficiency also creates some forms of disorder affecting the central nervous system. This beta-

glucocerebrosidase assay AID348, developed by the National Institute of Health Chemical Ge-

nomics Center (http://www.ncats.nih.gov/research/reengineering/ncgc/ncgc.html),

has 4946 compounds out of which 48 are active. This is the largest assay in terms of the

number of compounds with only 0.97% active compounds.

Table 2.1: The four bioassay datasets considered in this chapter. The numbers in () are the
number of active compounds in each of the assays.

Assay Biological Target # of Compounds Fraction of Actives

AID364
Potential human

3311 ( 50) 0.0151
therapeutics

AID371
Lung tumor

3312 (278) 0.0839
cells

AID362
Tissue-damaging

4279 ( 60) 0.0140
leukocytes

AID348
Gaucher’s

4964 ( 48) 0.0097
disease

2.3 The Descriptor Sets / Natural Subsets of Variables

Molecular descriptors are numeric variables that describe the structure or shape of molecules,

helping to predict the activity or properties of molecules in drug discovery. The Quantita-
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tive Structure-Activity Relationships (QSAR) model relates activity/toxicity/drug potency

of chemical compounds with their molecular descriptors. In this chapter, I have used five

sets of molecular descriptors for the four PubChem assays. As the molecular descriptor sets

are available in the QSAR literature as separate sets of variables each describing different

properties of the chemical compounds, I term each of them as a “natural subset of variables.”

The descriptor sets are obtained using the descriptor generator engine: computer software

called PowerMV (Liu et al., 2005). The generated descriptor sets are: Atom Pairs (AP), Bur-

den Numbers (BN) (Burden, 1989; Pearlman and Smith, 1999), Carhart Atom Pairs (CAP)

(Carhart et al., 1985), Fragment Pairs (FP), and Pharmacophores Fingerprints (PH). The

Burden Numbers are continuous descriptors, and the other four are bit string descriptors

where each bit is set to “1” when a certain feature is present and “0” when it is not. See Liu

et al. (2005) and Hughes-Oliver et al. (2011) for further information on these descriptor sets,

how they are generated and what properties of the molecules they represent.

Table 2.2: The number of non-constant feature variables for each of the five descriptor sets.
The numbers in () show the total number of feature variables generated by PowerMV.

Descriptor Sets
Assay Name

AID364 AID371 AID362 AID348

Atom Pairs / AP (546) 380 382 360 367
Burden Numbers / BN (24) 24 24 24 24
Carhart Atom Pairs / CAP (4662) 1585 1498 1319 1795
Fragment Pairs / FP (735) 580 580 563 570
Pharmacophores / PH (147) 120 119 112 122

All Features / AF (6114) 2689 2603 2378 2878

PowerMV generates a total of 546, 24, 4662, 735 and 147 feature variables for AP, BN,

CAP, FP and PH, respectively. Table 2.2 shows the number of non-constant feature variables

for each descriptor set and assay. The binary descriptor set CAP provides the largest number

of feature variables (1319−1795), and the continuous descriptor set BN provides the smallest

number of feature variables (24). Three of the four binary descriptor sets AP, CAP and FP are

very rich in terms of number of variables. The continuous descriptor set BN is also rich in the

sense that a continuous variable possesses much more resolution than a binary variable. The

last row of Table 2.2 shows the number of feature variables after pooling the five descriptor

sets together. I call this pool of descriptor sets all features and denote by AF.

2.4 Ensemble of Descriptor Sets

I build an ensemble by averaging probability of activity across descriptor sets and call the

resulting ensemble as the “ensemble of descriptor sets”; in short EDS. Let us consider there

are ns sets of molecular descriptors. Using training data, I build ns random forests using
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ns sets of descriptors and compute probabilities of activity using each of the classifiers. The

computed probabilities are then averaged across classifiers/sets of descriptors to build the final

ensemble. The averaged probabilities of activity are used to rank the compounds in the test

set. The compound with the largest averaged probability of activity is ranked first, followed

by the compound with the second largest averaged probability of activity and so on.

The logic for building such an ensemble is straightforward. Dietterich (2000) pointed

out that the performance of an ensemble depends critically on three factors: (i) strong base

learners, i.e., good modelling/classification method to build the constituent models/classifiers

(ii) low correlation between predictions obtained from the constituent classifiers, i.e., a diverse

set of constituent models/classifiers, and (iii) the strategy of combining results from the

constituent models/classifiers. To construct EDS, I choose “random forests” as the base

learner, which is undoubtedly a strong classifier. Random forests is a highly accurate ensemble

as it has often appeared to be the top performer in various QSAR studies (Bruce et al., 2007;

Hughes-Oliver et al., 2011; Svetnik et al., 2003; Zhang et al., 2009). I conjecture that the

different sets of descriptors are so diverse that they will generate considerably low correlated

classifiers, i.e., low correlation between probabilities of activity across the classifiers.

There are two popular schemes to aggregate multiple classifiers in an ensemble: major-

ity voting and probability averaging. Wang (2005) showed that the scheme of probability

averaging is better than the majority voting. Zhang et al. (2009) pointed out that the gain

in accuracy due to probability averaging relative to majority voting can get more than 6%

improvement if the base learner is more accurate than that of a learner that performs random

selection.

In this chapter, I average classifiers across five sets of descriptors: Atom Pairs (AP), Bur-

den Numbers (BN), Carhart Atom Pairs (CAP), Fragment Pairs (FP), Pharmacophores (PH).

The advantages are two-fold: (i) improvement in every dataset investigated in this chapter

over the most accurate random forest applied to any single set of molecular descriptors, and

(ii) less computational requirement than the random forest applied to the pool of descriptor

sets (AF). The base learner “random forests” is constructed by the R packages randomFor-

est (Liaw and Wiener, 2011). As there is only one tuning parameter (mtry) in random forests,

I use the default, mtry =
√
D, following the suggestion of Breiman (2001).

2.5 Evaluation of Classifiers

The goal of this thesis is to rank the test compounds. But, I have assay datasets where the

classes for all of the compounds are known, i.e., there is no test data. Hence, to evaluate

predictive ranking performances of the ensembles, one potential solution is to split the data

randomly into two parts of approximately equal size, and to consider one of the parts as

training and the other as test. Simultaneously, it is possible to swap the training and test

parts to use the entire data set. This splitting process of the data is called 2-fold cross-
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validation. In this chapter, I have used balanced 10-fold cross-validation which I am going to

describe next.

2.5.1 Balanced 10-fold Cross-validation

In regular 10-fold cross-validation the dataset is randomly partitioned into 10 folds each

containing approximately equal number of compounds. Treating one of these folds as a “test

set”, the remaining (10− 1) = 9 folds are combined together to form a “training set” in order

to learn a model. This model is then applied to the “test set” to obtain predictions. The

process is repeated, holding out each of the 10 folds for testing in turn. The advantage of the

10-fold cross-validation over a one-time split (2-fold cross-validation) is the increased precision

of error estimation.

Since the assay datasets contain very few active compounds, I have to be careful in making

the splits. For example, in regular 10-fold cross-validation, a particular fold might completely

miss the rare active compounds and thus could make the training and test splits unrepresen-

tative to each other with respect to the rare active compounds. Thus, I randomly divide the

data into 10 folds in such a way that the resulting folds are approximately of equal sized with

approximately equal number of actives in each. I named this new splitting method as the

balanced 10-fold cross-validation.

In a particular turn of the cross-validation, a set of compounds appear exactly once in the

test fold. After all of the ten turns of the cross-validation, all of the compounds appear exactly

once in one of the ten test folds. Thus, having completed a balanced 10-fold cross-validation,

I obtain the probabilities of activity for all of the compounds in an assay and use them to

rank the compounds in order to determine the performance of the corresponding model.

2.5.2 Hit Curve

A hit curve provides graphical inspection of the performance of a classifier when the objective

is ranking rare class objects ahead of the majority class objects. I used the estimated proba-

bilities of activity to rank the compounds in a dataset and thus to produce a shortlist of the

top ranked compounds. The determination of the number of compounds to be shortlisted for

further investigation depends on the available resources in a project.

Let n be the total number of compounds in a test set and let a be the number active

compounds. Let 0 ≤ at ≤ a be the number of actives (called hits) in a shortlist of size

t ∈ [1, n]. The hit curve is a plot of at versus t or equivalently a plot of at/a versus t/n where

the information is given in term of percentages. A hit curve can be viewed as a variant of the

receiver-operating characteristic (ROC) curve where we plot true positive and false positive

rates in the vertical and horizontal axes, respectively. The hit curve is an effective method for

evaluating a ranking procedure showing its performance at all possible shortlist cutoff-point

t ∈ [1, n]. Classifier 1 with hit curve H1(t) is unambiguously superior to classifier 2 with hit

curve H2(t) if H1(t) ≥ H2(t) at every t.
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The left panel of figure 2.1 shows seven hit curves generated by seven classifiers using the

AID364 data. A hit curve resembles a step function with slopes in places where there are ties

in the probabilities of activity. Having seen the hit curves, we may realize that finding the

best hit curve may not be an easy task as they often cross and overlap each other. In such a

situation, a single number summary of a hit curve might be helpful to evaluate classifiers and

to facilitate comparisons.

2.5.3 Initial Enhancement

Initial enhancement (IE), proposed by Kearsley et al. (1996), is a popular measure to evaluate

performances of classifiers when the objective is ranking rare class compounds. Suppose,

having ranked the compounds using the estimated probabilities of activity, I have a shortlist

of top t ≤ n compounds which are highly likely to be active. Initial enhancement at the

shortlist of length t is the hit rate at t divided by the proportion of actives in the entire

collection of compounds. The IE is defined as:

IE =
(at/t)

(a/n)
.

It is a relative measure of hit rate improvement offered by a classifier beyond what can be

obtained under random ranking, and values much larger than 1 are desired. Notice that IE

depends on the particular shortlist cutoff point t. Moreover, IE doesn’t distinguish whether

the actives are ranked at the very top or right before the end of the shortlist. Therefore, IE

is not our favorite ranking evaluation method.

Here, we will see that sometimes IE does not reward a hit curve well with many actives

in the start of a shortlist. The left panel of Figure 2.1 shows seven hit curves obtained from

applying random forests to the five descriptor sets of the AID364 assay data. Following the

results of Hughes-Oliver et al. (2011), IE is computed at t = 300. I compared two ensembles

in terms of IE: random forests applied to atom pairs (AP) and random forests applied to the

pool of five descriptor sets (AF). It is very clear that AP gives a very good initial enhancement

of 6.401 which is bigger than 5.960, the IE obtained from AF. That is, AP ranks more actives

in this shortlist of 300 compounds and hence the larger IE. But, careful inspection of the two

hit curves (red and yellow lines are for AP and AF, respectively) reveals that AF identifies

more actives earlier in the list than AP. If our goal is to rank the rare actives earlier in the

list than at a particular test point, we should choose random forests with AF as our desired

QSAR classifier among the two. As IE fails to reward early ranking of active compounds in a

shortlist, we should try to find another metric to evaluate QSAR models simultaneously with

IE.
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2.5.4 Average Hit Rate

The average hit rate (AHR) gives a single number summary for a hit curve and is a common

measure in information retrieval (Zhu, 2004). Suppose we shortlist the top t ≤ n compounds

and at of them are active. Then

h(t) =
at
t
∈ [0, 1] (2.1)

is the hit rate for the top t ranked. Naturally, we want h(t) to be as large as possible at every

t ∈ [1, n]. Let 1 ≤ t1 < t2 < · · · < ta ≤ n be the positions of the active compounds in the

ranked list. The average hit rate – occasionally referred to as average precision – is defined

as

AHR =
1

a
[h(t1) + h(t2) + · · ·+ h(ta)] . (2.2)

AHR averages the “hit rates” of the selected active compounds, and larger AHR corre-

sponds to the hit curve with most rapid early rise. If a hit curve ranks more actives ahead

of the inactive compounds, then AHR rewards the hit curve by assigning a bigger number.

AHR reaches the maximum 1, if all of the active compounds are ranked before the inactive

compounds amongst those selected. To calculate AHR, we assume random ordering of the

response in a tied group. Further details on AHR can be found in Chapter 3 of Wang (2005).

Sometimes AHR does not fully respect the properties of a hit curve in a single number.

This measure gives very large weights to the actives found earlier in the list than those are

found later. For example, we can compare two hit curves corresponding to random forests

applied to atom pairs (AP) and pharmacophores (PH) in Figure 2.1. AP gives an AHR of

0.279 and PH gives an AHR of 0.285 – but for most of the list the hit curve corresponding

to AP (the red line) is far above than the hit curve corresponding to PH (the sky-blue line).

The larger AHR for PH is due to the fact that it identifies more hits at the start of the list:

10 of the first 10 compounds tested are hits.

If we rely on IE alone, we might infer that the AP gives a better model. On the other hand

if we rely on AHR alone, we might infer that the PH gives a better model. Thus, sometimes,

an evaluation metric alone might not be enough to reward a good hit curve. Hence, ideally I

shall try to choose a classifier by maximizing both of the assessment measures: IE and AHR,

i.e., I shall look for a classifier which gives more hits earlier in the list as well as more actives at

the chosen test point. Otherwise, I will choose a classifier by maximizing AHR alone provided

that the IE is close to the maximum.

2.6 Results

This section contains results after applying the described ensembles to the assay datasets.

So far, we have five random forests for the five sets of descriptors: atom pairs (AP), burden
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numbers (BN), carhart atom pairs (CAP), fragment pairs (FP), and pharmacophores (PH).

There are also two ensembles using all of the descriptor sets: random forests applied to the

pool of descriptor sets (AF), and ensemble of descriptor sets (EDS). In total, there are seven

ensembles to compare in each of the four assays.

2.6.1 Assay AID364

Panel (a) of Figure 2.1 shows seven hit curves corresponding to seven classifiers. The hit

curves are produced from the probabilities of activity obtained from a balanced 10-fold cross-

validation of the compounds of AID364 assay. As this assay contains only 50 active com-

pounds, I computed IE at t = 300. The top three ensembles in terms of AHR are EDS, AF

and CAP; and in terms of IE are EDS, CAP and AP. So the top performing ensemble is EDS.

The top performing random forests using a single descriptor set is CAP. The performance

of random forests with the pool of descriptor sets (AF) is in second and fourth positions in

terms of AHR and IE, respectively.
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Figure 2.1: (a) The hit curves obtained from applying random forests to the five descriptor
sets (AP, BN, CAP, FP and PH), and to the pool of the five descriptor sets (AF) of the AID364
dataset. The other hit curve is for the ensemble descriptor sets (EDS) applied to the AID364
dataset. (b) The corresponding initial enhancement (IE) versus average hit rate (AHR) plot
for the seven ensembles applied to the AID364 assay. Both of the panels are obtained using
the probabilities of activity from a particular balanced 10-fold cross validation.

To make comparison of the methods easy and straightforward, I have plotted IE against

AHR for the same balanced 10-fold cross-validation of the AID364 dataset (Panel (b) of Figure

2.1). As the target is to maximize both AHR and IE, a good method is positioned in the top

right corner of this plot. Fortunately, the proposed ensemble EDS is found in the top right
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corner indeed. The top performing random forest using a single descriptor set is CAP, and

our ensemble EDS outperforms CAP in terms of AHR and performs equally in terms of IE.

In order to compare average performances of the classifiers, I repeated the balanced 10-fold

cross-validation for a total of 16 times. There are 16 processors available in my department’s

computing network for parallel computation and hence the 16 cross-validations. Since I want

to compare performances in terms of AHR and IE, I performed a multivariate analysis of

variance (MANOVA) with two dependent variables: AHR and IE. The factor variable methods

has seven labels (AP, BN, CAP, FP, PH, AF, EDS) and the blocking factor has 16 blocks

corresponding to the 16 cross-validations. After fitting the MANOVA model, employing

standard assumptions (bivariate normality for the dependent variables, homogeneity of the

covariance matrices across levels of the independent variables, independence of observations

etc.), I have found that the effects of methods on both of the responses are highly significant

using four testing methods: Pillai’s Trace, Wilks’ Lambda, Hotelling’s Trace, Roy’s Largest

Root (Johnson and Wichern, 2002, Section 6.9). Table 2.3 shows the Hotelling-Lawley test-

statistic from the MANOVA fit using two responses, AHR and IE, to the AID364 bioassay

data. The blocking factor is also found significant which signifies the importance of including

blocks in the model.

Table 2.3: Hotelling-Lawley test-statistic from the MANOVA fit using two responses, AHR
and IE, to the AID364 bioassay data.

Factors df Hotelling-Lawley App F Num df Den df Pr(> F )

Methods 6 19.203 140.824 12 176 < 0.0001
Blocks 15 4.877 14.307 30 176 < 0.0001
Residuals 90

As the effect of the factor variable methods is found significant, I have compared bivariate

mean vectors (AHR, IE) for the seven ensembles. Using the bivariate normality assumption,

the 95% confidence region for the bivariate mean vector is constructed. Panel (a) of Figure

2.2 shows the plots of mean AHR versus mean IE with 95% confidence regions for the seven

ensembles in the AID364 assay. In terms of mean AHR and IE, the top performing ensemble

is EDS. Using mean IE alone, the top performing random forests constructed on a single

descriptor set are AP and CAP, and their performances exceeded the performance of AF. All

of the three models (EDS, AP and CAP) provide significantly larger mean IE than AF. Using

mean AHR, the second performer from the top is AF followed by CAP and BN. The message

is: when we use different assessment criteria, the performances of the classifiers fluctuate a

lot – but my ensemble EDS is in the top right corner. It is clear that when we aggregate

classifiers over the five descriptor sets (AP, BN, CAP, FP, and PH), we get higher AHR and

IE than any of the classifier constructed on a single descriptor set.
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Figure 2.2: Plots of mean initial enhancement (IE) versus mean average hit rates (AHR)
with 95% confidence bands obtained from applying the seven classifiers to the four bio assay
datasets: AID364, AID371, AID362, and AID348.
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2.6.2 Assay AID371

Assay AID371 contains 3312 compounds in total, out of which 278 are active. As there are

278 active compounds, I have computed IE at t = 600 test point. I have fitted a MANOVA

using bivariate responses of AHR and IE, and the results are found similar to the results of

the assay AID364. Panel (b) of Figure 2.2 shows the plots of mean AHR versus mean IE for

the seven classifiers applied to the AID371 assay. As we have seen earlier, averaging random

forests across descriptor sets provides better predictive ranking than any constituent random

forests applied to any single descriptor set. In terms of the assessment measures AHR and

IE, the top performing ensemble is EDS followed by AF. The top performing random forest

among the individual descriptor sets is FP, and its performance is significantly lower than my

ensemble EDS.

2.6.3 Assay AID362

As the number of active compounds is 60 in this assay, the IE has been computed at t = 300

test compounds. The bottom left panel of Figure 2.2 shows the plots of mean AHR versus

mean IE for the seven classifiers applied to the assay AID362. I see results similar to the

earlier assays AID364 and AID371: averaging random forests over the descriptor sets gives

better predictive ranking of the rare actives than the random forests applied to any of the

single descriptor set. In terms of mean IE and AHR, the top performing ensemble is EDS.

The second performer from the top is AF. The top performing random forests constructed on

single descriptor set is BN using IE and AP using AHR.

2.6.4 Assay AID348

Assay AID348 contains the largest number of compounds (4946) among the four assays with

only 48 active compounds. The assessment measure IE is calculated at t = 300 shortlisted

compounds. The MANOVA with bivariate response of AHR and IE gives similar results as

other three assays, and hence we directly present the mean AHR versus mean IE plots (Panel

(d) of the Figure 2.2). I see that averaging random forests over the descriptor sets gives better

predictive ranking of the rare active compounds than the random forests applied to any single

set of descriptors. The two ensembles, EDS and AF, which use the five sets of descriptors,

have significantly outperformed all of the five random forests constructed using any single set

of descriptors. The classifier EDS appeared in the second position in terms of both AHR and

IE.

Surprisingly, random forests with the pool of descriptor sets (AF) appeared as the top

performing ensemble in terms of mean AHR and IE for this assay. This result is not consistent

with the results from other assays. To be honest, it is hard to answer exactly why random

forests with the pool of descriptor sets (AF) outperformed EDS. But I conjecture that the

constituent classifiers of EDS are in general weak and so is their ensemble. I provide an
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example in the following paragraphs.

The basic principle of constructing an ensemble states that, in order to perform well, an

ensemble needs to aggregate strong and diverse constituent classifiers (Breiman, 2001). The

diversity among the constituent random forests in EDS will be examined in Section 2.7 .

Here, I will be checking the strengths of the constituent random forests of EDS by comparing

their performances with classification trees applied to the five descriptor sets of the AID348

Assay. The classification trees are fitted using the default settings of the R package Tree

(Ripley, 2011). For a fair comparison, I used the same 16 balanced 10-fold cross-validations

as in random forests to evaluate classification trees.

Table 2.4 shows the mean AHRs and IEs over the 16 cross-validations for classification

tree (Tree) and random forests (RF) applied to the five descriptor sets (AP, BN, CAP, FP

and PH). The table also shows the performances of their ensembles, EDSs. The results are

fairly interesting. In terms of mean AHR, Tree with CAP outperformed random forests with

CAP. In terms of mean IE, Tree with FP and PH outperformed random forests with FP and

PH, respectively. The ensembles of descriptor sets with random forests and classification trees

perform fairly similar.

Table 2.4: The mean AHRs and IEs over the 16 cross-validations for classification tree (Tree)
and random forests (RF) applied to the five descriptor sets (AP, BN, CAP, FP and PH), and
for their ensembles EDSs.

Metrics Classifiers
Constituents Ensemble

AP BN CAP FP PH EDS

AHR
Tree 0.033 0.039 0.071 0.066 0.069 0.122
RF 0.063 0.090 0.068 0.077 0.070 0.128

IE
Tree 3.547 4.585 6.470 7.290 5.774 8.007
RF 5.186 6.618 7.161 7.069 5.526 8.388

In general, random forests provides much better predictive performance than a classifi-

cation tree. So the question arises, “why random forests could not improve performances

of classification trees for some descriptor sets?” Perhaps those descriptor sets contain many

unimportant feature variables for which the performances of random forests are decreased.

Thus, equipped with weak constituent random forests the ensemble EDS appears weak. How-

ever, as you will see, I will improve the performance of our ensemble in Chapters 3 and

4.

2.7 Diversity Map

In this section, I shall try to understand why the proposed ensemble of averaging proba-

bilities of activity across descriptor sets provides good predictive ranking of the rare active

compounds. I plot the ranks of the active compounds corresponding to the seven classifiers
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Figure 2.3: Diversity maps of ranks of the active compounds for AID362 and AID348 assays.
The probabilities of activity associated with the cross-validation number 1 are used to rank
the compounds.

applied to AID362 and AID348 Assays (Panels a and b of Figure 2.3, repectively). The

compounds are ranked using the probabilities of activity obtained from the cross-validation

number 1. If an active compound is ranked at the top position by a classifier, the compound

receives the darkest gray colour. If a compound is ranked down in the sequence, it receives

absolutely no colour. The colour key in each plot shows where in the sequence an active

compound is ranked by a classifier. I also sequence the active compounds in the right side of

the vertical axis. The compounds are sequenced using the probabilities of activity obtained

from EDS. As a result, we can see the diversity in ranks across different classifiers. Such a

plot is popularly known as the diversity map (Hughes-Oliver et al., 2011). I also report the

AHRs and IEs for the seven classifiers to understand how strong the classifiers are.

It is the diversity in AP, BN, CAP, FP and PH which makes our ensemble EDS perform

better than the top performing random forests applied to any of the five descriptor sets. You

can see there is variation in ranks across the random forests applied to AP, BN, CAP, FP

and PH, i.e., different classifiers rank different sets of active compounds well. For example, in

AID362 Assay the active compound 1 is ranked very well by AP, CAP and FP, and moderately

well by BN and PH. As a result of this variation or diversity, the compound is ranked very

well by EDS. We also see diversity in ranks among the classifiers AP, BN, CAP, FP and PH

in Assay AID348 (Panel (b) of Figure 2.3). We see EDS ranks a compound very well if all of

the constituent classifiers rank it well. If some of the classifiers rank a compound well and the

others fail to rank it well then EDS ranks the compound well too. If none of the constituent

classifiers rank a compound well then EDS fails to rank it well.
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However, it has been observed that the model random forests with AF is computationally

very intensive. The next section (Section 2.8) presents computational complexity of the

classifiers we presented so far.

2.8 Computational Complexity

Table 2.5 shows the computational time in minutes for the seven ensembles to complete a

balanced 10-fold cross-validation. The times are obtained in an Intel Core I5 CPU (2.67

GHz) with 6.00 GB RAM and 64-bit Windows Operating System. It is easy to see that the

computational time does not vary much for increasing the number of compounds, but depends

heavily on the number of feature variables. As a result, the computational time for AF is

very high comparing to the other models. It is worthy to mention that EDS and AF use the

same number of feature variables, but the former requires 33− 48% less computational time

than the latter.

Table 2.5: Observed computational time (in minutes) to complete a balanced 10-fold cross-
validation for the seven ensembles applied to the five descriptor sets of the four assay datasets.
The number in () shows the number of feature variables used to construct the corresponding
classifier.

Assay Name AID364 AID371 AID362 AID348
(Number of Compounds) (3311) (3312) (4279) (4946)

Atom Pairs (360-382) 9.09 12.30 11.28 12.76
Burden Numbers (24) 0.49 0.74 0.67 0.70
Carhart Atom Pairs (1319-1795) 103.78 114.91 101.85 170.79
Fragment Pairs (563-580) 21.60 27.59 25.98 31.05
Pharmacophores (112-122) 3.11 3.86 3.38 5.39

Ensemble of DS (2378-2878) 138.62 159.36 144.01 220.55
All Features (2378-2878) 252.70 278.99 230.14 329.62

The computational time of a random forest can be divided up into two parts: (1) time

for reading the data, and (2) time for computation. Having read the data, the R package

randomForest stores the entire data file into its memory. Obviously, a large data file will

occupy large computer memory. So this program is not scalable to a dataset for which the

memory requirement exceeds the memory capacity of a computer. So far we have been

successful in running random forests using the pool of five descriptor sets (AF). But there are

many descriptor sets available in cheminformatics literature. Thus, if the size of the memory

requirement for the pool of many descriptor sets (> 5) exceeds the memory of a computer

then AF would not be scalable to that computer. In the presence of many descriptor sets,

EDS is easily scalable, whereas scalability of AF is in doubt.
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2.9 Summary

I have introduced a novel ensemble method through averaging probabilities of activity over

the molecular descriptor sets to rank rare active compounds ahead of the majority inactive

compounds in QSAR studies. Convincing results have been observed in favor of the proposed

ensemble which ensures significant improvement over the most accurate classifier that can be

built using a single set of descriptors. In fact there is no any particular set of descriptors that

performs uniformly best over the others: the results of this chapter also favour this statement.

Moreover, the proposed method often outperforms the random forest classifier applied to the

pool of the five descriptor sets. On the other hand, the ensemble EDS is scalable to many

descriptor sets where it is quite difficult or, perhaps, impossible to apply random forests to

AF. We have used five sets of descriptors in this study - but it is possible to include many as

there are many sets of molecular descriptors available in cheminformatics literature.

One of the reasons why averaging over descriptor sets works better than the top performing

random forests applied to any of the five descriptor sets is the diversity of the classifiers built

using different sets of molecular descriptors. The classifiers are diverse in the sense that each

of them ranks diverse sets of active compounds well. As a result, the ensemble obtained by

averaging the probabilities of activity ranks more active compounds – perhaps, a subset of

the union of active compounds found by all of the constituent classifiers – than the number

of active compounds ranked by any single constituent classifier.

A naive method of pooling the descriptor sets together (AF) gave top performance in

conjunction with random forests for the AID348 assay. Perhaps there is manageable number

of good feature variables in that assay and a regular random forests can effectively handle

them to produce top result. However, this top result alone does not justify the use of AF

instead of EDS as the performance of AF fluctuates a lot for other assays. For example,

AF sometimes provides weaker performance than the most accurate classifier based on an

individual descriptor set. EDS is computationally efficient, scalable to high dimension, and

is one of the top-two models. Moreover, this model gives better performance than the top

performing classifier based on any single molecular descriptor set.

I used random forests because it is found as one of the top performing ranking models.

Some other modelling methods (classification tree, k-NN, boosted tree, for example) might also

help to give improved performance as they are also found highly accurate in other applications.

However, the good results from the ensemble of natural descriptor sets motivates me to uncover

data-adaptive subsets of variables in a variable-rich descriptor set which I am going to describe

next in Chapter 3.

31



Chapter 3

Ensembling Data-Adaptive Subsets

of Variables

3.1 Introduction

A new ensemble using data-adaptive subsets of variables is proposed and applied to the four

highly unbalanced (i.e. sparse) drug discovery datasets. The response variable in our datasets

is the compound activity status. The predictors are the five sets of variables called “descriptor

sets”. The variables in each descriptor set describe chemical/molecular structures of the

compounds. Each of the five descriptor sets contains a large number of predictors. Without

uttering the conventional term “curse of dimensionality” we say that the descriptor sets are

rich in terms of number of variables. In fact, we judiciously use the richness of the descriptor

sets to develop our ranking procedure.

We introduce the concept of phalanx, a group of variables that work well together to

form one of several models in an ensemble. Capitalizing on the richness of variables, we form

phalanxes by grouping variables together. Phalanxes are characterized by their ability to yield

a complete predictive model. The variables in a phalanx are in the same model because they

complement each other while the variables in different phalanxes work better in ensemble.

Natural phalanxes are present in our datasets. For a particular bioassay, each of the

five descriptor sets can be considered as a natural phalanx. By ensembling over the natural

phalanxes, our ensemble EDS performed better than the top performing random forest built

on a single set of descriptor (see Chapter 2). Natural phalanxes are sometimes suggested by

subject matter knowledge. For example in Tebbutt et al. (2005) SNP genotyping platform,

grouping of the variables is naturally suggested by the different chemical procedures employed

in the genotyping platform. Finding a good ensemble of natural phalanxes is loosely connected

but different from group LASSO (Yuan and Lin, 2007) and its variants (Meier et al., 2008).

The main difference is that in group LASSO the given groups are only evaluated by their

ability to work together with other groups in a single model. Moreover, the groups may or

may not conform natural phalanxes – depending on whether the variables in each group are

able to yield by themselves a good predictive model.

On the other hand, unknown statistical phalanxes may be present in variable rich datasets.

Uncovering these phalanxes is an interesting and challenging statistical problem. Motivated

from the results of Chapter 2, we propose an algorithm to uncover statistical phalanxes and

32



3.2. Datasets and Variables

demonstrate its performance in several applications. We can think of our phalanx forming

algorithm as a special type of clustering of variables where “similarity” means working well

together in a particular model and “dissimilarity” means working well apart in different models

which are ultimately ensembled.

In principle, phalanxes can be formed using any given classifier. We use random forests

(Breiman, 2001) because of its well-known superior performance for ranking compounds. We

compare our ensemble of phalanxes with random forests and regularized random forests (Deng

and Runger, 2012). As we will see in Section 3.7, the descriptor sets contain a fraction of

noise variables, that is, variables which are not useful to rank the compounds. Regularized

random forests is useful for screening noise variables in a dataset. By comparing our ensemble

of phalanxes against regularized random forests we convey the message that, in this context,

phalanxing is better than regularization.

We have found better performance of the ensemble of phalanxes than its competitor ran-

dom forests and regularized random forests. Our ensemble performs very well when there are

many variables in a descriptor set and when the proportion of active compounds is very small.

The harder the problem the better the ensemble of phalanxes performs. When the proportion

of active is very small, regularized random forests outperforms random forests; and when the

number of variables is very large, random forests outperforms regularized random forests. In

both of the situations, the difference between the top performer and its nearest performing

ensemble is very large – where the top performer is our ensemble. Having convinced by the

good results of our ensemble, we urge people to use the term “rich-in-variables” instead of

“curse-of-dimensionality”.

3.2 Datasets and Variables

We analyze 20 datasets from four different assays in the Molecular Libraries Screening Center

Network (MLSCN). The response variable in all the cases is the compound activity status.

Each of the assays contains a number of compounds that are either active or inactive against

a biological target. Section 2.2 of Chapter 2 describes the four bioassay datasets.

All the assays are highly unbalanced (i.e. sparse) in terms of proportions of actives. For

three of the assays the fractions of active compounds are around 0.01. Hence, the problem of

sparseness poses difficult challenges. For example, a classification tree would soon run short

of rare active compounds and tend to build a shallow tree, using a few important variables. If

there are many important variables, their participation would become difficult. This problem

is partially addressed but not completely resolved by random forests-like ensembles. Our

approach allows more participation of the variables in the phalanxes.

The covariates in all the cases are molecular descriptors – numeric variables that describe

the structure or shape of molecules – which may help to predict the activity of molecules in

drug discovery. Quantitative Structure-Activity Relationship (QSAR) models relate activ-
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ity/toxicity/drug potency of chemical compounds with its molecular descriptors. We consider

five sets of descriptors for each of the four assays. This gives a total 4 × 5 = 20 datasets.

Section 2.3 of Chapter 2 describes the five descriptor sets in four bioassays.

3.3 Performance Measures

In Chapter 2, we have described a few methods to evaluate ranking procedures when the goal

is to detect a few rare occurrences hidden in the midst of a large number of uneventful objects.

Ranking is usually performed using a classifier to estimate the probability of activity for the

candidate compounds. We rank the compounds using their probabilities of activity. The goal

is to rank the actives at the top of the list.

The standard method for evaluating the performance of a classifier is by computing its

misclassification error (ME): the proportion of compounds assigned to the wrong class. But

ME is not useful when the classes are highly unbalanced (Zhu et al., 2006). Instead of

minimizing ME, we evaluate a classifier using a hit curve. The definition of a hit curve is

presented in Subsection 2.5.2 of Chapter 2.

Figure 3.1 shows hit curves for three ensembles RF, RRF, and EPX applied to Atom

Pairs of AID348 Assay. We consider a shortlist of 300 compounds because we wish to rank

the actives earlier in the list. Note that EPX dominates the other two ensembles as it finds

more active compounds earlier in the list. RRF and RF do not dominate each other because

their hit curves criss-cross at several points.

Comparison of crossing hit curves, as in RF and RRF of Figure 3.1, could be difficult if

we have many of them. This comparison would become impossible to handle if we repeat

computations many times through cross-validation. Thus, a single number summary of a hit

curve is desirable in order to facilitate comparison and to automate the selection process.

The average hit rate (AHR) gives a single number summary for a hit curve and is a

common measure in information retrieval (Zhu, 2004). The definition of average hit rate is

provided in Subsection 2.5.4 of Chapter 2. If a classifier identifies more hits earlier in the

ranked list, AHR reward that classifier by assigning a large number. The AHRs for RF, RRF

and EPX (see Figure 3.1) are 0.06, 0.08 and 0.20, respectively. We use AHR not only to

evaluate the ranking procedures but also to form the phalanxes (introduced in Section 3.4).

Initial enhancement (IE), introduced by Kearsley et al. (1996), is a popular ranking per-

formance measure in QSAR studies. The definition of IE is presented in Subsection 2.5.3 of

Chapter 2. Usually, IE evaluates the performance of a classifier at a particular cutoff point

of a hit curve. Naturally, larger values of IE indicate better ranking by a classifier. Following

Hughes-Oliver et al. (2011) we use a shortlist (cutoff) of 300 compounds. The IE for RF,

RRF and EPX in Figure 3.1 are 5.84, 5.53 and 6.26, respectively. For the reasons mention in

Subsection 2.5.3 of Chapter 2, IE is not our favorite ranking evaluation method, however.

We have used balanced 10-fold cross-validation to assess the performance of the ranking
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Figure 3.1: Illustration of hit curves for three methods random forests (RF), regularized
random forests (RRF) and ensemble of phalanxes (EPX) corresponding to Atom Pairs of
AID348 Assay. The number in () is the corresponding Average Hit Rate.
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procedures. Since the assay datasets contain very few actives, we make sure that there are

enough actives in each of the ten groups. One of the groups is separated to serve as “test set”

and the remaining nine groups are combined to fit the ranking model. The ranking model is

then applied to the left out “test set” to obtain probability of activity for the compounds. The

process is repeated for the ten groups to obtain probabilities of activity for all the compounds

(please see, Subsection 2.5.1 of Chapter 2).

3.4 Searching for Data-Adaptive Subsets / Phalanxes of

Variables

The term phalanx is borrowed from the ancient military formation used by Alexander The

Great and his father Philip II of Macedon to deploy infantry soldiers in the battlefield. The

soldiers in each phalanx had to trust their neighbours to protect them, and be willing to protect

their neighbours too. To provide psychological incentive the phalanxes were organized into

group of friends and family members closely together. As a result, the strength of the phalanx

would depend upon the individual strength of the soldiers and the psychological/emotional

bond between them. A phalanx was an autonomous fighting unit and could be ensembled with

other phalanxes to form a formidable military machine. In our case, the groups of variables

in a statistical phalanx work better together than separated in different groups. Moreover, as

the variables in different phalanxes work better separated than together, the phalanxes help

each other yielding a stronger ranking procedure.

Given m test items and D covariates there exists in principle an optimal partition of these

covariates into p+1 groups consisting of p phalanxes plus a subset of screened noise variables.

Optimality here is in the sense of best ranking of the given test items by some given criterion

(e.g. AHR, IE, etc.). Finding this optimal partition, however, is very difficult (unfeasible)

because the number of phalanxes p and the phalanx membership are unknown making the total

number of possible solutions exponentially large. Moreover, in most applications we do not

have a test set. So, we aim at the more realistic goal of finding a good phalanx partition using

cross-validation and a greedy aggregation algorithm that resembles hierarchical clustering. As

shown in Figure 3.2, there are five main steps:

• The input of predictor variables (x1, x2, · · · , xD).

• The arrangement of theD predictors into d initial groups (this step is optional, necessary

only when dealing with binary predictors).

• The d initial groups are screened down to s groups.

• The s groups are arranged into c candidate phalanxes.

• The c candidate phalanxes are screened down to p final phalanxes.
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Our algorithm and its main parameters – groups, iquant, nsim, and ntree – are described

below.

Figure 3.2: Schematic presentation of the algorithm of phalanx formation: D predictor vari-
ables are grouped into d initial groups, then reduced down to s screened groups, then combined
into c candidate phalanxes, which are then reduced to p screened phalanxes in the final army
(D ≥ d ≥ s ≥ c ≥ p).

x1 x2 x3 ... xD

Grouping

g1 g2 g3 . . . . . . . gd

Screening

G1 G2 G3
. . . . . . Gs

Phalanx Formation

PX1 PX2 PX3
. PXc

Screening

PX(1) PX(2) . PX(p)

PREDICTOR VARIABLES

INITIAL GROUPS

SCREENED GROUPS

CANDIDATE PHALANXES

SCREENED PHALANXES

3.4.1 Predictor Variables

The main input of our algorithm is the D predictor variables: x1, x2, · · · , xD. The other input
is the response variable y.

3.4.2 Initial Groups

As a preliminary (optional) step of the phalanx formation algorithm, the D original covariates

may be grouped into d ≤ D initial groups g1, g2, · · · , gd. This step is implemented by the group

indicator groups and optional (the default is taking the groups equal to the input covariates).

However, initial grouping is convenient and recommended in the case of binary covariates

because of two reasons: (i) It reduces computational burden. Since we fit classifiers for all

pairs of covariates our computational complexity is quadratic in the number of covariates. (ii)

It increases the ranking models resolution. The resolution of a binary predictor is very low
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as it only has two possible values 0 and 1. The resolution of a group of k binary covariates

is higher as they can jointly distinguish 2k possible situations. So forming groups in the case

of binary variables not only saves time but may also increase the overall ranking accuracy of

the models.

In our application we aim at forming initial groups of covariates that are as diverse as pos-

sible. In particular, we have experimentally verified that grouping based on similar covariate

names is better than random grouping. For example, there are seven features which repre-

sent the atomic distances (up to 7 bonds) between a pair of atoms or groups of atoms. For

Fragment Pairs, an example of these seven features is: AR 01 AR, AR 02 AR, AR 03 AR,

AR 04 AR, AR 05 AR, AR 06 AR, and AR 07 AR. Here, AR 02 AR represents two phenyl

rings separated by two bonds. In this case each group of covariates corresponds to a particular

pair of atoms.

3.4.3 Screening Initial Groups

We screen out weak initial groups to reduce computational burden and noise. Strong groups

are those which help to rank high the active compounds yielding larger average hit rates. To

be considered strong a group must either be strong by itself or in a model with another group

or in an ensemble with another group.

The key tool for screening groups (and for other procedures in our algorithm) is the distri-

bution of AHR under random ranking. To obtain this distribution we randomly permute the

response variable y nsim=1000 times and for each permutation we obtain the corresponding

AHR. We then compute iquant-th quantile of this distribution which we denote AHRiquant.

The parameter iquant gives the desired level for the probability threshold (0.95 in our appli-

cations).

We now describe how we decide if a given group, gi, is strong enough to be kept in the

phalanx formation algorithm. We perform three tests and the group survives if it passes at

least one of these tests.

Test 1: Individual strength of gi. We first fit a random forest classifier using y and gi

with ntree=150 trees and extract the out-of-bag (OOB) vector of probability of activity, P̂ (gi).

Using these probabilities we compute AHRi = AHR
(
P̂ (gi)

)
. We say gi is strong by itself if

AHRi ≥ AHRiquant. (3.1)

The OOB class probabilities are an attractive feature of random forests. Breiman (1996c,

2001) showed that the OOB class probabilities are as good as the cross-validated class prob-

ability. See also Tibshirani (1996) and Wolpert and Macready (1999).

Test 2: Joint strength of gi together with another group. Now we fit two random forest

classifiers with ntree = 150 trees. The first one with covariates {gi, gj} and the second one

with covariate gj , j ̸= i. Again, we obtain the OOB probability of activity vectors P̂ (gj)
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and P̂ (gi, gj), and compute the corresponding average hit rates AHRj = AHR
(
P̂ (gj)

)
and

AHRij = AHR
(
P̂ (gi, gj)

)
. We say gi has strong joint predictive power together with gj if

E(AHRR) + AHRij −AHRj ≥ AHRiquant, (3.2)

where E(AHRR) is the expected AHR under random ranking (roughly equal to a/n).

Test 3: Joint strength of gi in ensemble with another group. Now we compute AHRij =

AHR
({

P̂ (gi) + P̂ (gj)
}
/2
)
and say that gi has strong ensemble predictive power with gj if

E(AHRR) + AHRij −AHRj ≥ AHRiquant. (3.3)

The group gi will not be screened out if it is strong by itself (satisfies (3.1)) or has

strong joint predictive power together with another group (satisfies (3.2) for some j ̸= i)

or has strong joint predictive power in ensemble with any another group ((satisfies (3.3) for

some j ̸= i ). After removing weak initial groups, we update the list of preliminary groups to

{G1, G2, · · · , Gs} and the updated group indicator parameter groups.

3.4.4 Phalanx Formation

The input for this step are the strong groups G1, G2,...,Gs that survived screening. This step

resembles hierarchical clustering: at each iteration the two groups that optimize a certain

merging criterion are merged and the parameters groups and s are updated to reflex the merge.

The merging criterion consists of two conditions: (i) minimizing the ratio AHRij/AHRij and

(ii) beating a baseline value b with default value 1. We keep merging groups of variables

until the candidate phalanxes are found good to ensemble, i.e., b ≥ 1. The following example

illustrates the hierarchical procedure.

Let s = 3 and consider the three variables G1 = WBN GC L 1.00, G2 = WBN EN H 0.50,

and G3 = WBN LP H 1.00 from the descriptor set BN in AID348. The AHRs when we paired

them together with each other are: AHR12 = 0.052, AHR13 = 0.037 and AHR23 = 0.054. The

AHRs when we paired them to ensemble with each other are: AHR12 = 0.069, AHR13 = 0.050

and AHR23 = 0.031. The corresponding AHRij/AHRij ratios are 1.312, 1.357 and 0.570,

respectively. As the variables G2 and G3 give the smallest ratio which is less than 1, we

merge G2 and G3 together. We recomputed AHR by putting G1, {G2,G3} together as 0.058.
We also recomputed AHR by ensembling G1 and {G2,G3} as 0.069. Their ratio is 1.177 which

is greater than 1. Hence, we stop by producing two candidate phalanxes PX1 = {G1} and

PX2 = {G1,G2}.

3.4.5 Screening Out Weak Phalanxes

A candidate phalanx is kept in the ensemble if it is individually strong (see 3.1) or it is strong

in ensemble with other phalanx (see 3.3). After this second stage of screening, the surviving
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Algorithm 3.1 Phalanx Formation

1. Setting the arguments:

(a) Predictors and the response: {x1, x2, · · · , xD} and y.

(b) Set initial groups, nsim=1000, iquant=0.95, ntree=150.

2. Forming initial groups of variables:

(a) g1, g2, · · · , gd ← x1, x2, · · · , xD (initial groups).

3. Screening initial groups of variables/predictors:

(a) Record ordering of the compounds. Permute the response variable y and compute AHR.
Repeat the process nsim times.

(b) Store AHRiquant, the iquant-th quantile of the distribution of AHR under random ranking.

(c) For each group of variables gi; i = 1, 2, · · · , d, fit a random forest growing ntree trees and

get the out-of-bag (OOB) probability vector P̂ (gi). Store the probability vectors in the
columns of a matrix, say PROB.

(d) Using P̂ (gi), compute average hit rate AHRi = AHR
(
P̂ (gi)

)
and store in a vector, say

SAHR.

(e) For each pair of initial groups {gi, gj}; i = 1, · · · , (d − 1); j = (i + 1), · · · , d,
get P̂ (gi, gj),

{
P̂ (gi) + P̂ (gj)

}
/2 and thus AHRij = AHR

(
P̂ (gi, gj)

)
, AHRij =

AHR
({

P̂ (gi) + P̂ (gj)
}
/2
)
, respectively. Store AHRij and AHRij in matrices AHRSYN

and AHRCOM, respectively.

(f) Screen the ith group of variables out if max[AHRi, E(AHRR)+AHRij−AHRj , E(AHRR)+
AHRij −AHRj ] < AHRiquant ∀ j ̸= i = 1, · · · , d.

(g) Update 3(c), 3(d), and 3(e) by deleting rows and columns of PROB, SAHR, AHRSYN,
and AHRCOM corresponding to the screened out groups of variables.

(h) Supply the screened groups of predictors: G1, G2, · · · , Gs.

4. Forming candidate phalanxes :

(a) Find rmin = min
ij
{AHRij/AHRij}; i = 1, 2, · · · , (s− 1), j = (i+ 1), · · · , s.

(b) If rmin < 1, block the groups of variables {Gi, Gj}|rmin and s← (s− 1).

(c) Redo the steps 3(c), 3(d), and 3(e) specific to the index of rmin.

(d) Repeat 4(a) to 4(c) until rmin ≥ 1 OR s = 1.

(e) Set c← s and supply candidate phalanxes: PX1,PX2, · · · ,PXc.

5. Screening candidate phalanxes :

(a) Screen the ith candidate phalanx out if max[AHRi, E(AHRR) + AHRij − AHRj ] <
AHRiquant ∀ j ̸= i = 1, · · · , c.

(b) Return PX(1),PX(2), · · · ,PX(p): the army of phalanxes.
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phalanxes form our army of phalanxes. Notice that we no longer check whether two candidate

phalanxes should be merged since we did an exhaustive search for merging predictor groups

in the previous step of this algorithm. The output of this step is the army of phalanxes:

PX(1),PX(2), · · · ,PX(p).

3.5 Computational Complexity

Now I show the computational complexity of our algorithm in terms of the maximum number

of random forests that needs to be grown. In the worst case scenario there is no initial

grouping of the D feature variables.

Screening phase: For the screening phase, we fit a total of D(D+ 1)/2 random forests.

In fact, first we fit D random forests, i.e., one random forest for each feature variable. Second,

for all possible pairs of feature variables we fit D(D − 1)/2 random forests, i.e., one random

forests for each pair. Hence, in total we have D(D+1)/2 random forests. Again, in the worst

case scenario there is no screened out feature variables.

Phalanx formation phase: For the phalanx formation phase, we fit a maximum of

D(D − 1)/2 random forests. In fact, first we fit one random forest to the merged pair of

feature variables; then we fit D − 2 random forests by pairing each of the D − 2 feature

variables with the merged pair. In this iteration, we fit a total of D− 1 random forests. Note

that we do not need to grow random forests for all possible pairs. In the next iteration, we

fit D − 2 random forests, and so on. In the worst case scenario we would have one phalanx

at the end and that gives us a total of D(D − 1)/2 fitted random forests.

Adding the numbers in the two phases, we obtain a maximum of D2 random forests.

Thus, the computational complexity of our algorithm is of order O
(
D2
)
. In this chapter,

most of the datasets are high-dimensional in terms of the number of feature variables. Hence,

the computational burden is greatly reduced by forming initial groups of the binary feature

variables. Moreover, the computational burden is reduced by using many processors in parallel

computation.

3.6 Ensemble of Phalanxes

We fit p random forest classifiers using p phalanxes and obtain probabilities of activity from

them. Each of those random forests is grown using the default settings of the R package

randomForest (Liaw and Wiener, 2011). The p random forest classifiers are aggregated

together to form the ensemble of phalanxes, denoted by EPX, by averaging probabilities of

activity across the p random forests/phalanxes.
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3.7 Results

We apply the algorithm of phalanx formation to the five descriptor sets of the four assays.

For each descriptor set we get an army of phalanxes and ensemble them to form EPX. The

results of EPX are compared with RF and RRF. The RF and RRF are constructed using the

default setup of the R packages randomForest (Liaw and Wiener, 2011) and RRF (Deng,

2012).

3.7.1 Assay AID348

The algorithm of phalanx formation was applied to the five descriptor sets separately. For a

particular descriptor set, the algorithm is run for 3 times with 3 different random seeds. The

first column of Table 3.1 identifies the descriptor set, the second column identifies the random

runs and the last 5 columns correspond to the 5 main steps of our algorithm (see Figure 3.2).

For example, looking at the first row in the body of the table, the descriptor set AP has a

total of 367 variables arranged into 75 initial groups of which 22 survive screening. The 22

groups are aligned into 4 candidate phalanxes of which 2 survive screening. The screened

phalanxes form the army of phalanxes and are ensembled to get EPX. Rows 2 and 3 show

the results for the other two runs. We observe some random variation from run to run but

we will see below that performance remains pretty stable.

Table 3.1: The number of variables, initial groups, screened groups, candidate phalanxes, and
screened/army of phalanxes for the 3 runs of the algorithm to AID348 assay.

DS Run
Number of

Variables
Groups Phalanxes

Initial Screened Candidate Screened

AP
1

367 75
22 4 2

2 19 8 5
3 22 8 4

BN
1

24 24
24 8 8

2 24 9 9
3 24 4 4

CAP
1

1795 455
398 13 10

2 128 8 8
3 352 17 12

FP
1

570 101
24 6 4

2 22 5 4
3 22 5 5

PH
1

120 21
5 1 1

2 5 3 2
3 5 1 1

A large number of binary predictors are screened out for the four descriptor sets based
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on binary variables: AP, CAP, FP, and PH. For example, in the case of AP, between 71%

and 75% of the initial groups are dropped. The ranges for the other binary descriptor sets

are 12% to 72%, 76% to 79%, and 77%, respectively. All of the continuous predictors of BN

are useful (none is dropped) in our 3 runs. The initial screening is more unstable for CAP,

perhaps due to the large number of variables.

We repeat balanced 10-fold cross-validation experiments 16 times to obtain 16 AHR’s for

EPX, RF and RRF. The average hit rates are reported in Table 3.2. The average hit rates

for EPX are much larger than those of RF and RRF, three times larger in the case of CAP,

the predictor with the largest number of variables. For the binary descriptor sets AP, CAP,

FP and PH – where screening variables is dominant – RRF outperforms RF. But for BN,

where there is no filtering, RF outperforms RRF. The last two columns in Table 3.2 shows

that EPX consistently beats RF and RRF in all our cross-validation experiments.

Table 3.2: Average hit rate (AHR) for an ensemble of phalanxes (EPX), a random forests
(RF), and a regularized random forests (RRF) averaged over 16 repeats of balanced 10-fold
cross-validation for the AID348 assay. Larger AHR values are better. The last two columns
show the number of times EPX has larger AHR among the 16 repeats of cross-validation
relative to RF and RRF.

DS Run
Mean AHR EPX beats

EPX RF RRF RF RRF

AP
1 0.182

0.063 0.081
16/16 16/16

2 0.194 16/16 16/16
3 0.146 16/16 16/16

BN
1 0.143

0.090 0.078
16/16 16/16

2 0.153 16/16 16/16
3 0.132 16/16 16/16

CAP
1 0.201

0.068 0.090
16/16 16/16

2 0.184 16/16 16/16
3 0.155 16/16 16/16

FP
1 0.157

0.077 0.098
16/16 16/16

2 0.130 16/16 16/16
3 0.157 16/16 16/16

PH
1 0.108

0.070 0.080
16/16 16/16

2 0.108 16/16 16/16
3 0.108 16/16 16/16

Figure 3.3 shows the box plots for the 16 AHR’s. The three boxplots for EPX correspond to

the three runs – with different random seeds – in our cross-validation experiment. Notice that,

despite exhibiting some run-to-run variability EPX consistently outperforms RF and RRF.

We could stabilize the EPX’s performance by using random forests with a larger number of

trees at the phalanx formation stage. But this change would not necessarily improve the

performance and increase the computational burden of the algorithm.
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To further illustrate the performance of EPX we used the balanced 10-fold cross-validation

number 1 to draw the hit curve (see Figure 3.4). We choose t = 300 which comprises 6% of

the compounds of Assay AID348.

Figures 3.1 and 3.4 display the hit curves, descriptor set AP in Figure 3.1 and the other

four descriptors sets in Figure 3.4. In all the cases the hit curve for EPX start rising very

quickly and dominates the other two curves at every t ∈ [1, 300].

Although we form the phalanxes by optimizing average hit rates, the army of phalanxes

also shows very good performance regarding Initial Enhancement (IE), as shown in Table 3.3,

which reports the results from the 16 replications in our balanced cross-validation results for

assay AID348.

Table 3.3: The initial enhancement (IE) – averaged over the 16 balanced 10-fold cross-
validations – for the three ensembles RF, RRF, and EPX of the five descriptor sets of AID348
Assay.

Ensembles AP BN CAP FP PH

RF 5.19 6.62 7.16 7.07 5.53
RRF 5.80 6.25 6.83 7.28 5.78
EPX 6.27 8.80 8.20 8.40 6.44

3.7.2 Assay AID362

In this assay, we observed smaller percentage of screening weak variables than the AID348

Assay. The results for screening and phalanx formation are shown in Table A.1. For the

binary descriptor sets AP, CAP, FP and PH, the percentages of screened out initial groups

are 25−36%, 11−14%, 5−10% and 14−24%, respectively. As before, none of the continuous

variable of BN is filtered. The largest descriptor set CAP tends to supply many phalanxes:

10 − 14 screened phalanxes form the final army. A good number of phalanxes (4 − 6) are

found for BN and FP. The descriptor sets AP and PH show moderate (1− 4) to small (1− 2)

number of phalanxes, respectively, to ensemble.

Table A.2 shows the mean AHRs, averaged over 16 repeats of the balanced 10-fold cross-

validation, for the three ensembles EPX, RF, and RRF. For the largest descriptor set CAP, the

ensemble EPX shows the largest improvement over RF. The second largest improvement over

RF is observed in the descriptor set FP, followed by BN and AP. For PH, our ensemble could

not improve much, but didn’t perform worse, than RF. The ensemble RRF underperforms

RF in all of the five descriptor sets. RRF underperforms RF with the largest margin in CAP,

where our ensemble shows the largest improvement.
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Figure 3.3: Box-plots of average hit rates (AHR) from 16 repeats of cross-validation for a
random forests (RF), a regularized random forests (RRF), and for 3 ensembles of phalanxes
(EPX) for the five descriptor sets (AP, BN, CAP, FP, and PH) of AID348 assay. The boxes
for RF, RRF, and EPX are marked by light-grey, grey and dark-grey colour schemes.
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(a) Burden Numbers
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(b) Carhart Atom Pairs
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(c) Fragment Pairs
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Figure 3.4: Hit curves for random forests (dashed line), regularized random forests (dotted
line), and army of phalanxes (solid line) for the four descriptor sets, BN in panel (a), CAP
in panel (b), FP in panel (c) and PH in panel (d). The number in () is the corresponding
Average Hit Rate. Data from the AID348 assay.

46
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3.7.3 Assay AID364

Like AID362 Assay, we observed roughly the similar proportions of filtering. We also ob-

served roughly the similar room, represented through the number of screened phalanxes, for

ensembling. The largest and the smallest descriptor sets tend to supply the most and the

least numbers of screened phalanxes, respectively, in the final army. For details, please see

the Table A.3.

Table A.4 shows the mean AHRs for EPX, RF and RRF. The largest improvement of EPX

over RF is observed in CAP, followed by BN, AP, FP and PH. The highest and the lowest

improvements correspond to the largest descriptor set CAP and the smallest binary descriptor

set PH, respectively. The ensemble RRF under-performs RF in all of the five descriptor sets.

The margin of underperformance of RRF over RF is the highest for the largest descriptor set

CAP.

3.7.4 Assay AID371

For the binary descriptor sets, the algorithm filters larger and smaller proportions of initial

groups than {AID362, AID364} and AID348 Assays, respectively. None of the continuous

Burden Numbers is filtered. The largest descriptor set CAP tends to supply the largest

number (6−9) of screened phalanxes. The other descriptor sets, including PH, supply a good

number (3− 5) of screened phalanxes. For details, please see Table A.5.

Table A.6 shows the results of EPX, RF and RRF. The largest improvement of EPX over

RF is observed in CAP, followed by AP, BN and PH, respectively. For the 3 runs in FP,

the ensemble EPX slightly outperforms RF in 1 run, and underperforms in 2 runs. For this

descriptor set, the ensemble EPX outperforms RRF in all 3 runs. The RRF underperforms

the RF in AP, BN, CAP and FP, and outperforms in PH.

3.8 Diversity map

We focus our attention to answer why EPX ranks the active compounds so well. To begin

with, let us recall the work of Breiman (2001), where he pointed out that a strong ensemble

needs to have strong and low correlated constituent classifiers. The stronger the classifiers are

the stronger the ensemble. The smaller the correlation between predictions of the constituent

classifiers is the better the performance of the ensemble.

To proceed, we choose an army of 8 phalanxes from a run of the algorithm ‘phalanx

formation’ to BN of AID348 Assay. We examine how the 8 phalanxes and their ensemble EPX

rank the 48 active compounds. We obtain probabilities of activity from a cross-validation,

and plot the ranks of the 48 active compounds. Figure 3.5 shows the ranks of the active

compounds by the 8 phalanxes each and by their ensemble EPX as well. The darker the

colour is the earlier the active is found in the ranked list. We also compute the average hit

rates for the 8 phalanxes and for the ensemble as well. In the vertical axis we sequence the
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3.8. Diversity map

48 active compounds using the probabilities of activity from EPX. On the left hand side, we

plot the scale of the ranks of the active compounds.

We see different mass of colour to active compounds across the 8 phalanxes. In words,

the phalanxes rank different sets of actives well. If one phalanx misses an active compound,

then other phalanxes rank it well and eventually their ensemble ranks the active well. Such

behaviour of ranking different sets of actives is called diversity across phalanxes. Having seen

the results, we say our algorithm is successful in producing diverse set of phalanxes. Diversity

is a similar measure to correlation: the higher the diversity the smaller the correlation.
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Figure 3.5: Diversity map of ranks of the active compounds by 8 phalanxes from BN of
AID348 assay. The average hit rates of a random forest for this cross-validation is 0.103.

In addition to diversity, all of the phalanxes are strong as they have passed the second

screening test. Moreover, by checking AHRs of the 8 phalanxes carefully, we find 4 of them

are very strong – even stronger than a regular random forest using all of the 24 predictors.

For this cross-validation, the random forests with all 24 predictors gives an AHR of 0.103.
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3.9. Summary

The phalanxes 1, 3, 6 and 7 provide larger AHRs than 0.103. This is also true for the

other 15 cross-validations. Now we are convinced that our algorithm produces phalanxes that

constitute strong classifiers. Equipped with strong and diverse set of classifiers, the ensemble

EPX outperforms the benchmark random forests.

For this cross-validation, phalanx 3 provides slightly larger AHR than the overall ensemble

EPX. This is not the case for the other cross-validations. In general, the ensemble EPX gives

larger AHR than any of the constituent phalanxes.

3.9 Summary

In this Chapter, we used four bioassays each with five sets of molecular descriptors. As we

applied our ensemble to each descriptor set, there are 20 datasets in a sense. Our ensemble,

in all of its 3 runs, clearly outperformed the random forests and regularized random forests

in almost every dataset. However, there were a few datasets where our ensemble could not

outperform its competitors. We now present those situations case by case. For three runs of

EPX in PH of AID362 Assay, we observed larger AHR than RF for a total of 14, 7 and 9

times, respectively, out of 16 cross-validations. In FP of AID371 Assay, EPX produced better

AHR than RF for 3, 4, and 12 times, respectively. In the first and second examples, EPX won

over RF in 2 and 1 runs, respectively, out of 3 runs. In those two examples, EPX did not lose

completely, however. Our ensemble, EPX clearly won against RRF in the 19 datasets out of

20. In PH of AID371 Assay, EPX outperformed RRF in 1 run out of 3.

The highest improvement of EPX over RF was observed for the largest descriptor set

CAP. It was CAP for which the largest margin of underperformance of RRF over RF was ob-

served. The story was similar for the continuous descriptor set BN. Note that, the continuous

predictor of BN possesses more resolution than any binary predictor. The least improvement

of EPX over RF and RRF was observed for the smallest binary descriptor set PH. Given a

descriptor set, the most and the least improvements of EPX over RF and RRF were observed

for AID348 and AID371 Assays, respectively. The smaller the proportions of actives the larger

the improvements of EPX over RF and RRF were. In a nutshell, the harder the problem the

better the ensemble of phalanxes performed relative to its competitors RF and RRF.

Some instability in the results of EPX was observed from run to run. Despite this instabil-

ity, the resulting ensemble consistently outperformed RF and RRF. However, some stability

in the results can be achieved by growing a large number of trees (> 150, for example) when

forming the phalanxes. This change would increase computational complexity, not necessarily

the performance, of the ensemble of phalanxes. We plan to tackle such increased computa-

tional complexity of our method by coding the algorithm in C/C++ or in Fortran. However,

we managed to run our method on fairly large descriptor sets and observed impressive results.

The ensemble EPX is developed by optimizing average hit rate. For good performance

of EPX in terms of IE, we propose to form the phalanxes by optimizing IE. Moreover, the
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3.9. Summary

extension of this ensemble of phalanxes to classification and regression is straightforward. We

need to replace AHR by misclassification error and mean squared error, respectively, to form

the phalanxes and to evaluate the ensemble. Our next target is to implement this algorithm

for regression and classification.

We have used subject matter knowledge to form initial groups of the binary feature vari-

ables. Specifically, a set of feature variables belonging to a particular pair of atoms are grouped

together. The goal is to form diverse initial groups: naturally, two sets of feature variables

specific to two pairs of atom are diverse to each other. However, such diversity between the

initial groups might also be obtained by examining the correlation structures of the feature

variables.

On the other hand, the resulting screened phalanxes represent different characteristics of

the predictor sets towards the response variable. Such screened phalanxes may also repre-

sent multiple mechanism of activity in a dataset. If multiple mechanisms of activity produce

different activity classes, the phalanxes can also be formed in such a way that one phalanx rep-

resents one activity class which would be ultimately ensembled to provide predictive ranking

of the activity classes.

There exist learning algorithms to handle class-imbalances in two-class classification prob-

lems through over-sampling of the minority class and under-sampling of the majority class

(see Chawla, Lazarevic, Hall, and Bowyer (2003); Chen, Liaw, and Breiman (2004)). The

goal of over-sampling of the minority class, for example, is to reduce the increased bias of a

classifier towards the majority class and thus to improve prediction accuracy of the minority

class. Our method is different from the over or under sampling procedures as it does not

correct any bias towards the minority/majority class. Rather, it aims to rank the minority

class items at the start of the list.
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Chapter 4

Ensembling Phalanxes Across and

Within Descriptor Sets

4.1 Introduction

In Chapter 2, an ensemble of descriptor sets (EDS) is developed aggregating random forests

(RF) over several sets of molecular descriptors. Specifically, the chemical compounds in a

bioassay dataset are ranked by averaging probabilities of activity from random forests applied

to the five sets of molecular descriptors. The top ranked compounds are shortlisted in a

way that the most, if not all, of the rare active compounds are found in the shortlist. The

developed ensemble performs better than the top performing random forests that uses a single

descriptor set. Moreover, for the most part, our ensemble EDS outperforms random forests

applied to the pool of descriptor sets (AF). However, for Assay AID348, random forests with

the pool of descriptor sets outperforms our ensemble of descriptor sets.

There are five molecular descriptor sets for each of the four bioassays (see Sections 2.2 and

2.3 of Chapter 2). All of the five sets of descriptors are considered rich in variables as they

contain a large number of predictors. In the process of developing a good ranking model, we

use the richness of variables in the descriptor sets. The ranking model, called the ensemble of

phalanxes (EPX), is developed in Chapter 3. First, the data-adaptive phalanxes are formed in

a descriptor set by grouping predictor variables together. The variables in a phalanx are good

in terms of predictive ranking when used together in a model, and the variables in different

phalanxes are good in separate models. The resulting phalanxes are aggregated growing a

random forest in each and averaging probabilities of activity across the phalanxes.

The performance of EPX is better than the random forests (Breiman, 2001) and regularized

random forests (Deng and Runger, 2012). EPX performs very well when there are many

variables in a descriptor set and when the proportions of active compounds are small. The

harder the problem the better the ensemble of phalanxes performs compared to the alternative

procedures such as random forests.

In this chapter, the ensembles of phalanxes (EPX) are applied to the five descriptor sets

replacing random forests to form an improved version of EDS. Specifically, the probabilities

of activity obtained from applying EPX to each of the five descriptor sets are averaged across

the five sets of molecular descriptors. The new ensemble is denoted by EDS-PX.

The ensemble EDS-PX provides better predictive ranking of the rare active compounds
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than EDS in all of the four bioassay datasets. Moreover, EDS-PX outperforms random forests

applied to the pool of five descriptor sets (AF). Careful investigation reveals that EDS-PX

aggregates strong and diverse sets of constituent classifiers to form a highly powerful ranking

model.

4.2 Datasets and Variables

In this chapter, four bioassay datasets are used which contain a small proportion of active

compounds compared to the proportion of inactive compounds. The response variable in each

assay is the compounds’ activity status where each compound is recorded as either active or

inactive against a biological target. The interest is in detecting the active compounds only.

The assay datasets are presented in Section 2.2 of Chapter 2.

There are five sets of predictor variables for each assay. Each set of predictors is also known

as a descriptor set. The predictors in a set are numeric variables which describe the structure

or shape of the chemical compounds in a bioassay dataset. Following alphabetical order the

descriptor sets are: Atom Pairs (AP), Burden Numbers (BN) (Burden, 1989; Pearlman and

Smith, 1999), Carhart Atom Pairs (CAP) Carhart et al. (1985), Fragment Pairs (FP), and

Pharmacophores Fingerprints (PH). The aim is to develop a predictive ranking model which

relates the activity status/toxicity/drug potency of the chemical compounds in a bioassay

with all the descriptor sets. The descriptor sets are presented in Section 2.3 of Chapter 2.

4.3 Ensemble of Descriptor Sets using Data-Adaptive

Phalanxes

First, let me explain the process of aggregating the descriptor sets. Let ns be the number

of molecular descriptor sets in an assay. We build ns classifiers using ns sets of descriptors

and estimate probabilities of activity using each of the classifiers. Finally, the aggregation is

performed by averaging probabilities across the classifiers/sets of descriptors. The averaged

probabilities of activity are used to rank the compounds. Specifically, the compound with

the largest averaged probability of activity is ranked first, followed by the compound with the

second largest averaged probability of activity and so on.

In Chapter 2, RF is applied to the five sets of descriptors: Atom Pairs (AP), Burden

Numbers (BN), Carhart Atom Pairs (CAP), Fragment Pairs (FP), Pharmacophores (PH).

When the probabilities of activity from random forests are averaged across AP, BN, CAP, FP

and PH, the resulting ensemble is called the ensemble of descriptor sets or simply EDS.

In this chapter, the ensemble of phalanxes is applied to the five descriptor sets. The

probabilities of activity across the five ensembles of phalanxes are averaged to form another

ensemble which we call the “ensemble of descriptor sets from data-adaptive phalanxes” or

simply EDS-PX. We will show that EDS-PX is an improved version of EDS.
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4.4 Evaluation of Classifiers

A classifier is evaluated based on how well it positions the rare active compounds at the

beginning of a ranked list of compounds. The compounds in a bioassay are ranked using the

estimated probabilities of activity from a classifier. Since the activity statuses of all of the

compounds in the four bioassays are known, we used cross-validation to mimic the training

and test parts. Specifically, the probabilities of activity for the compounds in a bioassay

are obtained using a balanced 10-fold cross-validation. Ten random groups (folds) of the

compounds, each with approximately equal number of active and inactive compounds, are

formed first. Nine such groups are used for training and the other group is left out for testing.

Repeating the training and testing procedures ten times, each time leaving one group out

for testing, provides the probabilities of activity for all of the compounds in a dataset. The

details are presented in Section 2.5.1 of Chapter 2.

Having estimated the probabilities of activity, the ranking performance of a classifier is

evaluated using a hit curve. A hit curve enables visual inspection of the performance of a

classifier. A classifier with a high hit curve is preferred. The definition of a hit curve is given

in the Subsection 2.5.2 of Chapter 2.

The comparison of the performances of many classifiers using hit curves is not well defined

if the curves cross each other. Such comparison might become very hard if the classifiers are to

be evaluated repeatedly. To automate such comparison, we summarize a hit curve by a single

number. The metric average hit rate (AHR) summarizes a hit curve by a single number and

facilitates comparison. AHR varies from 0 to 1, where larger values imply better ranking of

the rare active compounds. The definition of AHR is presented in Subsection 2.5.4 of Chapter

2.

Initial enhancement (IE) is also a single number summary of a hit curve evaluated at a

particular cut-off point. An IE of 1 implies performance similar to random ranking. Larger

values of IE imply better predictive ranking. The definition of IE is presented in Subsection

2.5.3 of Chapter 2.

4.5 Results

This section contains results after applying three ensembles to the four bioassay datasets. The

three ensembles are: (1) random forests applied to the pool of five descriptor sets (AF), (2)

ensemble of descriptor sets using random forests (EDS) as in Chapter 2, and (3) ensemble of

descriptor sets using data-adaptive phalanxes (EDS-PX). The results for EDS-PX are obtained

from run 1 of EPX presented in Chapter 3.
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Figure 4.1: Hit curves comparing three ensembles – AF, EDS and EDS-PX – for the AID348
assay dataset (panel a). Initial enhancement (IE) versus average hit rate (AHR) plot for AF,
EDS and EDS-PX (panel b). The results are obtained from the estimated probabilities of
activity using a balanced 10-fold cross-validation.

4.5.1 Assay AID348

I start showing the results of AID348 Assay for two reasons: in this assay (i) EDS appeared

weak compared to AF (see Section 2.6.4 of Chapter 2), and (ii) EDS-PX improves the perfor-

mance of EDS the most. Panel (a) of Figure 4.1 shows the three hit curves corresponding to

the three ensembles: AF, EDS and EDS-PX. To plot the hit curves I used the probabilities of

activity from a balanced 10-fold cross-validation of the compounds of the AID348 assay. As

this assay contains only 48 active compounds, I computed IE at 300 shortlisted compounds

following the results of Hughes-Oliver et al. (2011). We see that the top performing ensemble

in terms of high hit curve is EDS-PX which clearly dominates the other two ensembles, AF

and EDS.

For a straightforward comparison of the methods, I have plotted in panel (b) of Figure 4.1

IE against AHR for the same balanced 10-fold cross-validation of the AID348 dataset. As the

goal is to maximize both AHR and IE, I want our method in the top right corner of this plot.

Indeed, EDS-PX is found in the top right corner, followed by AF and EDS, respectively.

Now we will show that the performance of our ensemble is consistent over many cross-

validations. Thus, to compare average performances of the ensembles, we repeated the bal-

anced 10-fold cross-validation for a total of 16 times. There are 16 processors available in

our department’s computing networks for parallel computation, one processor is used for one

cross-validation, and hence the 16 cross-validations. The bivariate mean vectors (AHR, IE)

corresponding to the three ensembles are compared. The 95% confidence band for the bi-
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4.5. Results

variate mean vector is constructed employing the bivariate normality and homogeneity of

covariance assumptions. Panel (a) of Figure 4.2 shows the plots of mean AHR versus mean

IE with 95% confidence bands for AF, EDS and EDS-PX applied to the AID348 assay. In

terms of both the mean AHR and mean IE, the top performing ensemble is EDS-PX followed

by AF and EDS. The performances are significantly different from one to another.

Next we will compare the performances of the ensembles at the cross-validation level. In

a particular cross-validation, we fitted AF, EDS and EDS-PX and computed their AHRs and

IEs. The process is repeated 16 times, enabling us to perform pairwise comparison between

two methods. Column 3 of Table 4.1 shows the mean AHRs and mean IEs and the winning

rates of one ensemble over another for Assay AID348. In terms of AHR and IE, AF beats

EDS for 16 out of 16 cross-validations. In terms of both AHR and IE, EDS-PX beats both

AF and EDS a total of 16 out of 16 times.

4.5.2 Assay AID362

EDS-PX again improves the performance of EDS for both AHR and IE. The improvement is

particularly large for AHR. Panel (b) of Figure 4.2 shows the plots of mean IE versus mean

AHR for the three ensembles applied to AID362. The ensemble EDS-PX is found in the top

right corner followed by EDS and AF. Hence, in this assay the top performing ensemble is

EDS-PX.

Let us compare the performances of the ensembles at the cross-validation level. Column

4 of Table 4.1 shows the mean AHRs and mean IEs and the winning rates of one ensemble

over another. In terms of AHR, EDS wins over AF a total of 15 out of 16 cross-validations,

and EDS-PX beats both EDS and AF a total of 16 out of 16 cross-validations. In terms

of IE, which is calculated at 300 shortlisted compounds, EDS beats AF a total of 14 times,

and EDS-PX wins over AF and EDS a total of 16 and 14 times, respectively, out of 16

cross-validations.

4.5.3 Assay AID364

The ensemble EDS-PX shows large improvement over EDS in terms of both AHR and IE. In

this assay the IE is computed at 300 shortlisted compounds. Panel (c) of Figure 4.2 shows

the plots of mean IE versus mean AHR for the three ensembles. Following the diagonal line

from the top right corner the ensembles are sequenced as EDS-PX, EDS and AF. Thus the

top performer is EDS-PX, and its performance is much larger than the performances of EDS

and AF. In column 5 of Table 4.1, we see that EDS-PX beats EDS and AF a total of 16 times

out of 16 cross-validations using both evaluation metrics AHR and IE.
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(d) Assay AID371

Figure 4.2: Plots of mean initial enhancement (IE) versus mean average hit rate (AHR) with
95% confidence regions for four assay datasets: AID348, AID362, AID364, and AID371.

56



4.6. Diversity Map

4.5.4 Assay AID371

There are 278 active compounds in this assay and the IE is computed at 600 shortlisted

compounds. The performance of EDS-PX is far better than the performances of EDS and

AF, see panel (d) of Figure 4.2. Column 6 of Table 4.1 shows that the ensemble EDS-PX

beats EDS and AF a total of 16 times out of 16 cross-validations.

Table 4.1: Mean AHR and IE for AF, EDS, and EDS-PX for the four assay datasets. Winning
rates of EDS over AF, and EDS-PX over AF and EDS are also given for AHR and IE.

Assay Datasets AID348 AID362 AID364 AID371

Mean AHR
AF 0.179 0.305 0.357 0.389
EDS 0.128 0.328 0.367 0.396
EDS-PX 0.257 0.368 0.409 0.421

Larger (≥) AHR
EDS versus AF 0/16 15/16 14/16 15/16
EDS-PX versus AF 16/16 16/16 16/16 16/16
EDS-PX versus EDS 16/16 16/16 16/16 16/16

Mean IE
AF 9.630 9.478 5.878 3.381
EDS 8.388 9.744 6.479 3.444
EDS-PX 11.989 9.962 7.257 3.672

Larger (≥) IE
EDS versus AF 0/16 14/16 16/16 12/16
EDS-PX versus AF 16/16 16/16 16/16 16/16
EDS-PX versus EDS 16/16 14/16 16/16 16/16

It was shown in Section 2.6 of Chapter 2 that the aggregate of random forests over the

five descriptor sets (EDS) outperformed the top performing random forest applied to any of

the single set of descriptors. Moreover, in three of the four bioassays, EDS outperformed the

random forest applied to the pool of descriptor sets (AF). In this chapter, we have shown

that the aggregated ensemble of phalanxes over the five descriptor sets (EDS-PX) not only

outperforms AF but also improves over EDS. However, to check the strengths and diversity

of the constituent classifiers of EDS and EDS-PX, we plot a diversity map next in Section

4.6.

4.6 Diversity Map

In this section, we will try to better understand why EDS-PX outperforms EDS. As such,

the ranks of the 48 active compounds in the AID348 Assay are plotted using EDS and EDS-

PX (left and right panels of Figure 4.3, respectively). The ranks are obtained from the

probabilities of activity corresponding to the cross-validation number 1. The ranks of the

active compounds are also plotted for the constituents random forests of EDS (AP, BN, CAP,

FP and PH), and the constituents ensembles of phalanxes of EDS-PX (AP-PX, BN-PX, CAP-

PX, FP-PX and PH-PX). If an active compound is ranked first by a classifier, the compound
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Figure 4.3: Diversity maps of EDS (left panel) and EDS-PX (right panel) for the ranks of
the active compounds in AID348 assay. The compounds are ranked using the probability of
activity corresponding to the cross-validation number 1.

receives the darkest grey colour. If a compound is ranked down in the sequence, it receives

absolutely no colour. The colour key on the left of each panel shows where in the sequence an

active compound is ranked by a classifier. In the left and right panels, the active compounds

are sequenced using the probabilities of activity from EDS and EDS-PX, respectively. We

report the AHRs and IEs for all of the constituent classifiers and their ensembles to understand

how strong the classifiers are.

We see variation in ranks across the constituent classifiers of EDS: AP, BN, CAP, FP

and PH, i.e., the five random forests rank different sets of active compounds well. The story

is similar among the constituent classifiers of EDS-PX. However, the constituents of EDS-

PX show more diversity, reflected by the contrast in colours among the five ensembles of

phalanxes, than the constituents of EDS. Moreover, the constituents of EDS-PX are much

stronger than the constituents of EDS. Hence, equipped with stronger and more diverse sets

of constituent classifiers, EDS-PX outperforms EDS.

4.7 Summary

In Chapter 2, we developed an ensemble by averaging probabilities of activity from random

forests applied to the five molecular descriptor sets to rank rare active compounds ahead of

the majority inactive compounds in four bioassay datasets. The ensemble of descriptor sets

(EDS) provides better predictive ranking of the rare active compounds than the most accurate

random forests applied to any of the single set of molecular descriptors. For the most part, in
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3 out of 4 bioassays, the ensemble of descriptor sets outperforms the random forests applied

to the pool of the five descriptor sets. It is the diversity and strengths of the random forests

across the descriptor sets which make EDS a good ranking model.

We define phalanxes as the groups of predictors, where the variables in a phalanx are good,

in predicting the rare actives, when used together in a model and the variables in separate

phalanxes are good in separate models. Having defined the term phalanx, we label the sets

of molecular descriptors as the natural phalanxes. We then pose the question whether there

are data-adaptive phalanxes in variable-rich descriptor sets. Such thinking motivates me to

develop an algorithm (Algorithm 3.1 in Chapter 3) to unmask data-adaptive phalanxes in a

descriptor set. Finally, the ensemble of phalanxes (EPX) is developed by fitting a random

forest in each phalanx and averaging probabilities of activity across the phalanxes. Equipped

with strong and diverse set of phalanxes, EPX outperforms regular random forests applied to

a descriptor set.

In this chapter, we have aggregated the ensembles of phalanxes over the five descriptor sets

and compared the resulting EDS-PX with the ensemble of descriptor sets (EDS) and random

forests applied to the pool of descriptor sets (AF). In all of the four bioassays, the ensemble

EDS-PX outperforms EDS and AF with a big margin. Our method EDS-PX aggregates strong

constituent classifiers to produce a powerful committee capitalizing on the data-adaptive and

natural diversities within and across descriptor sets, respectively.

The algorithm of phalanx formation could also be applied to the pool of the five descriptor

sets in each bioassay. The five sets of initial groups obtained from the five descriptor sets could

also be combined into a single set of initial groups to run the algorithm. I did not attempt

to do so because of the large computational burden of our algorithm to such a unified set of

predictors. However, it is possible to run a group lasso (Meier et al., 2008; Yuan and Lin,

2007) like algorithm to the unified initial groups to obtain a set of screened initial groups

through regularization. If the number of screened initial groups drops down to a manageable

figure then the algorithm of phalanx formation might be applied to the set of screened initial

groups.
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Chapter 5

Protein Homology: Ensembling via

Logistic Regression Models

5.1 Introduction

Ensembles are applied to the protein homology dataset. This dataset was briefly introduced

in Section 1.6 and will be described in more detail in Section 5.2. The ensembles are con-

structed with the training set by predicting the response variable homology status using a

set of predictor variables. In addition to the training set, this application comes with a test

set for which we don’t know the status of the response variable. But the performance of an

ensemble can be evaluated by submitting intermediate results to the KDD Cup website which

gives us a chance for honest comparison of the competing ensembles. As before, the goal is

the detection of the rare class, more specifically, ranking rare homologs of a native protein

ahead of the non-homologous candidate proteins.

The original ensemble of phalanxes is developed in Chapter 3 which requires repeated fits

of random forests. But random forests itself is fairly computationally demanding and the

repeated fits of random forests, as in the ensemble of phalanxes, increases the computational

time substantially. In this chapter, we incorporate the popular and computationally less

demanding logistic regression model to form the phalanxes and to build the ensemble. The

aims are: (i) improving the performance of the ensemble of phalanxes in terms of predictive

ranking, and (ii) reducing computational burden of the algorithm. Moreover, we want to

show that the ensemble of phalanxes is easily adaptable to a base learner other than random

forests.

As noted in Section 1.3.2, random forests (Breiman, 2001) possesses inherent variable

selection properties and is insensitive to the inclusion of a few noise variables. Unlike random

forests, the performance of a logistic regression model containing some good variables is

hampered by the inclusion of noise variables. Thus, in order to avoid mixing up noise variables

with good variables, we introduce an intermediate step of filtering noise variables during

phalanx formation using logistic regression. Moreover, we use cross-validation to form the

phalanxes instead of out-of-bag samples. The modified algorithm of phalanx formation will

be discussed in Section 5.4.

The training set of the protein homology data contains a total of 145, 751 rows, each

representing a candidate protein, and 74 continuous predictors. The formation of phalanxes

60



5.2. Protein Homology Data

with repeated fits of random forests to such a huge training set appeared computationally very

expensive. For example, the parallelization of the processors in our department’s computing

networks is found ineffective to handle this massive computation. Those computational issues

are tackled by parallel execution of the algorithm of phalanx formation using many computing

nodes in a cluster of processors of the WestGrid (Western Canada Research Grid) computing

network. Moreover, we reduce the overhead data-transfer from the remote to local nodes

by sending an appropriate chunk of data used at each node through careful coding of our

algorithm.

Ensembles of phalanxes using random forests and logistic regression – denoted by EPX(RF)

and EPX(LR), respectively – and regular random forests (RF) are applied to this protein ho-

mology dataset. This dataset comes with many blocks where each block belongs to a native

protein to which the homology status is tested for many candidate proteins. This block struc-

ture makes this dataset special. The ensembles are learned using the training blocks and are

evaluated on the test blocks. The performance of an ensemble is tested in each test block, and

the overall performance is obtained by averaging over all of the test blocks. Thus, in order

to provide good predictive ranking an ensemble needs to perform well in as many blocks as

possible. The proposed ensembles of phalanxes, EPX(RF) and EPX(LR), are found better

than RF in terms of predictive ranking. Most importantly, EPX(LR) is found more powerful

and less computationally demanding than EPX(RF).

5.2 Protein Homology Data

The protein homology dataset is downloaded from the 2004 KDD Cup competition’s website

(http://osmot.cs.cornell.edu/kddcup/datasets.html). The structure of this dataset is

presented in Table 5.1. Each block relates to one native protein. Each row (or line) within

a block describes a candidate protein which is tested for homology (y = 0/1 for no/yes) to

the block’s native protein. The first element of each line is a BLOCK ID that denotes to

which native protein this line belongs. There is a unique BLOCK ID for each native protein

sequence. For example, the blocks 279 and 48 in Table 5.1 represent the first and last native

proteins in the training set, respectively.

Many candidate proteins were tested for homology to a native protein. The second element

of each line uniquely describes the corresponding candidate protein. The variable which

identifies the candidate protein sequences is called EXAMPLE ID. For example, the candidate

proteins with EXAMPLE IDs from 261532 to 262336 belong to the first training block 279.

The third element of a line provides a realization of the response variable, y. The response

is a class variable known as homology status. The candidate proteins that are homologous

to the native protein are denoted by 1, and the non-homologous proteins are denoted (i.e.,

decoys) by 0. The test set (lower part of Table 5.1) provides “?” in this position.

The following elements in a line are realizations of the feature variables: x1, x2, · · · , xD.
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5.2. Protein Homology Data

Table 5.1: The structure of the protein homology dataset. The top and bottom portions are
extracted from the training and test sets, respectively.

ID Response Predictors

BLOCK EXAMPLE y x1 x2 x3 · · · x72 x73 x74
279 261532 0 52.00 32.69 0.30 · · · -0.35 0.26 0.76
279 261533 0 58.00 33.33 0.00 · · · 1.16 0.39 0.73
...

...
...

...
...

...
...

...
...

...
279 262336 0 46.00 27.08 1.72 · · · -0.75 0.55 0.69
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

48 43884 0 87.96 25.26 -0.94 · · · 1.61 0.29 0.08
48 43885 0 48.61 25.47 -0.50 · · · 0.67 0.08 0.09
...

...
...

...
...

...
...

...
...

...
48 44825 1 87.50 29.33 5.84 · · · -0.58 0.16 0.23

153 141691 ? 71.84 23.17 -0.57 · · · -0.58 0.24 0.29
153 141692 ? 83.50 26.09 1.50 · · · 0.50 0.11 0.05
...

...
...

...
...

...
...

...
...

...
153 142501 ? 50.49 24.56 0.84 · · · -0.40 0.34 0.08
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

140 129681 ? 82.80 31.58 2.62 · · · 2.64 0.14 0.34
140 129682 ? 67.52 25.00 1.76 · · · -0.06 0.20 0.52
...

...
...

...
...

...
...

...
...

...
140 130656 ? 23.57 27.03 -1.49 · · · 1.05 0.00 -0.30
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5.2. Protein Homology Data

The feature variables represent the similarity or match between the native protein and the

candidate protein which is tested for homology. This dataset contains 74 feature variables

which will be used to predict the response y.

Many native proteins are considered in this dataset. A total of 303 native proteins provide

BLOCK IDs running from 1 to 303. After assigning the BLOCK IDs, the organizers of the

KDD Cup assigned the blocks to the training and test sets. The training set contains 153

native protein sequences (153 blocks) and the test set contains 150 native protein sequences

(150 blocks). For example, the pairs of blocks (279, 48) and (153, 140) in Table 5.1 are the

first and last blocks taken from the training and test set, respectively. The homology status

for the training set is known to us, and is unknown for the test set, i.e., undisclosed by the

KDD cup organizers.

The training and test sets contain 145, 751 and 139, 658 candidate proteins, respectively.

The large number of candidate proteins in each set brings computational challenges for our

method.

Table 5.2 shows the block sizes for the training and test sets. The 1st quartile, median, 3rd

quartile, and the maximum of the block sizes in both of the training and test sets are fairly

similar. The minimum block sizes for the training and test sets are 612 and 251 respectively.

The test set possesses 3 blocks with sizes 251, 256 and 372, and has a more left skewed

distribution; please see the histograms of block sizes in Figure 5.1.

Table 5.2: Block sizes in the training and test sets of the protein homology datasets.

Datasets
BLOCK SIZE

Min 1st Qrt Median Mean 3rd Qrt Max

Training 612 859 962 952.6 1048 1244
Test 251 847 954 931.1 1034 1232

Most of the blocks in the training set contain very few homologous proteins. The minimum,

median and maximum of the proportions of homologous proteins are: 0.0008, 0.0047 and

0.0581. Figure 5.2 shows the histogram of the proportions in the training set. In this Figure,

the 3rd quartile is marked by the vertical bold line. We see that more than 75% of the

blocks contain at most 2 homologs per 100 candidate proteins. Thus, in order to do well,

the proposed ensemble of phalanxes needs to ensure good ranking of the homologous proteins

particularly when the block-wise proportion of homologous protein is small.

There are 74 predictor variables and some of them look very useful as a single variable and

some do not. Figure 5.3 (a) shows the kernel density plots of the feature variable x63 for the

homologous proteins (the solid line) and for the non-homologous proteins (the dashed line)

in the training set. This variable seems to differentiate the homologous and non-homologous

proteins fairly well. However, there is also evidence of less-informative feature variables in the

training set; please see the density plots of the feature variable x47 in Figure 5.3 (b). Such
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Figure 5.1: Histogram of block sizes in the training and test sets of the protein homology
datasets.

a less-informative variable is not thrown out instantly, however. We further check whether

the variable possesses good marginal prediction power when used with any other predictors

in the dataset. If the variable appears useful, it is used in forming the phalanxes.

5.3 Evaluation Metrics

We have used three metrics, specific to ranking rare homologous proteins, to evaluate predic-

tive performances of the classifiers. Since the protein homology data comes in blocks, each

of the three metrics is computed on each block independently. For each metric, the average

performance across the blocks is used as the final metric. Thus, in order to do well a classi-

fier has to rank the rare homologous proteins well across many blocks. By ranking we mean

sequencing (or sorting) the candidate proteins in each block using the probability of being

homologous to the native protein. The candidate protein with the largest probability of being

homologous in a block is ranked first, followed by the second largest probability and so on.

The three metrics are as specified by the 2004 KDD Cup competition. For further reading

please see the following link: http://osmot.cs.cornell.edu/kddcup/metrics.html.

5.3.1 Rank Last

By rank last (RKL) we mean the rank of the last homologous protein. This metric measures

how far the last true homolog falls among the sorted cases. Ties are treated conservatively:

if multiple sequences tie, the last element of the tie determines the rank, so ties are not

beneficial. An RKL of 1 means that the last true homolog is sorted in the top position.
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Figure 5.2: Histogram of the proportions of homologous protein in the training set.

This is excellent but can only happen in a block containing only one homologous protein.

The maximum possible value of RKL is the size of the block, i.e., the number of candidate

proteins. The goal is to keep the RKL as small as possible.

5.3.2 Average Precision

The metric average precision (APR) is a variant of the metric average hit rate (AHR) we

defined in section 2.5.4. They are no different when there are no ties in the score (i.e.,

probability of being homologous) used for ranking. In case of ties, the former used a non-

standard definition, sometimes called “expected precision.” This definition uses a method for

handling ties that calculates the average precision of all possible orderings of the cases that

are tied. An average precision of 1 indicates perfect ranking. The lowest possible average

precision depends on the data, and our goal is to maximize this metric.
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Figure 5.3: Kernel density plots of the feature variables x63 (panel a) and x47 (panel b) for
the homologous and non-homologous proteins in the training set.

5.3.3 TOP1

The candidate proteins in each block are sorted by the estimated probabilities of being ho-

mologous to the native protein. If the top ranked candidate protein is homologous to the

native protein, TOP1 scores 1, otherwise 0. TOP1 is calculated conservatively when there are

ties. If multiple sequences are tied for rank 1, all of them must be homologous to score a 1 for

TOP1. If any of the sequences tied for rank 1 is non-homologous, TOP1 scores 0. This means

it is never beneficial to have ties. However, it would be easy (difficult) to maximize TOP1 if

a block contains many (a few) homologous proteins. We want to maximize the TOP1.

5.4 The Modified Algorithm of Phalanx Formation

Algorithm 5.1 shows the steps of phalanx formation using logistic regression. Figure 3.2 in

Chapter 3 shows the schematic of the original algorithm (Algorithm 3.1). The differences

between the original and the modified algorithms are presented below:

• The modified algorithm incorporates logistic regression as the base classifier. The orig-

inal algorithm used random forests.

• The modified algorithm uses 10-fold cross validation of the training blocks in phalanx

formation to evaluate a predictor (or a set of predictors). Thus, grouping is at the level

of blocks, with all the proteins of a block belonging to just one fold. On the other hand,

the original algorithm uses out-of-bag (OOB) samples in random forests to evaluate a

predictor (or group of predictors) during phalanx formation.
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• The original algorithm 3.1 used average hit rate (AHR) to optimize the phalanxes.

The modified algorithm 5.1 uses mean block average precision (MAPR) to optimize the

phalanxes.

• In step 4, both the original and adapted algorithms start by searching for the most

promising pair of screened predictors to merge together. Unlike the original, the modified

algorithm introduces a new step 4(b)i. The reasons for adding this step are explained

in the third paragraph of Section 5.1. In this added step, the new algorithm checks

whether the weak performer of the merging pair of predictors degrades the performance

of the strong performer. If true, the weak performing predictor (or group of predictors)

is filtered out. Otherwise, the pair of predictors (or group of predictors) is merged

together.

In this chapter, we have also formed the phalanxes using random forests. For a fair comparison

between the resulting ensembles of phalanxes, all of the steps in this adapted algorithm, except

for 4(b)i, are incorporated while forming phalanxes using random forests. The reasons for not

incorporating 4(b)i are simple: (i) the performance of random forests is insensitive to the

inclusion of a few weak variables, and (ii) we want to use as many useful variables as possible

in the phalanxes.

5.5 Ensemble of Phalanxes

After forming the phalanxes, p (≥ 1) classifiers are fitted to obtain p vectors of probabilities

of homogeneity. The classifiers are aggregated together by averaging p vectors of probabilities

of homogeneity across the phalanxes. If the algorithm ends up with only one phalanx, there

is no scope to ensemble over many phalanxes. In this case, fit a classifier to that phalanx

of screened predictors. When a logistic regression model is used in phalanx formation, the

resulting ensemble of phalanxes is denoted by EPX(LR). For random forests, the resulting

ensemble is denoted by EPX(RF).

5.6 Results

This section shows the results after applying the ensembles of phalanxes – EPX(RF) and

EPX(LR) – and random forests (RF) to the protein homology data. First, we grouped the

training blocks into four quarters using the per-block proportions of homologous protein and

evaluated the performances of the ensembles in each of the four groups. The goal is to find

the situations where the ensembles of phalanxes perform better than random forests. The

results are presented next in Subsection 5.6.1. Second, the ensembles are evaluated on the

test set. The results are presented in Subsection 5.6.2.
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Algorithm 5.1 Modified Algorithm of Phalanx Formation

1. Setting the arguments:

(a) Predictors and the response: {x1, x2, · · · , xD} and y.

(b) Set initial groups, nsim=1000, iquant=0.95.

(c) Define a leave 10% blocks out cross-validation.

2. Forming initial groups of variables:

(a) g1, g2, · · · , gd ← x1, x2, · · · , xD (initial groups).

3. Screening initial groups of variables/predictors:

(a) Record ordering of the candidate proteins. Permute the response variable y and compute
Mean Block APR, i.e., MAPR. Repeat the process nsim times.

(b) Store MAPRiquant, the iquant-th quantile of the distribution of MAPR under random
ranking.

(c) For each group of variables gi; i = 1, 2, · · · , d, fit a logistic regression model and get the

cross-validated probability vector P̂ (gi). Store the probability vectors in the columns of a
matrix, say PROB.

(d) Using P̂ (gi), compute MAPRi = MAPR
(
P̂ (gi)

)
and store in a vector, say SAPR.

(e) For each pair of initial groups {gi, gj}; i = 1, · · · , (d − 1), j = (i + 1), · · · , d, get

P̂ (gi, gj),
{
P̂ (gi) + P̂ (gj)

}
/2 and thus MAPRij = MAPR

(
P̂ (gi, gj)

)
, MAPRij =

MAPR
({

P̂ (gi) + P̂ (gj)
}
/2
)
, respectively. Store MAPRij and MAPRij in matrices

APRSYN and APRCOM, respectively.

(f) Screen the ith group of variables out if max[MAPRi, E(MAPRR) + MAPRij −
MAPRj , E(MAPRR) +MAPRij −MAPRj ] < MAPRiquant ∀ j ̸= i = 1, · · · , d.

(g) Update 3(c), 3(d), and 3(e) by deleting rows and columns of PROB, SAPR, APRSYN,
and APRCOM corresponding to the screened out groups of variables.

(h) Supply the screened groups of predictors: G1, G2, · · · , Gs.

4. Forming candidate phalanxes:

(a) Find rmin = min
ij
{MAPRij/MAPRij}; i = 1, 2, · · · , (s− 1), j = (i+ 1), · · · , s.

(b) If rmin < 1, then:

i. If MAPRij ≤ max (MAPRi,MAPRj), screen out the ith group of variables {Gi} if
MAPRi ≤ MAPRj ; else screen out the jth group. Update 3(c), 3(d), and 3(e) by
deleting rows and columns of PROB, SAPR, APRSYN, and APRCOM corresponding
to the screened out groups of variables. Set s← (s− 1) and go to 4(a).

(c) Block the groups of variables {Gi, Gj}|rmin together and s← (s− 1).

(d) Redo the steps 3(c), 3(d), and 3(e) specific to the index of rmin.

(e) Repeat 4(a) to 4(d) until rmin ≥ 1 OR s = 1.

(f) Set c← s and supply candidate phalanxes: PX1,PX2, · · · ,PXc.

5. Screening candidate phalanxes:

(a) Screen the ith candidate phalanx out if max[MAPRi, E(MAPRR)+MAPRij−MAPRj ] <
MAPRiquant ∀ j ̸= i = 1, · · · , c.

(b) Return PX(1),PX(2), · · · ,PX(p): the army of phalanxes.
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5.6.1 Grouping the Training Blocks

Groups are formed stratified by proportions of homologous proteins. The 153 training blocks

are partitioned into four groups using the per-block proportions of homologous protein. Specif-

ically, the four groups are the four quarters of the 153 training blocks. For example, the first

group contains 39 native protein sequences (i.e., blocks) having per-block proportions of ho-

mologous proteins less than or equal to the first quartile (0.00143). The second group contains

38 native protein sequences with per-block proportions of homologous proteins greater than

the first quartile and less than or equal to the second quartile (0.0047). The third and fourth

groups are defined in the same way each containing 38 native protein sequences.

Panel (a) of Figure 5.4 shows four histograms of the proportions of homologs in the four

groups. Group 1 contains the blocks with the smallest proportions of homologous proteins -

there is only 1 homologous protein in each block. In contrast, Group 4 contains the blocks

with the largest proportions of homologous proteins, i.e., the number of per-block homologous

proteins ranges from 11 to 50. I conjecture that the ranking of the homologous proteins is very

challenging in group 1 followed by groups 2, 3 and 4. As the blocks in group 4 contain plenty

of homologous proteins, it might be easy to score a good number for some of the evaluation

metrics. For example, if there are 50 homologous proteins in a block, it might not be very

hard to rank a true homolog in the top position yielding the highest score 1 for TOP1.

Let us now explain the evaluation process of EPX(LR) in a particular group. The evalu-

ation processes for the other groups are analogous. Given the blocks in a particular group, a

set of screened phalanxes is obtained by running Algorithm 5.1. As explained in Section 5.4,

we used a leave 10% blocks out cross-validation to guide the formation of the phalanxes. The

screened phalanxes are ensembled to get EPX(LR). To evaluate the resulting EPX(LR), a

completely independent leave 10% blocks out cross-validation is performed to get a vector of

the probabilities of being homologous to the native protein for all of the candidate proteins in

each block of that group. This vector of probabilities is used to compute the three evaluation

metrics. The leave 10% blocks out cross-validation is repeated for a total of 16 times providing

16 numbers for each evaluation metric.

The panels (b), (c) and (d) in Figure 5.4 show the side-by-side box plots comparing the

performances of the three ensembles - RF, EPX(RF) and EPX(LR) - in each of the four

groups in terms of mean block RKL, mean block APR and mean block TOP1, respectively.

Each box represents 16 realizations of a metric for an ensemble in a group. The colors of

the boxes differentiating RF, EPX(RF) and EPX(LR) are white, light grey and dark grey,

respectively. The numbers at the top of the boxplots are the numbers of phalanxes obtained

after running the modified algorithm of phalanx formation (Algorithm 5.1).

In terms of mean block RKL (panel (b)), our ensembles EPX(RF) and EPX(LR) gave

better predictive ranking than RF in all of the four groups. The adapted ensemble EPX(LR)

outperformed EPX(RF) in groups 1, 2 and 3, but not in group 4. The ensembles of phalanxes,

EPX(RF) and EPX(LR), outperformed RF in all of the four groups in terms of mean block
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Figure 5.4: Histograms of the proportion of homologous proteins in four groups (panel a).
Side-by-side box plots comparing the performances of the three ensembles - RF, EPX(RF)
and EPX(LR) - in each of the four groups in terms of mean block RKL (panel b), mean block
APR (panel c) and mean block TOP1 (panel d). The colors of the boxes differentiating RF,
EPX(RF) and EPX(LR) are white, light grey and dark grey respectively.
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APR (panel (c)). The most striking improvement of EPX(LR) over EPX(RF) is observed in

groups 2 and 3, followed by group 1. In terms of mean block TOP1 (panel (d)), EPX(RF)

often outperformed RF. In group 4, all of the ensembles secured the top mean block TOP1.

But in groups 2 and 3, EPX(LR) substantially outperformed EPX(RF).

Clearly the ensembles of phalanxes are the winners against random forests in groups 2

and 3. Hence, we want to closely look at the performances of the three ensembles in groups

1 and 4, where our ensembles marginally win against random forests. The left and right

panels of Figure 5.5 show hit curves in two typical blocks, 18 and 162, selected from groups

1 and 4, respectively. In both panels, the dotted, dashed and the solid lines are for random

forests, ensemble of phalanxes using random forests and ensemble of phalanxes using logistic

regression model, respectively. The legend also shows the estimated APR, RKL and TOP1

for the three ensembles. In each panel, the performances are reported for only one block so

the metrics are not averaged.

Panel (a) of Figure 5.5 is for block 18 which is chosen from group 1. Ranking of the

homologous protein is challenging as this block contains only 1 homolog out of 1114 candidate

proteins. Using the three evaluation metrics, the top performers are our ensembles EPX(LR)

and EPX(RF). They ranked the only homologous protein in the top position, and all of the

three metrics achieved the top score. Random forests could not rank the homologous protein

in the top position and scored 0 for TOP1. For random forests, the estimated APR and RKL

were 0.081 and 14, respectively.

Block 162 is chosen from group 4 and contains a total of 37 homologous proteins out

of 816 candidate proteins (panel b of Figure 5.5). Ranking of the homologous proteins is

least challenging in this block compared to the blocks in other three groups. All of the

three ensembles perfectly rank the first 28 homologous proteins scoring 1 for TOP1. The top

performer is EPX(LR) followed by EPX(RF) and RF in terms of RKL and APR.

When there are many homologous proteins in a block, all of the three ensembles might

rank a homologous protein in the top position to provide the best possible score for TOP1.

Hence, the comparison of the ensembles using TOP1 might appear problematic especially

when there are many homologous proteins. However using TOP1, our ensembles EPX(LR)

and EPX(RF) often outperform RF if the blocks contain a few homologous proteins. Our

favorite performance metrics are RKL and APR, and using them, the ensembles EPX(LR)

and EPX(RF) are clear winner over random forests. Moreover, for the most part, the adapted

ensemble EPX(LR) outperforms EPX(RF).

5.6.2 Evaluation on the Test Set

In this section, the three ensembles are evaluated on the test set. The organizers of the

2004 KDD cup decided not to disclose the status of the response variable for the test set

- however, the results can be obtained by submitting intermediate results to their website.

Hence, the ensembles of phalanxes and random forests were learned on the 153 training
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Figure 5.5: Hit curves comparing the performances of three ensembles - RF, EPX(RF) and
EPX(LR) - in blocks 18 (panel a) and 162 (panel b) chosen from the groups 1 and 4, respec-
tively. The respective block sizes are 1114 and 816. The legend in each figure also shows the
estimated APR, RKL and TOP1 for the three ensembles.

blocks, for which the response was known, and were applied to the test set to obtain the

probabilities of being homologous to the native protein. The estimated probabilities were

preserved in a specific format suggested by the KDD cup organizers and were submitted to

their website for the result. The KDD cup website did check the format of the submitted

probabilities automatically and reported back the final results. It is important to mention

that we submitted one set of probabilities corresponding to an ensemble to compute all of the

evaluation metrics, i.e. the methods were not tuned specifically for each criterion.

Table 5.3 shows the performances of the three ensembles - RF, EPX(RF) and EPX(LR)

- using the three evaluation metrics: mean block RKL, APR and TOP1. We obtain 4 and 5

phalanxes using EPX(RF) and EPX(LR), respectively. In terms of mean block RKL, APR

and TOP1, the top performer is EPX(LR) followed by EPX(RF) and RF. In terms of mean

block TOP1, the performances of RF and EPX(RF) are found similar.

Table 5.4 shows the number of processors used, amount of memory allocated and the

amount of time recorded (in minute) for parallel execution of the three ensembles. For

EPX(RF) and EPX(LR), a total of 32 processors of the Bugaboo machine were parallelized in

the Western Canada Research Grid (WestGrid) computing network (http://www.westgrid.

ca/support/quickstart/bugaboo). We allocated 8GB memory to each processor while run-

ning EPX(RF) and 4GB memory to each while running EPX(LR). When EPX(RF) took a

total of 26 hours and 9 minutes for learning on the training set and estimating the probabili-

ties of being homologous to the native protein on the test set, the EPX(LR) took only 1 hour
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Table 5.3: The performances of the three ensembles - RF, EPX(RF) and EPX(LR) - using
three evaluation metrics: mean block RKL, APR and TOP1. The ensembles are learned
on the 153 training blocks and are evaluated on the 150 test blocks. The top performance
corresponding to each evaluation metric is marked by fold face.

Ensembles
Number of Mean Block
Phalanxes RKL APR TOP1

RF · · · 143.733 0.8089 0.8733

EPX(RF) 4 82.3067 0.8140 0.8733

EPX(LR) 5 71.4733 0.8274 0.8867

and 20 minutes to finish the same task. Using random forests, the task was completed assign-

ing only 1 processor with 8GB memory. The total running time was 1 hour and 7 minutes.

However, the goal was to reduce the computational time for EPX(RF) through EPX(LR).

Here, EPX(LR) runs much faster than EPX(RF) and gives better results as well.

Table 5.4: The number of processors used, amount of memory allocated and the elapsed time
recorded (in minute) for parallel execution of the three ensembles.

Ensembles
Number of Memory allocation Elapsed time
Processors (GB) (Minute)

RF 1 8 67
EPX(RF) 32 8 1569
EPX(LR) 32 4 80

Now let us compare the results of our ensemble with the winner of the 2004 KDD Cup.

For the protein homology section, the winner of the 2004 KDD Cup was the Weka Group

(Pfahringer, 2004). Weka is a collection of machine learning algorithms for data mining tasks

(http://www.cs.waikato.ac.nz/ml/weka/). Weka supports a large number of algorithms

out of the box, and the winning group tried all of them. The Weka group then selected only

the top three classifiers, which were: (1) a boosting ensemble of 10 unpruned decision trees

(Boost10), (2) a linear support vector machines with a logistic model fitted to the raw outputs

for improved probabilities (LinSVM), and (3) 100000 or more random rules (105 RR). The

top three performers were aggregated to obtain the winning ensemble. Table 5.5 shows the

performance of the top three constituent classifiers as well as the performance of the winning

ensemble. The performance of the ensemble of phalanxes using logistic regression, EPX(LR),

is more or less like the LinSVM of Weka group which was one of the top performers selected

from many classifiers. However, our target was not to change much of the original ensemble of

phalanxes – but to develop a general purpose ensemble with good results. Despite changing

a little of the algorithm of phalanx formation, the adapted ensemble EPX(LR) does provide

impressive results.
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Table 5.5: The results from the Weka solution to the 2004 KDD Cup.

Classifiers
Mean Block

RKL APR TOP1

Boost10 500.68 0.6858 0.7933
LinSVM 64.41 0.8258 0.8867
105 RR 53.77 0.8373 0.8933

Ensemble 52.45 0.8412 0.9067

5.7 Summary

The ensemble of phalanxes is easily adapted to the logistic regression model replacing random

forests. This proves that the scope of the ensemble of phalanxes is not limited to random

forests only; some other simple models could also be used. One potential candidate is obviously

the classification tree which is a simple model in nature and fast in terms of computational

complexity. A potential question in using a classification tree would be to decide how deep

to grow the trees. This problem might be addressed with an extra computational effort of

employing cross-validation, however.

The ensemble of phalanxes is adapted to the logistic regression model by introducing

filtering in step 4(b)i during phalanx formation. If the weak performing variable (group of

variables) of the most promising pair of variables (groups of variables) to merge harms the top

performing variable (group of variables), the modified algorithm filters the weak performer.

This change is crucial for the logistic regression model – but not for random forests. In

random forests, merging two groups of variables usually does not harm the top performing

group unless the weak performing group contains too many noise variables. Moreover, we did

not encounter any initial screening in this application as all of the 74 predictors, either alone

or together with other variable, beat the threshold of random ranking.

In order to ensure the good performance of EPX(LR), the adaptation through the inter-

mediate step of filtering was necessary. However, the goal was not to change much of the

algorithm as we wanted to develop a general purpose ensemble. We have observed that the

adapted ensemble EPX(LR) outperforms EPX(RF) with a big margin using three evaluation

metrics specific to ranking rare homologous proteins. However, some thoughtful modifica-

tions could further improve the performance of EPX(LR). For example, the use of appropri-

ate weights to aggregate the phalanxes might help improving the performances in terms of

predictive ranking.

It is shown that the EPX(LR) is much faster than EPX(RF) in terms of computational

time. Although parallel computation is used to learn EPX(LR), we expect that the ensemble

could also be trained using a single processor in a reasonable amount of time by coding the

algorithm in C/C++ or in Fortran. Having finished the coding, we plan to embed the program

in an R package in the near future.
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Chapter 6

Conclusion and Future Work

This thesis tackles a very special type of two-class classification problem. The specialty is

that the frequency of one of the classes is very small (i.e., rare) comparing to the other class.

Moreover, it is the rare, not the majority, class for which the correct classification is required.

For example, in medicinal chemistry, a chemist might be interested in classifying the rare

active compounds only in a chemical library of many compounds.

Minimizing the misclassification error rate can be unhelpful to such problems. To adapt

classification to unbalanced classes, statisticians or machine learners often maximize the fol-

lowing evaluation metrics: precision, recall, G-mean (geometric mean of precision and recall)

and F-measure (harmonic mean of precision and recall). An alternative is to sequence all of

the observations in a dataset in such a way that the rare class observations are found at the

top of a shortlist. The shortlist comprises the top-ranked observations which are intended

to include most, if not all, of the rare-class observations. The length of the shortlist would

depend on the available resources in a project. As such, after shortlisting the compounds in a

large chemical library, the chemist only needs to go through the shortlist to find most of the

active compounds in the library and thus to save time and money.

I chose four bioassay datasets with chemical compounds that are either active or inactive

against a biological target, e.g., active against lung tumor cells. The predictors are the numer-

ically represented chemical structures of the compounds. It is possible to use many different

types of classifiers to rank the compounds. However, classification-tree based ensembles are

used in this thesis for two reasons: (i) ensembles usually possess better predictive power than

non-ensembles, and (ii) classification-tree based methods possess good predictive power with

inherent variable selection properties, and are applicable to mixed type of high-dimensional

datasets. Specifically, the popular state-of-the-art ensemble random forests is used because

of its superiority over other ensemble and non-ensemble classifiers.

In each of the four bioassays, I use five sets of predictor variables. In Chapter 2, the

ensemble of descriptor sets (EDS) was proposed by aggregating five random forests fitted to

the five descriptor sets. The resulting EDS outperforms the top performing random forests

applied to any of the single set of descriptors. It is the natural diversity and strength of the

random forests built across the descriptor sets which help to develop a powerful ensemble like

EDS. I name such descriptor sets as natural phalanxes, where the variables within a phalanx

are good when used together and the variables between phalanxes are good to help each other

in an ensemble.
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The presence of such natural phalanxes in the data motivates me to unmask data-adaptive

phalanxes in a variable-rich descriptor set. For this purpose, an algorithm of phalanx forma-

tion (Algorithm 3.1) is proposed in Chapter 3. The ensemble random forests itself is used

to unmask data-adaptive phalanxes in each of the five descriptor sets. The algorithm filters

the weak variables and forms the phalanxes using unfiltered variables. As expected, the large

descriptor sets tend to supply many phalanxes.

The ensemble of phalanxes (EPX) is obtained by fitting a random forest in each phalanx

and aggregating probabilities across the phalanxes. The performance of EPX was compared

with random forests and regularized random forests. The former performs better in terms

of predictive ranking than the latter two ensembles. The advantage of EPX over the two

ensembles is large when there are many variables in a descriptor set and when an assay

contains a small proportion of active compounds. The ensemble of descriptor sets is also

improved replacing random forests in each descriptor set by the ensemble of phalanxes. The

replacement of random forests by a more powerful ensemble like EPX further improves the

performances of the resulting ensemble of descriptor sets.

In Chapter 3, the phalanxes are formed using the probabilities of belonging to the rare

class obtained from the out-of-bag (OOB) samples in a random forests, whereas in Chapter

5, the phalanxes are formed using the probabilities obtained from a cross-validation. The

datasets used in Chapters 3 and 5 are the bioassay datasets and the protein homology dataset,

respectively. The ensemble of phalanxes performs better than the random forests in those

applications. The ensemble of phalanxes is also adapted to the logistic regression model in

Chapter 5. The resulting ensemble of phalanxes runs faster in terms of computational time

and performs better in terms of predictive ranking than the original ensemble of phalanxes

using random forests. This shows that the ensemble of phalanxes is generalizable to any

suitable classification methods.

Last, but not the least, the protein homology dataset provides a real test set without

disclosing the status of the response variable for the candidate proteins. However, it is pos-

sible to evaluate the performances of the ensembles by submitting the probabilities of being

homologous to the KDD cup website. The test results prove the superiority of the ensemble

of phalanxes over random forests. The evaluation of the ensemble of phalanxes in the test set

is completely honest and confirms the cross-validated results found in Chapters 3 and 4.

6.1 Parallel Computation

In this thesis, instead of executing the computations sequentially, I choose to execute them

in parallel using many processors/cores in a computer or using many nodes in a cluster. The

primary goal is to reduce the computational time.

Specifically, I used the four MAC processors (Grouse, Baker, Seymour and Cypress) in the

computing servers of the department of statistics at the University of British Columbia. Those
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processors provide high computing power with large distributed memory in each and are good

for high performance computing within each. But the interconnection of the processors does

not support large data transfer from one to another. In order to facilitate the transfer of large

data and results from one node to another as well as to get high performance computing, I

moved to the western Canada research grid (WestGrid) cluster Bugaboo.

To provide parallel backend for the R commands which support parallel execution, I used

the R packages doSNOW and doMPI. If the processors are not connected as a cluster due

to various reasons, one can build a Simple Network Of Workstations (SNOW) using the R

package doSNOW. The processors in the computing servers of the department of statistics

at UBC fall in this category, and I used doSNOW to create parallel backend. On the other

hand, the computing nodes in Bugaboo are connected as clusters, and I used doMPI for

creating parallel backend.

Both of the R packages doSNOW and doMPI create parallel backend for the R package

foreach. The R package foreach gives a parallel programming framework and provides a

looping construct for executingR codes repeatedly on multiple processors/cores on a computer

or on multiple nodes of a cluster. The package foreach also supports sequential execution of

repeating statements with a minor change in the command line. This attractive feature of

foreach enables a programmer writing and debugging codes in a personal computer and then

executing the final codes in parallel in a cluster.

As stated earlier, I moved from the statistics department’s servers to WestGrid’s cluster

Bubaboo in order to facilitate transfer of large data files and results from one node to another.

Yet I employed another R package iterators to further decrease the overhead data transfer.

As the data communication overhead was heavy, I considered chunking and transferring the

appropriate portion of the data needed for computing using iterators. Even though there are

several built-in statements in iterators, I created my own iterators to transfer appropriate

chunk of data suitable to my R program.

6.2 Future Work

Throughout this thesis, the phalanxes are aggregated to form an ensemble using unweighted

average of the probabilities belonging to the rare class. This is common both in case of forming

the phalanxes and aggregating the final phalanxes. I propose that the strong phalanxes get

larger weights than the weak phalanxes to improve prediction performance of the resulting

ensemble. Thus, determining appropriate weights for the phalanxes would be a good extension

of the current ensemble of phalanxes. To determine the optimal weight, I plan to optimize the

performance of the ensemble by examining individual strengths of the phalanxes as well as the

covariance structure of the probabilities belonging to the rare class between the phalanxes.

This process of determining optimal weight would be adapted not only to aggregate final

phalanxes but also to form the phalanxes. In addition to optimal weights, I plan to determine
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an appropriate bound on prediction performance of the ensemble by studying the strengths

and correlations between constituent classifiers constructed using the phalanxes.

One of the objectives of this thesis is to sort the rare class observations through ranking.

To evaluate the performance of a classifier in terms of predictive ranking, I mainly used

average hit rate (i.e., average precision) as a single number summary of a hit curve. The

metric “average hit rate” is also used to form the phalanxes. The formation of phalanxes is

also possible by optimizing other evaluation metrics, for example, optimizing rank last (RKL).

Such generalization of the ensemble of phalanxes would be a good extension of this current

method.

A straightforward extension of this ensemble would be in regression, where the response

variable is continuous. For example, the four assay datasets used in Chapters 2 to 4 typically

resulted in continuous responses (percent inhibition) from a primary screen and binary re-

sponses (active versus inactive) from a secondary screen. Had I used the continuous response

variables from those assays, I would have dealt with models related to classical regression. To

deal with continuous response variable as in classical regression, I would have to optimize the

metric squared error loss to form the phalanxes as well as to evaluate the resulting ensemble.

Having predicted the response percent inhibition, one may rank to sort out the compounds

with high activity.

Unlike the rare class problem, the frequencies of the classes could be approximately equal to

each other in many applications. An extension of this ensemble of phalanxes is possible in such

balanced classification problem by employing the metricmisclassification error. Hopefully, the

ensemble of phalanxes would outperform random forests in balanced classification problems

too, if a dataset contains many useful feature variables with signals for the response.

The socialization of the predictor variables in the screened phalanxes can be made by a

simple modification of the algorithm 1.1 of random forests presented in Section 1.3.2. The

proposed modification is as follows: at each node of a tree in a forest, randomly choose

mtry =
√
Di variables to find the split-point of that node. Here, Di ; i = 1, · · · p, is the number

of feature variables in the ith phalanx. As a result of this modification, the resulting trees in

the modified random forests would be more diverse and stronger than the trees generated by

regular random forests. For the above mentioned reasons, the modification to random forests

might perform better in terms of predictive ranking than regular random forests.

The algorithm for the ensemble of phalanxes is coded in R, the freely available statistical

software. The original C codes for the three evaluation metrics – APR, RKL, and TOP1 -

are downloaded from the 2004 KDD Cup website and are used in my programs. Besides, the

whole R program is designed in such a way that the program can be executed using as many

nodes as possible in a cluster of processors. With the vision of running the codes in a single

processor, I plan to rewrite the entire program in C/C++ or in Fortran and wrap it up in an

R package. In this R package, there would be opportunity for employing most of the popular

evaluation metrics to form the phalanxes and to build the ensemble as well.
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Table A.1: The number of variables, initial groups, screened groups, candidate phalanxes,
and screened/army of phalanxes for the 3 runs of the algorithm to AID362 assay.

DS Run
Number of

Variables
Groups Phalanxes

Initial Screened Candidate Screened

AP
1

360 77
50 1 1

2 54 6 4
3 57 12 4

BN
1

24 24
24 4 4

2 24 5 5
3 24 6 6

CAP
1

1319 325
281 10 10

2 289 12 12
3 288 14 14

FP
1

563 102
92 5 5

2 95 6 5
3 97 4 4

PH
1

112 21
18 2 2

2 16 1 1
3 18 2 1

Table A.2: Average hit rate (AHR) for an ensemble of phalanxes (EPX), a random forests
(RF), and a regularized random forests (RRF) averaged over 16 repeats of balanced 10-fold
cross-validation for the AID362 assay. Larger AHR values are better. The last two columns
show the number of times EPX has larger AHR among the 16 repeats of cross-validation
relative to RF and RRF.

DS Run
Mean AHR EPX beats

EPX RF RRF RF RRF

AP
1 0.300

0.280 0.256
16/16 16/16

2 0.306 15/16 16/16
3 0.295 13/16 15/16

BN
1 0.261

0.242 0.238
16/16 16/16

2 0.299 16/16 16/16
3 0.285 16/16 16/16

CAP
1 0.363

0.267 0.171
16/16 16/16

2 0.355 16/16 16/16
3 0.368 16/16 16/16

FP
1 0.315

0.266 0.174
16/16 16/16

2 0.323 16/16 16/16
3 0.306 16/16 16/16

PH
1 0.227

0.216 0.168
14/16 16/16

2 0.212 7/16 16/16
3 0.218 9/16 16/16
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Table A.3: The number of variables, initial groups, screened groups, candidate phalanxes,
and screened/army of phalanxes for the 3 runs of the algorithm to AID364 assay.

DS Run
Number of

Variables
Groups Phalanxes

Initial Screened Candidate Screened

AP
1

380 78
63 6 5

2 71 6 6
3 65 5 5

BN
1

24 24
24 4 4

2 24 3 3
3 24 4 4

CAP
1

1585 394
316 7 7

2 321 10 10
3 380 10 7

FP
1

580 104
100 4 4

2 101 3 3
3 102 6 6

PH
1

120 21
18 3 3

2 16 1 1
3 16 2 2

Table A.4: Average hit rate (AHR) for an ensemble of phalanxes (EPX), a random forests
(RF), and a regularized random forests (RRF) averaged over 16 repeats of balanced 10-fold
cross-validation for the AID364 assay. Larger AHR values are better. The last two columns
show the number of times EPX has larger AHR among the 16 repeats of cross-validation
relative to RF and RRF.

DS Run
Mean AHR EPX beats

EPX RF RRF RF RRF

AP
1 0.291

0.265 0.230
16/16 16/16

2 0.292 16/16 16/16
3 0.310 16/16 16/16

BN
1 0.371

0.327 0.300
16/16 16/16

2 0.365 16/16 16/16
3 0.373 16/16 16/16

CAP
1 0.379

0.334 0.252
16/16 16/16

2 0.390 16/16 16/16
3 0.390 16/16 16/16

FP
1 0.318

0.305 0.261
15/16 16/16

2 0.320 16/16 16/16
3 0.317 14/16 16/16

PH
1 0.278

0.275 0.219
11/16 16/16

2 0.276 9/16 16/16
3 0.282 14/16 16/16
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Table A.5: The number of variables, initial groups, screened groups, candidate phalanxes,
and screened/army of phalanxes for the 3 runs of the algorithm to AID371 assay.

DS Run
Number of

Variables
Groups Phalanxes

Initial Screened Candidate Screened

AP
1

382 78
58 5 4

2 59 5 4
3 61 3 3

BN
1

24 24
24 3 3

2 24 5 5
3 24 3 3

CAP
1

1498 362
192 7 7

2 196 9 9
3 202 7 6

FP
1

580 104
85 5 5

2 85 2 2
3 88 3 3

PH
1

119 21
15 5 5

2 15 4 4
3 14 3 3

Table A.6: Average hit rate (AHR) for an ensemble of phalanxes (EPX), a random forests
(RF), and a regularized random forests (RRF) averaged over 16 repeats of balanced 10-fold
cross-validation for the AID371 assay. Larger AHR values are better. The last two columns
show the number of times EPX has larger AHR among the 16 repeats of cross-validation
relative to RF and RRF.

DS Run
Mean AHR EPX beats

EPX RF RRF RF RRF

AP
1 0.327

0.315 0.281
16/16 16/16

2 0.331 16/16 16/16
3 0.328 16/16 16/16

BN
1 0.342

0.335 0.333
16/16 16/16

2 0.354 16/16 16/16
3 0.338 13/16 13/16

CAP
1 0.390

0.347 0.310
16/16 16/16

2 0.384 16/16 16/16
3 0.378 16/16 16/16

FP
1 0.358

0.362 0.338
3/16 15/16

2 0.358 4/16 14/16
3 0.364 12/16 16/16

PH
1 0.277

0.277 0.282
9/16 5/16

2 0.284 15/16 10/16
3 0.279 9/16 6/16
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