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Abstract

Cellwise outliers are likely to occur together with casewise outliers in datasets of

relatively large dimension. Recent work has shown that traditional high breakdown

point procedures may fail when applied to such datasets. In this thesis, we consider

this problem when the goal is to (1) estimate multivariate location and scatter matrix

and (2) estimate regression coefficients and confidence intervals for inference, which

both are cornerstones in multivariate data analysis.

To address the first problem, we propose a two-step procedure to deal with case-

wise and cellwise outliers, which generally proceeds as follows: first, it uses a filter

to identify cellwise outliers and replace them by missing values; then, it applies a

robust estimator to the incomplete data to down-weight casewise outliers. We show

that the two-step procedure is consistent under the central model provided the filter

is appropriately chosen.

The proposed two-step procedure for estimating location and scatter matrix is

then applied in regression for the case of continuous covariates by simply adding a

third step, which computes robust regression coefficients from the estimated robust

multivariate location and scatter matrix obtained in the second step. We show that

the three-step estimator is consistent and asymptotically normal at the central model,

for the case of continuous covariates. Finally, the estimator is extended to handle

both continuous and dummy covariates.

Extensive simulation results and real data examples show that the proposed meth-

ods can handle both cellwise and casewise outliers similarly well.
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Preface

This dissertation was prepared under the supervision of Professor Ruben Zamar and

it is mainly based on the three papers coauthored with the supervisor and other

collaborators. Two of the papers have been published and a third one is submitted

for publication.

Chapter 2 is mostly based on the published discussion paper in TEST, “Robust

estimation of multivariate location and scatter in the presence of cellwise and casewise

contamination” (Agostinelli et al., 2015). The problem addressed in this paper, the

proposed two-step procedures and the theoretical developments resulted from a broad

discussion among the authors. Moreover, the author of this dissertation developed

a bivariate filter version of the procedure which is included in the third paper. The

author also designed and conducted the empirical study and prepared the first version

of the manuscript, as well as the rejoinder, followed by the revisions proposed by the

coauthors. Finally, the author implemented the proposed procedure, as well as its

workhorse, the generalized S-estimator (GSE) (Danilov et al., 2012), that is used in

the second step. This resulted in an R package, GSE (Leung et al., 2015), available

on CRAN (R Core Team, 2015).

Chapter 3 follows up on the discussion and rejoinder of the discussion paper

in TEST (Agostinelli et al., 2015). Professor Ricardo Maronna in his discussion

suggested replacing the second step of the two-step procedure with a GSE of Danilov

et al. (2012) with a Rocke-type ρ function. This way the procedure could achieve

robustness in higher dimensions. The author of the dissertation investigated the

suggestion and extended the GSE to its Rocke-type counterpart. The author invented

a new fast subsampling procedure for computing a needed initial estimator. The

author used the same empirical study design as presented in Chapter 2 and prepared
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all the empirical results. The author also wrote the first version of this manuscript

followed by the revisions proposed by the supervisor. The work has been submitted

for publication. Finally, all the relevant procedures proposed in this chapter are

made available in the above mentioned R package, GSE.

Chapter 4 is based on the published paper in Computational Statistics & Data

Analysis, “Robust regression estimation and inference in the presence of cellwise

and casewise contamination” (Leung et al., 2016). The problem addressed in this

paper, the proposed procedures and the theoretical developments resulted from a

broad discussion among the authors. In particular, the author came up with the

key idea to skip the filtering step if cellwise contamination is not suspected, which

considerably helps the theoretical analysis of the approach. The first version of

the manuscript, including the asymptotic results and the empirical study, were all

prepared by the author, followed by the revisions proposed by the supervisor. Finally,

the author implemented the three-step approach in the R package robreg3S (Leung

et al., 2015), also available on CRAN.

In addition to the aforementioned contributions, the supervisor made several

suggestions regarding the presentation of material in this dissertation, relevant liter-

ature, and motivation of the research. He also checked all the proofs and made some

changes in the writing to improve the flow of ideas in the dissertation and papers.
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Chapter 1

Introduction

1.1 Background

Statistical estimations and inferences are generally based on some assumptions about

the underlying situation (e.g., model distributions of the data). In practice, these

assumptions may not always be fulfilled. For instance, observations may deviate

from specified model distribution or may contain gross errors. All such differently

behaving observations are generally called contaminated observations. It is well

known that some of the most common statistical procedures are extremely sensitive

to the presence of contaminated observations, and therefore, many robust alternatives

have been proposed.

Most of the traditional robust procedures are based on the assumption that the

majority of the observations or cases in the data follow a specified model distribu-

tion, while only a minority follow an arbitrary, unspecified distribution. This as-

sumption usually refers to casewise contamination or rowwise contamination, whose

name comes from representing an observed data set in a matrix where rows are cases

and columns are variables (see Figure 1.1). Traditional robust procedures then flag

and down-weight contaminated cases entirely, and they have been shown to work

well under these assumption.

However, the casewise contamination model does not always hold for real data be-

cause observations may only be partially contaminated. This type of contamination

often appears as single outlying cells in a data matrix and can be modeled as inde-

pendent cellwise contamination (see Figure 1.1). Under the cellwise contamination

model, the traditional practice of down-weighting entire cases is no longer appropri-

ate because it could entail a serious loss of information. Nonetheless, it still works

1



1.1. Background

(a) (b)

Figure 1.1: Illustration of (a) casewise contamination and (b) cellwise contamination
in a data matrix.

under the circumstance that the fraction of cases affected by cellwise contamination

is small, which is usually the case for small data sets (small number of variables).

Datasets in recent years often contain a large number of variables, and as such,

they could suffer from a large fraction of cellwise contaminated cases. For example,

if the proportion of cellwise contamination is ε = 0.05 and the dimension is p = 10,

then the probability ε that at least one component of a case is contaminated is

ε = 1− (1− ε)p = 0.40;

if ε = 0.05 and p = 20, then ε = 0.64; and if ε = 0.05 and p = 30, then ε = 0.79.

This phenomenon is referred to as the propagation of (cellwise) outliers, challenging

the fundamental assumption required by the traditional robust procedures.

2



1.2. Real data examples

In real life situations, data sets may even contain both casewise and cellwise

outliers, further complicating the problem. The following two examples provide ev-

idence of the occurrence of cellwise and casewise outliers in real data and illustrate

the following fact: Traditional casewise-robust procedures are not sufficient for deal-

ing with these two types of outliers simultaneously. As a result, they fail to provide

a good fit to the bulk of the data and miss out real outliers.

1.2 Real data examples

1.2.1 Geochemical data

Consider the geochemical data in Smith et al. (1984). The data contain content

measure (in parts per million) for 20 chemical compounds in 53 samples of rocks in

Western Australia. In this example, we focus on a subset of 10 chemical compounds

with the most suspected cellwise contamination. As the original data are skewed, we

apply a log transformation to the data to make them more symmetric.

Figure 1.2 presents the distribution of the content measure for the 10 compounds

in histograms and normal quantile–quantile plots. We notice a relatively large num-

ber of outliers in compound V9 and V17, and we suspect a few outliers in the other

compounds.

Consider the following outlier detection rule. Denote a sample of content mea-

sure by X1, . . . , Xn. Consider a pair of location and dispersion estimators T0n and

S0n. Here we use the median and the median absolute deviance for T0n and S0n,

respectively. Suppose the content measures have normal distributions. We flag a

content measure if

Xi < T0,n − 2.81 · S0,n or Xi > T0,n + 2.81 · S0,n, (1.1)

so that approximately only 0.5% of the measures would be flagged, assuming that

T0,n and S0,n are close to true parameter values. Applying this rule, we find in total

5.1% of cellwise outliers that propagates to 41.5% of the cases, which is close to the

3



1.2. Real data examples
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(b) Normal quantile–quantile plots of compound content

Figure 1.2: (a) Histograms and (b) quantile–quantile plots of the compound content
in the geochmical data.
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1.2. Real data examples

maximum contamination that traditional robust procedures can handle (i.e., 50%).

Let’s investigate the effect of this propagation of cellwise outliers on traditional

robust estimates. A common way for detecting outlying cases in high dimension is

to use the squared Mahalanobis distance (MD):

d(xxx,m̂mm,ĈCC) = (xxx− m̂mm)tĈCC
−1

(xxx− m̂mm),

where xxx is a p-dimensional data vector, m̂mm is a multivariate location estimate, and ĈCC

is a covariance matrix estimate. Under the assumption that the data are normally

distributed and that m̂mm and ĈCC are close to the true parameter values mmm and CCC, the

distance d(xxx,mmm,CCC) has an approximate chi-squared distribution with p degrees of

freedom. With reasonably large sample sizes, the estimates will be close to their true

values provided they are robust and consistent. Therefore, it is common practice

to compare the squared Mahalanobis distances with a high percentile (such as the

99.5-th percentile) of a chi-squared with p degrees of freedom. Points exceeding this

threshold are flagged as possible outliers.

We consider the MLE approach (sample mean and covariance matrix) and a state-

of-the-art robust approach (against casewise contamination), the Rocke-S-estimator

(Maronna & Yohai, 2015). Figure 1.3a shows the squared Mahalanobis distances of

the samples based on the two estimates. Cases that contain one or more flagged

components are shown in green in the figure. Clearly, the MLE estimates are much

affected by the outliers in the data; the corresponding MD’s flag no green cases.

The robust estimates are also affected by the propagation of cellwise outliers; the

corresponding MD’s fail to flag more than half of the suspected green cases.

Next, we replace the flagged cells by their coordinate medians in an attempt

to control the effect of outliers propagation. Then, we re-estimate the multivariate

location and covariance matrix using these “cleaned” data. The resulting squared

Mahalanobis distances of the observations are given in Figure 1.3b. The robust

estimates now recognize most of the cellwise contaminated observations as outlying

observations. In addition, they unmask two new outlying observations (samples 2

and 35). These two observations do not have any outlying cellwise components and
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(a) Original estimates
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(b) Cleaned estimates

Figure 1.3: Squared Mahalanobis distances of the samples in the geochemical data
based on estimates calculated on (a) the original data and (b) the cleaned data.
Samples that contain one or more flagged components (large cellwise outliers) are in
green.

they did not appear outlying based on the original robust estimates (see Figure 1.3a).

It is clear that cellwise data-preprocessing followed by some casewise-robust pro-

cedure are indeed necessary for capturing the full extent of contamination in these

data (cellwise and casewise).

1.2.2 Micro-cap stock returns data

These data contain the weekly returns from 01/08/2008 to 12/28/2010 (n = 730

weeks) in a portfolio of 20 micro-cap stocks (p = 20) in Martin (2013).

Figure 1.4 shows the distributions and normal QQ-plots of the 20 micro-cap

stocks returns in the portfolio. Overall, the returns do not seem to deviate much

from normal, but they do contain a few outliers. Applying the outlier detection rule in

(1.1) to these data, we identify 7.2% of outlying returns in the portfolio, propagating

to 55.4% of the cases. Most of the weeks with outlying returns correspond to the

2008 financial crisis (from late-2008 to mid-2009).

Figure 1.5a shows the squared Mahalanobis distances of the weekly observations
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(b) Normal quantile–quantile plots of weekly returns

Figure 1.4: (a) Histograms and (b) quantile–quantile plots of the weekly returns in
the micro-cap asset returns data.
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(a) Original Data
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(b) Cleaned Data

Figure 1.5: Squared Mahalanobis distances of the weekly observations in the micro-
cap asset returns data based on estimates calculated on (a) the original data and (b)
the cleaned data. Large distances are truncated for better visualization. Observa-
tions that contain one flagged components (large cellwise outliers) are in blue and
those contain at least two flagged components are in green. The weeks corresponding
to the 2008 financial crisis are enclosed by the vertical dashed lines.

based on the MLE and the Rocke-S estimates calculated on the original data. A total

of 35 weeks (22.3% of the cases) contain one flagged component and are shown in blue

in the figures. Another 52 weeks (33.1% of the cases) contain two or more flagged

components and are shown in green. The financial crisis is the period between the

two vertical dashed lines. Notice that all the weeks in the financial crisis are either

blue or green.

As expected, the MLE estimates are adversely affected by the outliers and con-

sider many of the weeks during the crisis as normal weeks, contradicting intuition.

They fail to flag 35 green and 32 blue cases. The casewise-robust estimate is also up-

set by the propagation of cellwise outliers and misses 7 green and 29 blue cases, two

of them during the financial crisis. The propagation of cellwise outliers has distorted
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Figure 1.6: Results of UBF-GRE-C applied to the original data.

the robust estimates and corresponding MD’s.

To try to control the effect of propagation of cellwise outliers, we repeat the

analysis but this time replacing the flagged cells by their coordinate medians. Figure

1.5b shows the squared Mahalanobis distances based on the new estimates calculated

on the cleaned data. The MLE and the robust estimates now flag all the weeks during

the crisis as outliers, no longer contradicting intuition. Also, interestingly, the robust

estimates now unmask additional outlying weeks (e.g., Week 09/30/2008) that are

casewise outliers masked in the original analysis.

Figure 1.6 shows the results from more sophisticated approach developed in

Chapter 3, called UBF-GRE-C. This procedure is able to flag all the green weeks,

all but 3 of the blue weeks and 40 new casewise outlying weeks which were masked

by the propagation of cellwise outliers in previous analysis.

1.3 Contributions and outline of the thesis

From the examples, we see that casewise and cellwise outliers could co-exist in real

data. We also see from these examples that traditional robust procedures are inade-

quate to provide reliable estimates and to detect outliers in the presence of cellwise-

outliers propagation. To address these problems, we propose and study new robust

methods for dealing with cellwise and casewise contamination in this thesis. Our

9



1.3. Contributions and outline of the thesis

contributions are listed below.

• We provide several real data examples with convincing evidence of simultaneous

occurrence of cellwise and casewise contamination.

• We study the problem of robust estimation of multivariate location and scat-

ter matrices in the presence of cellwise and casewise contamination. These

quantities are of great importance as they are cornerstones in multivariate

data analysis. We propose a new procedure and show that this procedure can

efficiently deal with cellwise outliers. Moreover, we show that the proposed

procedure can deal with casewise outliers for datasets of moderate dimension

(p ≤ 15, say), performing similarly to traditional robust methods. Further-

more, we show that, under no contamination, the procedure is consistent and

highly efficient. Part of the procedure is published as a discussion paper in

TEST (see Agostinelli et al., 2015).

• We revisit the same problem above but for higher dimensional data (p > 15,

say). We improve the proposed procedure in TEST in two different aspects:

robustness under casewise contamination and computation speed. We equip

the procedure with a new robust estimator for incomplete data that can si-

multaneously attain high robustness and reasonable efficiency for moderate to

large dimension. We also develop a new fast subsampling method for comput-

ing initial estimates for the procedure when the dimension is large. This work

is submitted for publication.

• We study the classic problem of multiple linear regression in the same paradigm.

We propose a new procedure for estimating regression coefficients that can han-

dle cellwise and casewise outliers similarly well. We prove that the procedure

is consistent and asymptotically normal for the case of continuous covariates.

This allows for statistical inference, at least for large sample sizes. Furthermore,

the procedure is extended to handle both continuous and dummy covariates

using an iterative algorithm in estimation. To the best of our knowledge, the

10



1.3. Contributions and outline of the thesis

proposed procedure is the first robust regression methods that can achieve ro-

bust estimation and inference in the presence of cellwise and casewise contam-

ination, and can deal with numerical and dummy covariates. The procedure

is published as a methodology paper in Computational Statistics and Data

Analysis (CSDA) (see Leung et al., 2016).

• Finally, we develop two R packages for robust analysis in the presence of cell-

wise and casewise contamination. The first R package, GSE (Leung et al., 2015),

implements our proposed procedure for estimating multivariate location and

scatter (Agostinelli et al., 2015). The package also implements several robust

multivariate location and scatter estimators for incomplete data that are heav-

ily used by our procedure such as the generalized S-estimator (Danilov, 2010).

The second R package, robreg3S (Leung et al., 2015), implements our proposed

regression estimator for robust estimation and inference in multiple linear re-

gression (see Leung et al., 2016). The two R packages are freely available on

CRAN (R Core Team, 2015).

The rest of the thesis is organized as follows. Chapter 2 and 3 is dedicated to our

work on robust estimation of multivariate location and scatter and Chapter 4 is on

robust linear regression analysis. The thesis concludes in Chapter 5, where some of

the challenges that remain to be solved and the directions we foresee for future work

are presented.
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Chapter 2

Robust Estimation of Multivariate

Location and Scatter in the

Presence of Cellwise and Casewise

Contamination in Moderate

Dimension

2.1 Introduction

Outliers are a common problem for data analysts because they may have a big

detrimental effect on estimation, inference and prediction. In robust statistics it is

generally assumed that a relatively small fraction of cases may be contaminated,

however, it has also been recently noticed that the majority of the cases (and even

all of them) could be partially contaminated for moderate and high-dimensional

data. The problem of interest in this chapter is robust estimation of multivariate

location and scatter matrix in consideration of the latter case. The estimation of

these parameters is a corner stone in many applications such as principal component

analysis, factor analysis, and multiple linear regression.

Classical contamination model

To fix ideas, suppose that a multivariate data set is organized in a table with rows as

cases and columns as variables, that is, X = (XXX1, . . . ,XXXn)t, withXXX i = (Xi1, . . . , Xip).

12



2.1. Introduction

The vast majority of procedures for robust analysis of multivariate data are based

on the classical Tukey–Huber contamination model (THCM), or sometimes called

casewise contamination model, where a small fraction of rows in the data table

may be contaminated. In THCM, the contamination mechanism is modeled as a

mixture of two distributions: one corresponding to the nominal model and the other

corresponding to the outliers. More precisely, THCM considers the following family

of distributions:

Hε = {H = (1− ε)H0 + εH̃ : H̃ is any distribution on Rp} (2.1)

whereH0 is a central parametric distribution such as the multivariate normalNp(µµµ,ΣΣΣ)

and H̃ is an unspecified outlier generating distribution. We then assume a case fol-

lows a distribution from the above family, that is XXX i ∼ H where H ∈ Hε. The

key feature of this model is that when ε is small we have XXX i ∼ H0 most of the

time, therefore, detection and down-weighting of outlying cases make sense and work

well in practice. High breakdown point affine equivariant estimators such as MVE

(Rousseeuw, 1985), MCD (Rousseeuw, 1985), S (Davies, 1987), MM (Tatsuoka &

Tyler, 2000) and Stahel–Donoho estimators (Stahel, 1981; Donoho, 1982) proceed in

this general way.

Independent contamination model

In many applications, however, the contamination mechanism may be different in

that individual components (or cells) in X are independently contaminated. For

instance, in the case of high-dimensional data, variables could be gathered separately

and therefore, exposed to contamination independently. The cellwise contamination

mechanism may in principle seem rather harmless, but in fact it has far reaching

consequences including the possible breakdown of classical high breakdown point

estimators.

The new contamination framework, called independent contamination model

(ICM), was presented and formalized in Alqallaf et al. (2009). In the ICM framework,

13



2.1. Introduction

we consider a different family of distribution:

Iε = {H : H is the distribution of XXX = (III −BBBε)XXX0 +BBBεX̃XX}, (2.2)

where XXX0 ∼ H0, X̃XX ∼ H̃, and BBBε = diag(B1, . . . , Bp), where the Bj are independent

Bin(1, ε). In other words, each component ofXXX has a probability ε of being indepen-

dently contaminated. Furthermore, the probability ε that at least one component of

XXX is contaminated is now

ε = 1− (1− ε)p.

This implies that even if ε is small, ε could be large for large p, and could exceed the

0.5 breakdown point of highly robust affine equivariant estimators under THCM. For

example, if ε = 0.1 and p = 10, then ε = 0.65; if ε = 0.05 and p = 20, then ε = 0.64

and if ε = 0.01 and p = 100, then ε = 0.63.

Alqallaf et al. (2009) showed that for this type of contamination, the breakdown

point of all the traditional 0.5 breakdown point and affine equivariant location esti-

mators is 1− 0.51/p → 0 as p→∞. It can be shown that the same holds for robust

and affine equivariant scatter estimators. Hence, we have a new manifestation of the

curse of dimensionality : when p is large, traditional robust estimators break down

for a rather small fraction of independent contamination.

To remedy this problem, some researchers have proposed to Winsorize potential

outliers for each variable separately. For instance, Alqallaf et al. (2002) revisited Hu-

berized Pairwise Covariance (Huber, 1981), which is constructed using transformed

correlation coefficients calculated separately on Huberized data as basic building

blocks. Huberization is a form of Winsorization. Although pairwise robust esti-

mators show some robustness under ICM, they cannot deal with casewise outliers

from THCM, as well as finely shaped multivariate data. Another approach to deal

with ICM outliers was proposed in Van Aelst et al. (2012). They modified the

Stahel–Donoho (SD) estimator (Stahel, 1981; Donoho, 1982) by calculating the SD-

outlyingness measure and weights on Huberized data instead of the raw data. In

our simulation study, this estimator performs very well under THCM, but is not

sufficiently robust under ICM.

14
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An alternative approach consists of replacing cellwise outliers by NA’s, which we

call the approach filtering, like how oversize particles can be separated in filtration.

The use of filtering to fend against cellwise contamination has been suggested by

various authors (e.g., Danilov, 2010; Van Aelst et al., 2012; Farcomeni, 2014a). In

particular, Danilov (2010) has compared maximum likelihood estimates of covariance

matrix computed for various pre-processed data, and empirically found that filtered

data yield the most robust estimates against large cellwise contamination. Farcomeni

(2014a) proposed an interesting idea to estimate location and scatter matrix by

optimizing some maximum likelihood over the parameters of interest, as well as the

filtering set with a fixed size (the filtering operation was called snipping in the paper).

The original method of Farcomeni (2014a) was for clustering multivariate data where

each cluster has an unknown location and scatter matrix, but it can be easily adapted

to our problem by fixing the number of clusters to one. In our simulation study, the

estimators of Danilov (2010) and Farcomeni (2014a) perform very well under ICM,

but neither is sufficiently robust under THCM.

The main goal of this chapter is to emphasize the need for a new generation of

global–robust estimators that can simultaneously deal with outliers from ICM and

THCM, as well as to to define new robust estimators that can deal with them.

In Section 2.2, we introduce a global–robust estimator of multivariate location and

scatter. In Section 2.3, we show that our estimation procedure is strongly consistent.

That is, the multivariate location estimator converges a.s. to the true location and

the scatter matrix estimator converges a.s. to a scalar multiple of the true scatter

matrix, for a general elliptical distribution. Moreover, for a normal distribution the

scalar factor is equal to one. In Section 2.4, we report the result of a simulation

study. In Section 2.5, we analyze two real data sets using the proposed and several

competing estimators. In Section 2.6, we discuss several main points raised by the

discussants of the original paper of this chapter. Finally, we conclude in Section 2.7.

We also provide some additional numerical results and all the proofs in Appendix A.
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2.2. Global-robust estimation under THCM and ICM

2.2 Global-robust estimation under THCM and

ICM

Our approach for global–robust estimation under THCM and ICM is to first flag

univariate outlying cells in the data table and to replace them by NA’s. In the

second step we then apply a procedure that is robust against casewise outliers. Two-

step procedures like this were relatively unpopular in the robustness field because

of the potential lack of desirable statistical properties for the final estimate (such

as consistency and efficiency) and also because it had not been convincingly shown

that the final estimate is robust under THCM and ICM. These two limitations are

overcome in our procedure by the use of an adaptive filter (Gervini & Yohai, 2002)

in the first step and a generalized S-estimator (GSE) (Danilov et al., 2012) in the

second step.

More precisely, our procedure has two major steps:

Step I. Filtering large cellwise outliers. We flag cellwise outliers and replace

them by NA’s. This step prevents cellwise contaminated cases from

having large robust Mahalanobis distances in the second step. See

Section 2.2.1 for further details.

Step II. Dealing with casewise outliers. We apply GSE, to the filtered data

coming from Step I. Notice that GSE has been specifically designed

to deal with incomplete multivariate data with casewise outliers. See

Section 2.2.2 for further details.

Full account of these steps is provided in the remaining of this section.

2.2.1 Step I: Filtering cellwise outliers

Consider a random sample of X = (XXX1, . . . ,XXXn)t, where XXX i follows a distribution

from Iε in (2.2). The filtering we present consists of two parts: a part that aims

at detecting large cellwise outliers by looking at marginals, and another part that
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2.2. Global-robust estimation under THCM and ICM

aims at detecting moderate cellwise outliers by incorporating information about the

correlation structure of the data.

Univariate filtering

Let X1, . . . , Xn be a random (univariate) sample of observations. Consider a pair

of initial location and dispersion estimators, T0n and S0n. Common choices for T0n

and S0n that are also adopted in this chapter are the median and median absolute

deviation (MAD). Denote the standardized sample by Zi = (Xi − T0n)/S0n. Let F

be a chosen reference distribution for Zi. An ideal choice for a reference distribution

would be F0, the actual distribution of (Xi − µ0)/σ0. Unfortunately, F0 is unknown

in practice. Thus, we use the standard normal distribution, F = Φ, as an approxi-

mation. A normalizing transformation could be applied if the marginal data do not

seem normal from standard diagnostic tools such as normal quantile-quantile plots.

Instead of a fixed cutoff value for Zi, we introduce an adaptive cutoff (Gervini

& Yohai, 2002) which is asymptotically “correct”, meaning that for clean data the

fraction of flagged outliers tends to zero as the sample size n tends to infinity. The

adaptive cutoff values are defined as follows. Let F+
n be the empirical distribution

function for the absolute standardized value, that is,

F+
n (t) =

1

n

n∑
i=1

I(|Zi| ≤ t).

The proportion of flagged outliers is defined by

dn = sup
t≥η

{
F+(t)− F+

n (t)
}+

= max
i>i0

{
F+(|Z|(i))−

(i− 1)

n

}+

,

(2.3)

where in general {a}+ represents the positive part of a and F+ is the distribution of

|Z| when Z ∼ F . Here, |Z|(i) is the order statistics of |Zi|, i0 = max{i : |Z|(i) < η},
and η = (F+)−1(α) is a large quantile of F+. We use α = 0.95 for univariate filtering
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2.2. Global-robust estimation under THCM and ICM

as the aim is to detect large outliers, but other choices could be considered. Then,

we flag bndnc observations with the largest standardized value as cellwise outliers

and replace them by NA’s (here, bac is the largest integer less than or equal to a).

Finally, the resulting adaptive cutoff value for Zi is

tn = min
{
t : F+

n (t) ≥ 1− dn
}
, (2.4)

that is, tn = Z(in) with in = n− bndnc. Equivalently, we flag Xi if |Zi| ≥ tn.

The following proposition states that even when the actual distribution is un-

known, asymptotically, the univariate filter will not flag outliers when the tail of

the chosen reference distribution is heavier (or equal) than the tail of the actual

distribution. We call this property consistency throughout this thesis.

Proposition 2.1. Consider a random variable X ∼ F0 with F0 continuous. Also,

consider a pair of location and dispersion estimators, T0n and S0n, such that T0n →
µ0 ∈ R and S0n → σ0 > 0 a.s. [F0]. Let F+

0 (t) = PF0(|X−µ0σ0
| ≤ t). If the reference

distribution F+ satisfies the inequality

max
t≥η

{
F+(t)− F+

0 (t)
}
≤ 0, (2.5)

then
n0

n
→ 0 a.s.,

where

n0 = bndnc.

Proof: See Section A.2 in the Appendix.

Bivariate filtering

As pointed out by Rousseeuw & Van den Bossche (2015), to filter the univariate

outliers based solely on their value may be too limiting as no correlation with other

variables is taken into account. A moderately contaminated cell may pass the filter
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2.2. Global-robust estimation under THCM and ICM

when viewed marginally, but it may be flagged as an outlier when viewed together

with other components, especially for highly correlated data.

Let (XXX1, . . . ,XXXn), with XXX i = (Xi1, Xi2)t, be a random sample of bivariate obser-

vations. Consider also a pair of initial location and scatter estimators,

TTT 0n =

(
T0n,1

T0n,2

)
and CCC0n =

(
C0n,11 C0n,12

C0n,21 C0n,22

)
.

Similar to the univariate case we use the coordinate-wise median and the bivariate

Gnanadesikan-Kettenring estimator with MAD scale (Gnanadesikan & Kettenring,

1972) for TTT 0n and CCC0n, respectively. More precisely, the initial scatter estimators are

defined by

C0n,jk =
1

4

(
MAD({Xij +Xik})2 −MAD({Xij −Xik})2

)
,

where MAD({Yi}) denotes the MAD of Y1, . . . , Yn. Note that C0n,jj = MAD({Xj})2,

which agrees with our choice of the coordinate-wise dispersion estimators. Now,

denote the pairwise (squared) Mahalanobis distances by Di = (XXX i −TTT 0n)tCCC−1
0n (XXX i −

TTT 0n). Let Gn be the empirical distribution for pairwise Mahalanobis distances,

Gn(t) =
1

n

n∑
i=1

I(Di ≤ t).

Finally, we filter outlying points XXX i by comparing Gn(t) with G(t), where G is a

chosen reference distribution. In this thesis, we use the chi-squared distribution with

two degrees of freedom, G = χ2
2. The proportion of flagged bivariate outliers is

defined by

dn = sup
t≥η
{G(t)−Gn(t)}+

= max
i>i0

{
G(D(i))−

(i− 1)

n

}+

.

(2.6)

Here, η = G−1(α), and we use α = 0.85 for bivariate filtering since we now aim for

moderate outliers, but other choices of α can be considered. Then, we flag bndnc
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2.2. Global-robust estimation under THCM and ICM

observations with the largest pairwise Mahalanobis distances as outlying bivariate

points. The resulting adaptive cutoff value for the distances can be defined in the

same way as in (2.4). Finally, the following proposition states the consistency prop-

erty of the bivariate filter.

Proposition 2.2. Consider a random vector XXX = (X1, X2)t ∼ H0. Also, consider

a pair of bivariate location and scatter estimators, TTT 0n and CCC0n, such that TTT 0n →
µµµ0 ∈ R2 and CCC0n → ΣΣΣ0 ∈ PDS(2) a.s. [H0] (PDS(q) is the set of all positive definite

symmetric matrices of size q). Let G0(t) = PH0((XXX − µµµ0)tΣΣΣ−1
0 (XXX − µµµ0) ≤ t) and

suppose that G0 is continuous. If the reference distribution G satisfies:

max
t≥η
{G(t)−G0(t)} ≤ 0, (2.7)

then
n0

n
→ 0 a.s.,

where

n0 = bndnc.

Proof: See Section A.2 in the Appendix.

Combining the univariate and bivariate filtering

We first apply the univariate filter to each variable in X separately using the initial lo-

cation and dispersion estimators, TTT 0n = (T0n,1, . . . , T0n,p) and SSS0n = (S0n,1, . . . , S0n,p).

Let U be the resulting auxiliary matrix of zeros and ones with zeros indicating the

filtered entries in X. We next iterate over all pairs of variables in X to identify

outlying bivariate points which helps filtering the moderately contaminated cells.

Fix a pair of variables, (Xij, Xik) and set XXX
(jk)
i = (Xij, Xik). Let CCC

(jk)
0n be an

initial pairwise scatter matrix estimator for this pair of variables. We calculate the

pairwise Mahalanobis distances D
(jk)
i = (XXX

(jk)
i − TTT (jk)

0n )t(CCC
(jk)
0n )−1(XXX

(jk)
i − TTT (jk)

0n ) and

perform the bivariate filtering on the pairwise distances with no flagged components

from the univariate filtering: {D(jk)
i : Uij = 1, Uik = 1}. We apply this procedure to
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2.2. Global-robust estimation under THCM and ICM

all pairs of variables 1 ≤ j < k ≤ p. Let

J =
{

(i, j, k) : D
(jk)
i is flagged as bivariate outlier

}
,

be the set of triplets which identify the pairs of cells flagged by the bivariate filter

in rows i = 1, ..., n. It remains to determine which cells (i, j) in row i are to be

flagged as cellwise outliers. For each cell (i, j) in the data table, i = 1, . . . , n and

j = 1, . . . , p, we count the number of flagged pairs in the i-th row where cell (i, j) is

involved:

mij = # {k : (i, j, k) ∈ J} .

Cells with large mij are likely to correspond to univariate outliers. Suppose that

observation Xij is not contaminated by cellwise contamination. Then mij approxi-

mately follows the binomial distribution, Bin(
∑

k 6=j Uik, δ), under ICM, where δ is

the overall proportion of cellwise outliers that were not detected by the univariate

filter. We flag observation Xij if

mij > cij,

where cij is the 0.99-quantile of Bin(
∑

k 6=j Uik, δ). In practice we obtained good

results (in both simulation and real data applications) using the conservative choice

δ = 0.10, which is adopted in this thesis.

2.2.2 Step II: Dealing with casewise outliers

This second step introduces robustness against casewise outliers that went undetected

in Step I. Data that emerged from Step I have holes (i.e., NA’s) that correspond to

potentially contaminated cells. To estimate the multivariate location and scatter

matrix from that data, we use a recently developed estimator called GSE, briefly

reviewed below.

Let XXX i = (Xi1, . . . , Xip)
t, 1 ≤ i ≤ n be p-dimensional i.i.d. random vectors that
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follow a distribution in an elliptical family E(µµµ0,ΣΣΣ0) with density

fXXX(xxx,µµµ0,ΣΣΣ0) =
1

|ΣΣΣ0|
f0(D(xxx,µµµ0,ΣΣΣ0)) (2.8)

where |A| is the determinant of A, f0 is non-increasing and strictly decreasing at 0,

and

D(xxx,mmm,CCC) = (xxx−mmm)tCCC−1(xxx−mmm)

is the squared Mahalanobis distance. We also use the normalized squared Maha-

lanobis distances

D∗(xxx,mmm,CCC) = D(xxx,mmm,CCC∗),

where CCC∗ = CCC/|CCC|1/p, so |CCC∗| = 1.

Let U be the auxiliary matrix of zeros and ones, with zeros indicating the cor-

responding missing entries. Let pi = p(UUU i) =
∑p

j=1 Uij be the actual dimension

of the observed part of XXX i. Given a p-dimensional vector of zeros and ones uuu, a p-

dimensional vectormmm and a p×p matrixAAA, we denote bymmm(uuu) andAAA(uuu) the sub-vector

of mmm and the sub-matrix of AAA, respectively, with columns and rows corresponding to

the positive entries in uuu.

Let ΩΩΩ0n be a p × p positive definite initial estimator for ΣΣΣ0. Given the location

vector µµµ ∈ Rp and a p × p positive definite matrix ΣΣΣ, we define the generalized

M-scale, sGS(µµµ,ΣΣΣ,ΩΩΩ0n,X,U), as the solution in s to the following equation:

n∑
i=1

cp(UUU i)ρ

D∗
(
XXX

(UUU i)
i ,µµµ(UUU i),ΣΣΣ(UUU i)

)
s cp(UUU i)

∣∣∣ΩΩΩ(UUU i)
0n

∣∣∣1/p(UUU i)

 = b
n∑
i=1

cp(UUU i) (2.9)

where ρ(t) is an even, non-decreasing in |t| and bounded loss function. The tuning

constants ck, 1 ≤ k ≤ p, are chosen such that

EΦ

(
ρ

(
||XXX||2

ck

))
= b, XXX ∼ Nk(000, III), (2.10)

to ensure consistency under the multivariate normal. We consider the Tukey’s
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2.2. Global-robust estimation under THCM and ICM

bisquare rho function, ρ(u) = min(1, 1 − (1 − u)3), and b = 0.5 throughout this

chapter.

The inclusion of ΩΩΩ0n in (2.9) is needed to re-normalize the distances D∗ to achieve

robustness. A heuristic argument for the inclusion of ΩΩΩ0n is as follows. Suppose that

TTT n ≈ µµµ0 and SSSn ≈ ΩΩΩ0n ≈ ΣΣΣ0. Then, given UUU = uuu,

D∗(XXX(uuu),TTT (uuu)
n ,SSS(uuu)

n )

cp(uuu)

∣∣∣ΩΩΩ(uuu)
0n

∣∣∣1/p(uuu)
≈ D∗(XXX(uuu),µµµ

(uuu)
0 ,ΣΣΣ

(uuu)
0 )

cp(uuu)

∣∣∣ΣΣΣ(uuu)
0

∣∣∣1/p(uuu)
∼ ||Y

YY (uuu)||2

cp(uuu)

where YYY (uuu) is a p(uuu) dimensional random vector with an elliptical distribution. Hence,

||YYY (uuu)||2/cp(uuu) has M-scale of 1 for the given ρ function if YYY is normal, and large

Mahalanobis distances can be down-weighted accordingly. Here, we use extended

minimum volume ellipsoid (EMVE) for ΩΩΩ0n as suggested in Danilov et al. (2012).

A generalized S-estimator is then defined by

(TTTGS,CCCGS) = arg min
µµµ,ΣΣΣ

sGS(µµµ,ΣΣΣ,ΩΩΩ0n,X,U) (2.11)

subject to the constraint

sGS(µµµ,ΣΣΣ,ΣΣΣ,X,U) = 1. (2.12)

Under mild regularity assumptions, in the case of elliptical data with UUU i inde-

pendent of XXX i (missing completely at random assumption) any solution to (2.11) is

a consistent estimator for the shape of the scatter matrix. Moreover, in the case of

normal data, any solution to (2.11) satisfying (2.12) is consistent in shape and size

for the true covariance matrix. Proofs of these claims, as well as the formulas and

the derivations of the estimating equation for GSE, can be found in Danilov et al.

(2012).

Finally, our two-step location and scatter estimator is defined by

TTT 2S = TTTGS(X,Un)

CCC2S = CCCGS(X,Un)
(2.13)
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where Un is an estimated matrix of zeros and ones with zeros indicated filtered entries

in the data table X.

2.3 Consistency of GSE on filtered data

The missing data created in Step I are not missing at random because the missing

data indicator, U, depends on the original data X (univariate outliers are declared

missing). Therefore, the consistency of our two-step estimator cannot be directly

derived from Danilov et al. (2012). However, as shown in Theorem 2.1 below, our

procedure is consistent at the central model provided the fraction of missing data

converges to zero. We need the following assumptions:

Assumption 2.1. The function ρ is (i) non-decreasing in |t|, (ii) strictly increasing

at 0, (iii) continuous, and (iv) ρ(0) = 0 and (v) limv→∞ ρ(v) = 1 (e.g., Tukey’s

bisquare rho function).

Assumption 2.2. The random vector XXX follows a distribution, H0, in the elliptical

family defined by (2.8).

Assumption 2.3. Let H0 be the distribution of XXX and denote σ(µµµ,ΣΣΣ) the solution

in σ to the following equation

EH0

(
ρ

(
D(XXX,µµµ,ΣΣΣ)

cpσ

))
= b,

and consider the minimization problem,

min
|ΣΣΣ|=1

σ(µµµ,ΣΣΣ). (2.14)

We assume that (2.14) has a unique solution, (µµµ0,ΣΣΣ00), where µµµ0 ∈ Rp and ΣΣΣ00 ∈
PDS(p). We also put σ0 = σ(µµµ0,ΣΣΣ00).

Assumption 2.4. The proportion of fully observed entries,

qn = #{i, 1 ≤ i ≤ n : pi = p(UUUn,i) = p}/n,
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tends to one a.s. as n tends to infinity. Recall that UUUn,i is the indicator vector of

non-filtered entries in XXX i.

Remark 2.1. Davies (1987) showed that Assumption 2.2 implies Assumption 2.3

with ΣΣΣ00 = ΣΣΣ0/|ΣΣΣ0|.

Remark 2.2. By Proposition 2.1 and 2.2, the procedure described in Step I satisfies

Assumption 2.4, provided that the marginal distributions for the distribution that

generated the data satisfy equation (2.5) and (2.7).

Theorem 2.1. Let XXX1, . . . ,XXXn be a random sample from H0 and UUUn,1, . . . ,UUUn,n be

as described in Section 2.2.2. Suppose Assumptions 2.1–2.4 hold. Let (TTTGS,CCCGS) be

the GSE defined by (2.11)–(2.13). Then,

(i) TTTGS → µµµ0 a.s. and

(ii) CCCGS → σ0ΣΣΣ00 a.s..

(iii) When XXX ∼ N(µµµ0,ΣΣΣ0), we have σ0ΣΣΣ00 = ΣΣΣ0.

Proof: See Section A.2 in the Appendix.

2.4 Simulations

We conduct a simulation study in R (R Core Team, 2015) to compare various esti-

mators from different generations of robust estimators of multivariate location and

scatter:

(a) MCD, the fast minimum covariance determinant proposed by Rousseeuw &

Van Driessen (1999) (see also Section 6.7.5 in Maronna et al., 2006). MCD is

implemented in the R package rrcov, function CovMcd;

(b) MVE-S, the estimator proposed by Maronna et al. (2006, Section 6.7.5). It

is an S-estimator with bisquare ρ function that uses as initial value of the

iterative algorithm, an MVE estimator. The MVE estimator is computed by
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subsampling with concentration step. The number of subsample in MVE is 500.

Once the estimator of location and covariance corresponding to one subsample

are computed, the concentration step consists in computing the sample mean

and sample covariance of the [n/2] observations with smallest Mahalanobis

distance. MVE-S is implemented in the R package rrcov, function CovSest,

option method="bisquare" (Todorov & Filzmoser, 2009);

(c) Rocke-S (or shortened to Rocke), the estimator recently promoted by Maronna

& Yohai (2015). It is an S-estimator with a non-monotonic weight function

(Rocke, 1996). The only difference to the original proposal is that the esti-

mator uses the KSD estimator (Peña & Prieto, 2001) as initial value for the

iterative algorithm. The KSD estimator is computed by finding directions that

maximize or minimize the kurtosis of the respective projections, as well as

random “specific” directions aimed at detecting casewise outliers. The KSD

estimator is implemented in a MATLAB code kindly provided by the author. The

initial estimate can then be used to calculate Rocke-S, which is implemented

in the R package rrcov, function CovSest, option method="rocke".

(d) HSD, Stahel–Donoho estimator with Huberized outlyingness proposed by Van Aelst

et al. (2012). We use a MATLAB code kindly provided by the authors. The num-

ber of subsamples used in HSD is 200p;

(e) SnipEM (or shortened to Snip), the procedure proposed in Farcomeni (2014a).

This method requires an initial specification of the position of the snipped cells

in the form of a binary data table. We compared (using simulation) several

possible choices for this initial set including: (a) snipping the largest 10% of

the absolute standardized values for each variable; (b) snipping the largest

15% of the absolute standardized values for each variable; and (c) snipping

the standardized values that are more than 1.5 times the interquartile range

less the first quartile or more than 1.5 times the interquartile range plus the

third quartile, for each variable. We only report the results from case (b) as it

yields the best performances. SnipEM is implemented in the R package snipEM,
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function snipEM, default option (Farcomeni & Leung, 2014);

(f) DetMCDScore (or shortened to DMCDSc), the procedure proposed in the com-

ment by Rousseeuw & Van den Bossche (2015). The DetMCDScore is calcu-

lated by applying deterministic MCD (DetMCD) on the normal scores (copula)

of the data. A similar approach was also proposed in Öllerer & Croux (2015).

The DetMCDScore is very computationally efficient and has been shown to

deal with cellwise and casewise outliers adequately. DetMCD is implemented

in the R package DetMCD, function DetMCD, default option (Kaveh, 2015);

(g) UF-GSE and UBF-GSE, the proposed two-step approach. The first step ap-

plies either the univariate filter only (shortened to UF) or the combination of

univariate and bivariate filter (shortened to UBF) to the data. The second

step then calculates GSE for the incomplete data, starting from the EMVE

estimator. The EMVE estimator is computed by subsampling with concen-

tration step. The number of subsamples used in EMVE is 500. The two-step

procedure is available as the TSGS function, option alpha=c(0.95, 0) (UF)

and option alpha=c(0.95, 0.85) (UBF), in the R package GSE (Leung et al.,

2015).

The tuning parameters for the high breakdown point estimators MVE-S, Rocke-S,

and MCD are chosen to attain 0.5 breakdown point under THCM.

We consider clean and contaminated samples from a Np(µ0µ0µ0,Σ0Σ0Σ0) distribution with

dimension p = 5, 10, 15, 20 and sample size n = 10p. We have also considered n = 5p,

but the results are generally similar and are provided in Section A.1 in the Appendix.

The simulation mechanisms are described below.

Since the contamination models and the estimators considered in our simulation

study are location and scale equivariant, we can assume without loss of generality

that the mean, µµµ0, is equal to 000 and the variances in diag(ΣΣΣ0) are all equal to 111.

That is, ΣΣΣ0 is a correlation matrix.

Since the cellwise contamination model and the estimators are not affine-equivariant,

we consider the two different approaches to introduce correlation structures: random

correlation and first order autoregressive correlation (AR1).
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Random Correlation

For each sample in our simulation, we create a different random correlation matrix

with condition number, which is defined as the largest eigenvalue of a correlation

matrix divided by the smallest eigenvalue, fixed at CN = 100. Correlation matrices

with high condition number are generally less favorable for non-affine equivariant

estimators as extensively explored by Alqallaf (2003) and Danilov (2010). We use

the following procedure to obtain random correlations with a fixed condition number

CN :

1. For a fixed condition number CN , we first obtain a diagonal matrix ΛΛΛ =

diag(λ1, . . . , λp), [λ1 < λ2 < · · · < λp] with smallest eigenvalue λ1 = 1 and

largest eigenvalue λp = CN. The remaining eigenvalues λ2, . . . , λp−1 are p − 2

sorted independent random variables with a uniform distribution in the interval

(1,CN).

2. We first generate a random p × p matrix YYY , which elements are indepen-

dent standard normal random variables. Then, we form the symmetric matrix

YYY tYYY = QQQVVVQQQt to obtain a random orthogonal matrixQQQ via eigendecomposition.

3. Using the results of 1 and 2 above, we construct the random covariance matrix

by ΣΣΣ0 = QΛQtQΛQtQΛQt. Notice that the condition number of ΣΣΣ0 is equal to the desired

CN .

4. Convert the covariance matrix ΣΣΣ0 into the correlation matrix RRR0 as follows:

RRR0 = WWW−1/2ΣΣΣ0WWW
−1/2

where

WWW = diag(σ1, . . . , σp)

and σ1, . . . , σp are the standard deviations in the covariance matrix ΣΣΣ0.

5. After the conversion to correlation matrix in Step 4 above, the condition num-

ber of RRR0 is no longer necessarily equal to CN . To remedy this problem, we
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consider the eigenvalue diagonalization of RRR0

RRR0 = Q0ΛΛΛ0Q
t
0Q0ΛΛΛ0Q
t
0Q0ΛΛΛ0Q
t
0. (2.15)

where

ΛΛΛ0 = diag(λR0
1 , . . . , λR0

p ), λR0
1 < λR0

2 < · · · < λR0
p .

is the diagonal matrix formed using the eigenvalues of RRR0. We now re-establish

the desired condition number CN by redefining

λR0
p = CN× λR0

1

and using the modified eigenvalues in (2.15).

6. Repeat 4 and 5 until the condition number of RRR0 is within a tolerance level (or

until we reach some maximum iterations). In our simulation study, we set the

tolerance for the difference in CN at 10−5 and the maximum iterations to be

100. However, convergence was reached after a few iteration in all the cases.

First Order Autoregressive Correlation

The random correlation structure generally has small correlations, especially with

increasing p. For example, for p = 10, the maximum correlation values have an

average of 0.49, and for p = 50, the average maximum is 0.28. So, we consider also

a different correlation structure with higher correlations, in which the correlation

matrix has entries

Σ0,jk = ρ|j−k|,

with ρ = 0.9. This correlation is also known as the first order autoregressive corre-

lation (AR1).

Contamination Scenarios

We then consider the following scenarios:
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• Clean data: No further changes are done to the data.

• Cellwise contamination: We randomly replace a ε of the cells in the data matrix

by Xcont
ij ∼ N(k, 0.12), where k = 1, 2, . . . , 10.

• Casewise contamination: We randomly replace a ε of the cases in the data ma-

trix by XXXcont
i ∼ 0.5N(cvvv, 0.12III) + 0.5N(−cvvv, 0.12III), where c =

√
k(χ2)−1

p (0.99)

and k = 1, 2, . . . , 10 and vvv is the eigenvector corresponding to the smallest

eigenvalue of ΣΣΣ0 with length such that (vvv − µµµ0)tΣΣΣ−1
0 (vvv − µµµ0) = 1. Experi-

ments show that the placement of outliers in this way is the least favorable for

the proposed estimator.

We consider ε = 0.05, 0.10 for cellwise contamination, and ε = 0.10, 0.20 for casewise

contamination. The number of replicates in our simulation study is N = 500.

The performance of a given scatter estimator ΣΣΣn is measured by the Kullback–

Leibler divergence between two Gaussian distribution with the same mean and co-

variances ΣΣΣ and ΣΣΣ0:

D(ΣΣΣ,ΣΣΣ0) = trace(ΣΣΣΣΣΣ−1
0 )− log(|ΣΣΣΣΣΣ−1

0 |)− p.

This divergence also appears in the likelihood ratio test statistics for testing the null

hypothesis that a multivariate normal distribution has covariance matrix ΣΣΣ = ΣΣΣ0.

We call this divergence measure the likelihood ratio test distance (LRT). Then, the

performance of an estimator ΣΣΣn is summarized by

D(ΣΣΣn,ΣΣΣ0) =
1

N

N∑
i=1

D(Σ̂ΣΣn,i,ΣΣΣ0)

where Σ̂ΣΣn,i is the estimate at the i-th replication. Finally, the maximum average LRT

distances over all considered contamination values, k, is also calculated.

Table 2.1 shows the maximum average LRT distances among the considered con-

tamination sizes for the cellwise contamination setting for n = 10p. UBF-GSE and

UF-GSE perform similarly when correlations are small because the bivariate filter
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Table 2.1: Maximum average LRT distances under cellwise contamination. The
sample size is n = 10p.

Corr. p ε MCD MVE-S Rocke HSD Snip DMCDSc UF- UBF-
GSE GSE

Random 5 0.05 1.2 0.6 0.8 1.7 10.0 1.7 0.8 1.0
0.10 2.8 6.6 19.1 8.5 57.8 6.8 3.8 3.7

10 0.05 2.6 11.1 3.6 11.4 7.6 3.7 4.7 4.6
0.10 99.1 150.0 260.6 61.5 11.0 15.2 16.3 16.0

15 0.05 21.6 65.2 46.3 31.8 12.0 6.7 8.5 8.4
0.10 168.2 198.2 202.8 155.0 15.4 21.3 21.0 21.1

20 0.05 53.6 99.7 190.4 58.5 15.5 9.6 11.1 11.3
0.10 216.3 240.0 737.5 253.1 18.6 25.8 24.3 24.4

AR1(0.9) 5 0.05 1.1 0.6 0.8 0.6 7.7 1.1 0.7 0.9
0.10 4.0 9.7 21.2 1.8 33.9 3.9 2.1 1.6

10 0.05 2.3 13.8 3.8 2.8 7.2 3.4 2.1 1.2
0.10 166.9 205.9 629.0 20.6 14.8 14.1 11.0 2.7

15 0.05 60.8 104.4 111.3 12.3 9.7 7.8 5.1 1.8
0.10 328.7 381.2 412.8 103.0 14.3 26.0 21.6 6.6

20 0.05 140.1 208.3 690.4 31.4 14.4 12.9 9.3 2.7
0.10 479.3 526.9 1677.4 274.0 20.4 38.1 34.1 14.5

Random AR1(0.9)

5

10

15

20

25

0

10

20

30

2 4 6 2 4 6
k

LR
T

UF−GSE UBF−GSE Snip DMCDSc

Figure 2.1: Average LRT distances for various contamination values, k, under 10%
cellwise contamination. The dimension is p = 20 and sample size is n = 10p.
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Table 2.2: Maximum average LRT distances under casewise contamination. The
sample size is n = 10p.

Corr. p ε MCD MVE-S Rocke HSD Snip DMCDSc UF- UBF-
GSE GSE

Random 5 0.10 1.5 0.9 3.5 1.3 10.6 1.9 2.4 3.8
0.20 18.3 6.4 27.9 5.2 33.3 16.5 20.0 31.3

10 0.10 7.7 4.2 8.9 3.9 32.7 5.1 9.9 18.5
0.20 113.7 38.2 4.3 21.9 62.3 61.2 80.7 97.2

15 0.10 31.2 7.4 5.3 8.2 48.5 16.4 19.0 32.5
0.20 145.6 102.7 4.4 49.1 85.4 81.4 116.2 135.3

20 0.10 64.8 10.4 5.0 13.5 61.3 37.8 30.3 52.4
0.20 174.6 142.6 4.7 92.4 107.4 99.9 148.4 175.3

AR1(0.9) 5 0.10 1.3 1.0 1.8 0.9 7.0 1.4 1.2 1.5
0.20 12.2 6.3 32.4 2.5 18.3 5.2 7.2 7.8

10 0.10 5.8 3.5 4.0 1.7 20.2 2.9 3.8 4.4
0.20 101.6 37.8 15.7 8.8 45.6 31.9 52.5 52.3

15 0.10 21.9 6.9 3.6 3.0 29.9 6.1 7.3 8.0
0.20 133.8 99.6 14.9 17.3 68.3 58.7 100.7 102.5

20 0.10 61.2 9.6 3.2 4.4 42.9 15.7 13.5 15.4
0.20 165.6 128.9 16.0 32.7 85.6 85.9 129.9 132.9

is not sufficient enough to filter moderate cellwise outliers (e.g., k = 2). However,

UBF-GSE outperforms UF-GSE when correlations are high because the bivariate

filter can filter moderate cellwise outliers. See, for example, Figure 2.1 that shows

the average LRT distance behaviors for different contamination sizes, k, for p = 20.

Table 2.2 shows the maximum average LRT distances among the considered con-

tamination sizes for the casewise contamination setting for n = 10p. UF-GSE and

UBF-GSE have an acceptable performance for moderate dimensions (e.g., p ≤ 10),

comparable with that of MVE-S, but neither UF-GSE, nor UBF-GSE, nor MVE-S

perform very well for higher dimensions (e.g., p ≥ 15) and unsatisfactorily for higher

contamination level (see Section 2.6 for further discussion).

Table 2.3 shows the finite sample relative efficiency under clean samples with

AR1(0.9) correlation for the considered robust estimates, taking the MLE average

LRT distances as the baseline. The results for the random correlation are very

similar and not shown here. UF-GSE and UBF-GSE, like MVE-S, shows increasing
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2.5. Real data example: geochemical data revisit

Table 2.3: Finite sample efficiency for first order autoregressive correlations, AR1(ρ),
with ρ = 0.9. The sample size is n = 10p.

p MCD MVE-S Rocke HSD Snip DMCDSc UF- UBF-
GSE GSE

5 0.40 0.74 0.45 0.40 0.15 0.34 0.63 0.52
10 0.51 0.90 0.50 0.70 0.26 0.43 0.82 0.71
15 0.62 0.94 0.54 0.85 0.13 0.50 0.87 0.79
20 0.66 0.96 0.56 0.90 0.14 0.55 0.91 0.85

Table 2.4: Average “CPU time” – in seconds of a 2.8 GHz Intel Xeon – evaluated
using the R command, system.time. The sample size is n = 10p.

p UF- UBF-
GSE GSE

10 0.7 1.1
20 7.7 11.0
30 34.5 45.6
40 120.5 144.9
50 278.4 338.0

efficiency when increasing p. Results for larger sample sizes, not reported here, show

an identical pattern, except for MCD which efficiency increases with the sample size.

The computing times for our estimator for various dimensions and n = 10p are

averaged over all replications and are shown in Table 2.4. Comparatively longer

computing times for the two-step procedures arise for higher dimensions because

GSE becomes more computationally intensive for higher dimensions and for higher

fractions of cases affected by filtered cells (see Section 2.6 for further discussion).

2.5 Real data example: geochemical data revisit

In Chapter 1, we presented the geochemical data from Smith et al. (1984) and high-

lighted the presence of cellwise and casewise outliers in these data. We showed there

that traditional robust procedures provide poor estimates and fail to identify real

outliers. In this section, we revisit this example. Our purpose here is twofold: first,

to show that the two-step procedures can provide good estimates and identify outliers
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Figure 2.2: Squared Mahalanobis distances of the samples in the geochemical data
based on different estimates. Large distances are truncated for better visualization.
Samples that contain one or more flagged components (large cellwise outliers) are in
green.

that were missed by traditional procedures; and second, to show that the bivariate

filter version (UBF-GSE) can also identify moderate cellwise outliers, and as such,

yield further improved results.

As mentioned in Chapter 1, the geochemical data give the content measure for

10 chemical compounds in 53 samples of rocks. A log transformation was applied to

the data to make them more symmetric. From the quantile–quantile plots the data

appear fairly normal for the most part, but outliers are observed.

We now compute the UF-GSE and the UBF-GSE estimates for these data, as well
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Figure 2.3: Univariate scatterplots of the 10 components in the geochemical data.
Each component is standardized by its median and MAD. Points are randomly jit-
tered to avoid much overlapping. The points flagged by the univariate filter are in
blue, and those additionally flagged by the bivariate filter are in orange.

as the Rocke-S estimates for comparison. Figure 2.2 shows the squared Mahalanobis

distances (MD) of the 53 samples based on the different estimates. Samples that

contain at least one component that lies more than three MAD away from the median

(i.e., the large cellwise outliers) are shown in green in the figure. There are in total

41.5% of samples flagged as such. Notice that all the cases with large cellwise outliers

are also flagged MD outliers by UBF-GSE and UF-GSE. But this is not the case for

Rocke-S. This is so because UBF-GSE and UF-GSE makes a more efficient use of the

clean part of cases affected by cellwise outliers. Notice that Rocke-S must assign a

final weight to each case by looking at the whole case, even in situations when there

is only a single outlying component. As a result, for these data, Rocke-S fails to

provide a good fit and produces unreliable Mahalanobis distances and final weights.

In addition to the samples with large cellwise outliers, eight new cases (samples 1,

2, 10, 16, 17, 25, 35, 39) are flagged as outliers by UBF-GSE, with estimated full

Mahalanobis distances exceeding the 99.99% chi-square cutoff. UF-GSE also flags

most of these cases, but misses samples 2 and 17.

UF-GSE and UBF-GSE are both equally resistant against large cellwise outliers

but UF-GSE is less resistant against moderate cellwise outliers, which are present

in these data. Figure 2.3 depicts univariate scatterplots for each component (stan-
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Figure 2.4: Pairwise scatterplots of the geochemical data for V 2 versus V 8, V 2 versus
V 3, and V 3 versus V 9. Points with components flagged by the univariate filter are
in blue. Points with components additionally flagged by the bivariate filter are in
orange.

dardized and with random jitter) in the data. The points flagged by the univariate

filter are in blue, and those flagged by the bivariate filter are in orange. Addition-

ally, in Figure 2.4 bivariate scatterplots are shown for V 2 versus V 8, V 2 versus V 3,

and V 3 versus V 9, where some correlations are observed. From these figures, we

see that the bivariate filter has identified some additional cellwise outliers that are

not-so-large marginally but become more visible when viewed together with other

correlated components (the orange points in Figure 2.3). These moderate cellwise

outliers account for 5.1% of the cells in the dataset and propagate to 28.3% of the

cases. The final median weight assigned to these cases by UF-GSE and UBF-GSE

are 0.36 and 0.70, respectively. By filtering the mild outliers UBF-GSE is able to

make a more efficient use of the clean components in 28.3% of the cases.

2.6 Discussion

In the results section, we have found that the two-step approach performs overall the

best under ICM, but not so well under THCM for p > 10. The computing times of

the two-step procedures for higher dimensions are rather long, making the procedures

less appealing for real time use. These points were also raised by the discussants in
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2.6. Discussion

the published paper connected with this chapter, along with a remark on handling

large and flat data sets. For the rest of the section, we discuss these main points

individually.

2.6.1 Controlling the robustness and efficiency for large p

Maronna (2015) made a thoughtful remark regarding the loss of robustness of UF-

GSE–and in general, S-estimators with a fixed loss function ρ–when p is large. The

Gaussian efficiency of UF-GSE, as well as UBF-GSE, systematically increases to

one as p increases, but this gain in efficiency comes at the expense of a decrease in

robustness. Hence, we agree that for large p we need to modify the GSE step to

avoid the lack of robustness of S-estimators with fixed loss function. A possibility

could be to use a well-calibrated MM-estimator of multivariate location and scatter

(Tatsuoka & Tyler, 2000) after adapting it for handling data with missing values. The

resulting generalized MM-estimator would then gain robustness for p large. Another

possibility could be to replace the bisquare rho function in GSE by a Rocke-type loss

function, which changes with dimension in order to preserve the robustness of the

estimator (Rocke, 1996). A comparison of MM-estimators and Rocke type estimators

with S-estimators based on a bisquare rho-function for complete data and casewise

contamination can be found in Maronna & Yohai (2015). Further work on this topic

can be found in Chapter 3.

2.6.2 Computational issue

Several authors (Croux & Öllerer, 2015; Maronna, 2015; Rousseeuw & Van den Boss-

che, 2015; Van Aelst, 2015; Welsch, 2015) commented on the high computational cost

of the two-step procedures and the need for faster alternatives.

The first step of the two-step procedure (filter) is fast, but the second step is slow

due to the computation of the generalized S-estimator (GSE) (Danilov et al., 2012).

We notice that GSE first resamples the filtered data to compute an initial estimate

and then iterates until convergence a sequence of robust imputation and estimation

steps. These iterations can be computationally intensive and time consuming when a
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large fraction of the data has been filtered. However, the main computational burden

in GSE comes from the computation of the initial robust estimator (extended min-

imum volume ellipsoid, EMVE) which is needed to achieve high robustness against

casewise outliers.

EMVE introduced by Danilov et al. (2012) is a generalized version for incom-

plete data of the MVE (Rousseeuw, 1985). The computation of EMVE consists of

a combination of subsampling and concentration steps. Once the estimators of loca-

tion and scatter for a given subsample are obtained, the concentration step consists

of computing the Gaussian MLE via the classical EM algorithm on the half of the

observations with the smallest Mahalanobis distances. The concentration steps are

time consuming, especially when there is a large number of filtered cells. This prob-

lem is aggravated by the required large number of subsamples, especially when p is

large. Therefore, there is a need for finding a fast and fully robust initial estimate

for GSE. Further investigation on choices of initial estimator are done in Chapter 3.

2.6.3 Remarks on handling large and flat data sets

Croux & Öllerer (2015) gave an extensive and detailed discussion of the performance

of UF-GSE in the case of large and flat data sets (large p and relatively small n).

Our numerical experiments confirm that the two-step procedure does not handle

well large and flat data sets (e.g., n < 5p). In fact, when n ≤ 2p, the generalized

S-estimator fails to exist, likewise S-estimator and all classical robust estimators with

breakdown point 1/2. When much data are filtered and the fraction of complete data

is small, the iterations in GSE may fail to converge. In this case, GSE produces a

nearly singular covariance matrix. This situation is more likely to occur for datasets

with relatively small n compared to p. Danilov et al. (2012) provided a sufficient

condition for the existence of GSE: the proportion of complete observations in general

position to be larger than 1/2 + (p+ 1)/n. Numerical results have shown that GSE

performs well for some smaller proportions of complete observations. However, no

theoretical results are available for these cases.

To overcome the lack of convergence of the two-step procedure for large and
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flat data sets, we may partially impute the filtered cells to ensure a fraction 1/2 +

(p+ 1)/n of complete observations. More precisely, the procedure is to first fil-

ter outliers, then randomly select observations and impute the filtered cells using

coordinate-wise medians, and finally estimate the location and scatter using GSE.

Although this procedure is rather ad hoc, our initial numerical experiments suggests

that it may work for n ≥ 5p.

2.7 Conclusions

Affine equivariance, a proven asset for achieving THCM robustness, becomes a hin-

drance under ICM because of outliers propagation.

We advocate the practical and theoretical importance of ICM and point to the

perils and drawbacks of relying solely on the THCM paradigm. ICM promotes a

less aggressive cellwise down-weighting of outliers and becomes an essential tool for

modeling contamination in moderate and high dimensional data.

We introduce a non-affine equivariant, two-step procedure to achieve robustness

under ICM and THCM. The first step applies a filter to the data, aim to reduce the

impact of outliers propagation and to overcome the curse of dimensionality posed

by ICM. The second step then applies the generalized S-estimator of Danilov et al.

(2012) to the incomplete data from the first step, aiming to achieve robustness under

THCM. A univariate filtering and a combination of univariate and bivariate filtering

are proposed in the first step, resulting in two versions of the two-step procedure:

UF-GSE and UBF-GSE.

The two-step procedures (UF-GSE and UBF-GSE) exhibits high robustness against

large cellwise outliers from ICM, but UF-GSE is not resistant against moderate cell-

wise outliers. In this case, UBF-GSE exhibits higher robustness than UF-GSE when

the correlations between the uncontaminated variables are high. However, this gain

in robustness comes at the expense of a decrease in robustness under THCM. There-

fore, we recommend UBF-GSE when the correlations are seemingly high, but UF-

GSE otherwise. Overall, the two-step procedures exhibits satisfactory robustness

against casewise outliers from THCM for low to moderate dimensional data (e.g.,
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p ≤ 10), but starts losing robustness with increasing p (e.g., p > 10).

Finally, UF-GSE and UBF-GSE both are not yet capable of handling high di-

mensional data for the following reasons. (1) The high computational cost of the

current initial estimator (EMVE) required by the procedure, making it infeasible for

clock-time computation. (2) The generalized S-estimators employed in the second

step is incapable of dealing with casewise outliers when p is large. Further work on

these two topics are presented in the next chapter.

40



Chapter 3

Robust Estimation of Multivariate

Location and Scatter in the

Presence of Cellwise and Casewise

Contamination in High Dimension

3.1 Introduction

In this chapter, we continue our work on the problem of robust estimation of multi-

variate location and scatter matrix under cellwise and casewise contamination.

Most traditional robust estimators assume that the majority of cases is totally

free of contamination. Any case that deviates from the model distribution is fully

flagged as an outlier. In situations that only a small number of components of a

case are contaminated, down-weighting the whole case may not be appropriate and

can cause a huge loss of information, especially when the dimension is large. When

data contain both cellwise and casewise outliers, the problem becomes even more

difficult. For this, we proposed two-step procedures called UF-GSE and UBF-GSE

in Chapter 2. The first step applies either a univariate filter (UF) or a combination of

univariate and bivariate filter (UBF) to the data matrix X and sets the flagged cells

to missing values, NA’s. The second step then applies the generalized S-estimator

(GSE) of Danilov et al. (2012) to this incomplete data set. The two-step procedures

are shown to be simultaneously robust against cellwise and casewise outliers for low

dimensional data (e.g., p ≤ 10). Unfortunately, the procedures do not scale well for

higher dimensions due to the high computational cost of its initial estimator EMVE.
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3.2. Generalized Rocke S-estimators

Furthermore, the procedures loses robustness against casewise outliers for higher

dimensional data (e.g., p > 10).

One goal of this chapter is to improve the robustness of UF-GSE and UBF-GSE

in high dimension. For that, we introduce a new robust estimator called General-

ized Rocke S-estimator or GRE to replace GSE in the second step. The resulting

procedures are called UF-GRE and UBF-GRE. In his discussion of Agostinelli et al.

(2015), Maronna (2015) made a thoughtful remark regarding the loss of robustness

of UF-GSE–and in general, S-estimators with a fixed loss function ρ–when p is large.

S-estimators with a fixed ρ uncontrollably gain efficiency and lose their robustness

for large p (Rocke, 1996). Such curse of dimensionality has also been confirmed for

UF-GSE and UBF-GSE, which use a GSE with a fixed ρ in its second step.

Another goal of this chapter is to reduce the high computational cost of the two-

step approach in high dimension. The first step of filtering is generally fast, but

the second step is slow due to the computation of the extended minimum volume

ellipsoid (EMVE), used as initial estimate by the generalized S-estimators. Subsam-

pling is the standard way to compute EMVE, but it requires an impractically large

number of subsamples, making the initial estimation extremely slow. To address this

computational issue, we introduce a new subsampling procedure based on clustering

for computing EMVE. The new initial estimator is called EMVE-C.

The rest of the chapter is organized as follows. In Section 3.2, we introduce the

GRE. In Section 3.3, we describe the computational issues of the proposed estimators

regarding the initial estimation and introduce EMVE-C to serve this capacity. In

Section 3.4 and 3.5, we compare the two-step approaches equipped with GSE and

GRE through an extended simulation study of that in Chapter 2, as well as through

a real data example. Finally, we conclude in Section 3.6. We also provide additional

simulation results and other supplementary material in Appendix B.

3.2 Generalized Rocke S-estimators

Rocke (1996) showed that if the weight function W (x) = ρ′(x)/x in S-estimators is

non-increasing, the efficiency of the estimators tends to one when p→∞. However,
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3.2. Generalized Rocke S-estimators

this gain in efficiency is paid for by a decrease in robustness. Not surprisingly,

the same phenomenon has been observed for generalized S-estimators in simulation

studies. Therefore, there is a need for new generalized S-estimators with controllable

efficiency/robustness trade off.

Rocke (1996) proposed that the ρ function used to compute S-estimators should

change with the dimension to prevent loss of robustness in higher dimensions. The

Rocke-ρ function is constructed based on the fact that for large p the scaled squared

Mahalanobis distances for normal data

D(XXX,µµµ,ΣΣΣ)

σ
≈ Z

p
with Z ∼ χ2

p,

and hence that D/σ are increasingly concentrated around one. So, to have a high

enough, but not too high, efficiency, we should give a high weight to the values of

D/σ near one and down-weight the cases where D/σ is far from one.

Let

γ = min

(
χ2(1− α)

p
− 1, 1

)
, (3.1)

where χ2(β) is the β-quantile of χ2
p. In this chapter, we use a conventional choice

of α = 0.05 that gives a satisfactory efficiency of the estimator, but we have also

explored smaller values of α (see Section B.1 in the Appendix). Maronna et al. (2006)

proposed a modification of the Rocke-ρ function, namely

ρ(u) =


0 for 0 ≤ u ≤ 1− γ(
u−1
4γ

)[
3−

(
u−1
γ

)2
]

+ 1
2

for 1− γ < u < 1 + γ

1 for u ≥ 1 + γ

(3.2)

which has as derivative the desired weight function that vanishes for u 6∈ [1−γ, 1+γ]

W (u) =
3

4γ

[
1−

(
u− 1

γ

)2
]
I(1− γ ≤ u ≤ 1 + γ).
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Figure 3.1: Weight functions of the Tukey bisquare and the Rocke for p = 40. Chi-
square density functions are also plotted in blue for comparison. All the functions
are scaled so that their maximum is 1 to facilitate comparison.

Figure 3.1 compares the Rocke-weight function, WRocke(z/cp), and the Tukey-

bisquare weight function, WTukey(z/cp), for p = 40, where cp as defined in (2.10).

The chi-square density function is also plotted in blue for comparison. When p is

large the tail of the Tukey-bisquare weight function greatly deviates from the tail

of the chi-square density function and inappropriately assigns high weights to large

distances. On the other hand, the Rocke-weight function can resemble the shape

of the chi-square density function and is capable of assigning low weights to large

distances.

Finally, we define the generalized Rocke S-estimators or GRE by (2.11) and (2.12)

with the ρ-function in (2.9) replaced by the modified Rocke-ρ function in (3.2). We

compared GRE with GSE via simulation and found that GRE has a substantial

better performance in dealing with casewise outliers when p is large (e.g., p > 10).

Results from this simulation study are provided in Section B.2 in the Appendix.
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3.3 Computing issues

The generalized S-estimators described above are computed via iterative reweighted

means and covariances, starting from an initial estimate. We now discuss some

computing issues associated with this iterative procedure.

3.3.1 Initial estimator

For the initial estimate, the extended minimum volume ellipsoid (EMVE) has been

used, as suggested by Danilov et al. (2012). The EMVE is computed with a large

number of subsamples (> 500) to increase the chance that at least one clean sub-

sample is obtained. Let ε be the proportion of contamination in the data and m be

the subsample size. The probability of having at least one clean subsample of size

m out of M subsamples is

q = 1−

[
1−

(
n · (1− ε)

m

)
/

(
n

m

)]M
. (3.3)

For large p, the number of subsamples M required for a large q, say q = 0.99, can

be impractically large, dramatically slowing down the computation. For example,

suppose m = p, n = 10p, and ε = 0.50. If p = 10, then M = 7758; if p = 30, then

M = 2.48× 1010; and if p = 50, then M = 4.15× 1016. Therefore, there is a need for

a faster and more reliable starting point for large p.

Cluster-Based Subsampling

Next, we introduce a cluster-based algorithm for faster and more reliable subsam-

pling for the computation of EMVE. The EMVE computed with the cluster-based

subsampling is called called EMVE-C throughout the chapter.

High-dimensional data have several interesting geometrical properties as described

in Hall et al. (2005). One such property that motivated the Rocke-ρ function, as well

as the following algorithm, is that for large p the p-variate standard normal distri-

bution Np(000, III) is concentrated “near” the spherical shell with radius
√
p. So, if
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outliers have a slightly different covariance structure from clean data, they would

appear geometrically different. Therefore, we could apply a clustering algorithm to

first separate the outliers from the clean data. Subsampling from a big cluster, which

in principle is composed of mostly clean cases, should be more reliable and require

fewer number of subsamples.

Given a data matrix X, let U be the auxiliary matrix of zeros and ones, with zeros

indicating the missing entries in X. The following steps describe our clustering-based

subsampling:

1. Standardize the data X with some initial location and dispersion estimator T0j

and S0j. Common choices for T0j and S0j that are also adopted in this chapter

are the coordinate-wise median and median absolute deviance (MAD). Denote

the standardized data by Z = (ZZZ1, . . . ,ZZZn)t, where ZZZi = (Zi1, . . . , Zip)
t and

Zij = (Xij − T0j)/S0j.

2. Compute a simple robust correlation matrix estimate RRR = (Rjk). Here, we use

the Gnanadesikan-Kettenring estimator (Gnanadesikan & Kettenring, 1972),

where

Rij =
1

4
(S2

0jk+ − S2
0jk−),

and where S0jk+ is the dispersion estimate for {Zij +Zik|Uij = 1, Uik = 1} and

S0jk− the estimate for {Zij − Zik|Uij = 1, Uik = 1}. We use Qn (Rousseeuw &

Croux, 1993) for the dispersion estimate.

3. Compute the eigenvalues λ1 ≥ · · · ≥ λp and eigenvectors eee1, . . . , eeep of the

correlation matrix estimate

RRR = EEEΛΛΛEEEt,

where ΛΛΛ = diag(λ1, . . . , λp) and EEE = (eee1, . . . , eeep). Let p+ be the largest di-

mension such that λj > 0 for j = 1, . . . , p+. Retain only the eigenvectors

EEE0 = (eee1, . . . , eeep+) with a positive eigenvalue.

4. Complete the standardized data Z by replacing each missing entry, as indicated

by U, by zero. Then, project the data onto the basis eigenvectors Z̃ZZ = ZZZEEE0,

and then standardize the columns of Z̃ZZ, or so called principal components,

46



3.3. Computing issues

using coordinate-wise median and MAD of Z̃ZZ.

5. Search for a “clean” cluster C in the standardized Z̃ZZ using a hierarchical cluster-

ing framework by doing the following. First, compute the dissimilarity matrix

for the principal components using the Euclidean metric. Then, apply classical

hierarchical clustering (with any linkage of choice). A common choice is the

Ward’s linkage, which is adopted in this chapter. Finally, define the “clean”

cluster by the smallest sub-cluster C with a size at least n/2. This can be

obtained by cutting the clustering tree at various heights from the top until all

the clusters have size less than n/2.

6. Take a subsample of size n0 from C.

With good clustering results, we can draw fewer subsamples, and equally im-

portant, we can use a larger subsample size. The current default choices in GSE

are M = 500 subsamples of size n0 = (p + 1)/(1 − αmis) as suggested in Danilov

et al. (2012), where αmis is the fraction of missing data (αmis = number of missing

entries /(np)). For the new clustering-based subsampling, we choose M = 50 and

n0 = 2(p + 1)/(1 − αmis) in this chapter, but other choices of M and n0 can be

considered. However, we found that choosing a too large subsample size could result

in contaminated subsamples with outliers that went undetected.

In principle, this procedure could be time-consuming because the number of op-

erations required by hierarchical clustering is of order n3. As an alternative, one may

bypass the hierarchical clustering step and sample directly from the data points with

the smallest Euclidean distances to the origin calculated from Z̃ZZ. This is because the

Euclidean distances, in principle, should approximate the Mahalanobis distances to

the mean of the original data. However, our simulations show that the hierarchical

clustering step is essential for the excellent performance of the estimates, and that

this step entails only a small increase in computational time, even for n = 1000. For

much larger n, when computational time becomes a serious concern, we can always

perform the clustering procedure on a randomly chosen smaller fraction of the data

to keep the computational speed, which should be sufficient for finding a reliable

initial estimate.
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3.3.2 Another computing issue

There is no formal proof that the recursive algorithm decreases the objective function

at each iteration for the case of generalized S-estimators with a monotonic weight

function (Danilov et al., 2012). This also the case for generalized S-estimators with a

non-monotonic weight function. For Rocke estimators with complete data, Maronna

et al. (2006, see Section 9.6.3) described an algorithm that ensures attaining a local

minimum. We have adapted this algorithm for the generalized counterparts. Al-

though we cannot provide a formal proof, we have seen so far in our experiments

that the descending property of the recursive algorithms always holds.

3.4 Two-step estimation and extended

simulations

The proposed two-step approach for global–robust estimation under cellwise and

casewise contamination is to first flag outlying cells in the data table and to replace

them by NA’s using either univariate filtering only (shortened to UF) or univariate

and bivariate filtering (shortened to UBF). In the second step, the generalized S-

estimator is then applied to this incomplete data. Our new version of this is to replace

GSE in the second step by GRE-C (i.e., GRE starting from EMVE-C). We call the

new two-step procedure UF-GRE-C and UBF-GRE-C. The new procedures with

GRE in the second step are available as the TSGS function, option method="rocke",

in the R package GSE (Leung et al., 2015).

We now conduct the same simulation study in Chapter 2 comparing UF-GRE-

C and UBF-GRE-C with UF-GSE and UBF-GSE, as well as several other robust

estimators that were shown to be as competitive under cellwise (Snip) or casewise

contamination (Rocke and HSD) or both (DMCDSc). In addition, we consider higher

dimensions, p = 30, 40, 50. To show the influence of cellwise outliers propagation

on casewise robust estimates in higher dimensions, we also consider three levels of

cellwise contamination, ε = 0.02, 0.05, 0.10. Finally, the number of replications in

this simulation study is N = 500.
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Table 3.1: Maximum average LRT distances under cellwise contamination. The
sample size is n = 10p.

Corr. p ε Rocke HSD Snip DMCDSc UF- UBF- UF- UBF-
GSE GSE GRE-C GRE-C

Random 10 0.02 1.2 2.3 6.9 1.6 1.2 1.4 1.3 1.4
0.05 3.6 11.2 7.5 3.2 4.5 4.4 2.2 2.5
0.10 256.0 59.9 10.8 14.7 16.2 15.9 11.8 11.5

20 0.02 2.7 10.6 13.9 2.6 4.0 4.4 2.9 3.0
0.05 187.2 57.1 15.5 9.3 11.0 11.1 8.0 8.2
0.10 725.8 251.5 18.4 24.7 24.0 24.1 21.5 21.6

30 0.02 23.1 22.6 18.5 4.4 5.8 6.3 5.4 5.9
0.05 380.5 123.1 20.8 13.7 14.2 14.8 12.3 13.4
0.10 938.5 503.0 23.6 33.2 30.3 30.4 28.2 28.5

40 0.02 121.3 38.9 22.6 6.0 7.3 8.0 9.4 10.9
0.05 584.1 212.4 25.8 17.9 16.6 17.4 18.4 19.9
0.10 1104.3 744.2 30.0 39.5 35.3 35.3 37.5 37.7

50 0.02 192.8 58.7 27.1 8.1 9.1 10.0 12.5 12.9
0.05 618.1 298.7 29.7 20.7 19.6 20.6 22.7 23.6
0.10 1251.8 1002.2 32.0 46.7 43.1 43.2 45.7 46.3

AR1(0.9) 10 0.02 1.2 0.9 4.9 1.5 0.9 0.9 1.2 1.3
0.05 2.6 2.8 7.0 3.1 2.1 1.1 1.7 1.4
0.10 627.4 20.3 13.8 13.3 10.9 2.6 10.4 2.5

20 0.02 2.5 3.9 10.5 2.6 2.1 1.5 2.2 2.1
0.05 690.6 31.3 14.3 12.3 9.3 2.7 7.6 2.8
0.10 1679.3 273.5 20.4 36.4 34.1 14.4 32.1 8.8

30 0.02 71.1 10.7 13.9 5.4 4.0 2.3 3.9 3.4
0.05 1190.1 103.3 19.8 22.6 20.3 6.2 18.1 5.5
0.10 3440.3 916.9 29.0 63.4 59.7 40.5 56.0 27.7

40 0.02 222.1 22.7 16.2 8.9 6.7 3.5 6.5 5.7
0.05 1785.5 259.9 23.7 34.8 31.4 14.0 29.7 12.4
0.10 5712.8 1966.5 35.9 90.4 84.9 74.4 81.5 52.9

50 0.02 628.1 43.3 18.9 12.8 9.7 4.9 9.7 6.4
0.05 4271.7 534.5 28.9 46.5 42.8 22.6 40.8 20.4
0.10 4129.1 2998.6 44.7 119.5 111.8 104.6 106.3 75.3
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Table 3.2: Maximum average LRT distances under casewise contamination. The
sample size is n = 10p.

Corr. p ε Rocke HSD Snip DMCDSc UF- UBF- UF- UBF-
GSE GSE GRE-C GRE-C

Random 10 0.10 2.8 3.9 44.4 4.9 9.7 18.5 11.0 19.1
0.20 4.7 21.8 110.3 123.6 91.8 146.8 30.1 53.0

20 0.10 3.4 13.4 76.9 37.8 29.7 50.1 11.5 20.9
0.20 5.6 95.9 166.5 187.6 291.8 311.4 22.0 49.3

30 0.10 4.3 26.1 82.3 118.6 75.3 101.3 12.8 21.8
0.20 7.4 297.7 220.9 268.4 415.5 445.2 21.7 47.6

40 0.10 5.2 46.3 101.6 130.6 140.2 168.8 18.6 29.5
0.20 9.1 547.4 186.2 340.1 534.1 579.9 22.7 52.3

50 0.10 5.9 80.0 121.9 139.5 258.1 228.8 27.5 43.4
0.20 10.0 682.4 224.3 407.7 650.1 710.9 24.2 64.8

AR1(0.9) 10 0.10 2.8 1.7 20.2 2.9 3.7 4.3 3.1 3.6
0.20 4.8 8.7 49.7 29.7 50.8 50.1 7.2 8.4

20 0.10 2.8 4.7 43.8 14.8 12.9 14.9 3.5 4.3
0.20 5.3 35.3 113.0 87.6 260.5 193.9 7.3 10.5

30 0.10 3.4 8.9 66.1 32.2 31.3 37.7 4.1 5.1
0.20 8.2 155.5 144.8 122.9 372.7 365.1 8.4 13.3

40 0.10 4.3 15.6 83.7 49.2 69.1 75.5 6.4 7.3
0.20 9.2 430.3 151.9 209.3 477.6 479.7 10.0 17.4

50 0.10 5.1 26.5 103.3 64.4 148.2 160.1 7.6 8.1
0.20 11.1 538.3 188.5 276.0 581.6 585.0 11.0 21.2

We report the results for n = 10p only since the results for n = 5p are similar. Ta-

ble 3.1 and Table 3.2 show the maximum average LRT distances under cellwise and

casewise contamination, respectively. In general, UF-GSE and UBF-GSE perform

similarly as UF-GRE-C and UBF-GRE-C, respectively, under cellwise contamina-

tion. However, UF-GRE-C and UBF-GRE-C substantially outperforms UF-GSE

and UBF-GSE under casewise contamination. The Rocke ρ function used in GRE in

the second step is capable of giving smaller weights to points that are at moderate-to-

large distances from the main mass of points; see, for example, Figure 3.2 that shows

the average LRT distance behaviors of UBF-GSE and UBF-GRE-C for dimension

p = 30 and AR1(0.9) correlated data under 10% casewise contamination.

Table 3.3 shows the finite sample relative efficiency under clean samples with
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3.4. Two-step estimation and extended simulations
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Figure 3.2: Average LRT distance behaviors of UBF-GSE and UBF-GRE-C for
random correlations under 10% casewise contamination. The dimension is p = 30
and the sample size is n = 10p.

Table 3.3: Finite sample efficiency for random correlations. The sample size is
n = 10p.

p Rocke HSD Snip DMCDSc UF- UBF- UF- UBF-
GSE GSE GRE-C GRE-C

10 0.50 0.73 0.12 0.41 0.75 0.66 0.53 0.48
20 0.57 0.92 0.09 0.56 0.83 0.73 0.59 0.55
30 0.58 0.93 0.10 0.63 0.87 0.79 0.49 0.44
40 0.60 0.94 0.10 0.68 0.89 0.83 0.39 0.36
50 0.60 0.94 0.11 0.70 0.91 0.84 0.48 0.49

random correlation for the considered robust estimates, taking the MLE average

LRT distances as the baseline. The results for the AR1(0.9) correlation are very

similar and not shown here. As expected, UF-GSE and UBF-GSE show an increasing

efficiency as p increases while UF-GRE-C and UBF-GRE-C have lower efficiency.

Improvements can be achieved by using smaller α in the Rocke ρ function with some

trade-off in robustness. Results from this experiment are provided in Section B.1 in

the Appendix.

Finally, we compare the computing times of the two-step procedures. Table

51



3.5. Real data example: small-cap stock returns data

Table 3.4: Average “CPU time” – in seconds of a 2.8 GHz Intel Xeon – evaluated
using the R command, system.time. The sample size is n = 10p.

p UF- UBF- UF- UBF-
GSE GSE GRE-C GRE-C

10 0.7 1.1 0.1 0.2
20 7.7 11.0 1.2 1.7
30 34.5 45.6 5.4 6.3
40 120.5 144.9 14.5 16.9
50 278.4 338.0 33.0 37.0

3.4 shows the average computing times over all contamination settings for various

dimensions and for n = 10p. The computing times for the two-step procedure have

been substantially improved with the implementation of the faster initial estimator,

EMVE-C.

3.5 Real data example: small-cap stock returns

data

In this section, we consider the weekly returns from 01/08/2008 to 12/28/2010 (n =

730 weeks) for a portfolio of 20 small-cap stocks (p = 20) from Martin (2013).

The data set is different from the micro-cap stock returns data set in Chapter 1. It

contains more correlated stock returns and contains relatively more moderate cellwise

outliers as we will show next.

The purpose of this example is fourfold: first, to show that the classical MLE

and traditional robust procedures perform poorly on data affected by propagation

of cellwise outliers; second, to show that the two-step procedures can provide better

estimates by filtering large outliers; third, that the bivariate-filter version of the two-

step procedure provides even better estimates by flagging additional moderate cell-

wise outliers; and fourth, that UBF-GRE-C can more effectively down-weight some

high-dimensional casewise outliers than UBF-GSE, for this 20-dimensional dataset.

Therefore, UBF-GRE-C provides the best results for the dataset.
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Figure 3.3: Normal quantile–quantile plots of weekly returns. Weekly returns that
are three MAD away from the coordinatewise-median are shown in green.

Figure 3.3 shows the normal QQ-plots of the 20 small-cap stocks returns in the

portfolio. The bulk of the returns in all stocks seem roughly normal, but large

outliers are clearly present for most of these stocks. Stocks with returns lying more

than three mads away from the coordinatewise-median (i.e., the large outliers) are

shown in green in the figure. There is a total of 4.8% large cellwise outliers that

propagate to 40.1% of the cases. Over 75% of these weeks correspond to the 2008

financial crisis.

First, we compute the MLE and the Rocke-S estimates, as well as the UF-GSE

and the UBF-GSE estimates that were proposed in Chapter 2, for these data. Figure

3.4 shows the squared Mahalanobis distances of the 157 weekly observations based on

the estimates. Weeks that contain large cellwise outliers (asset returns with values

three MAD away from the coordinatewise-median) are in green. From the figure,

we see that the MLE and the Rocke-S estimates have failed to identify many of
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Figure 3.4: Squared Mahalanobis distances of the weekly observations in the small-
cap asset returns data based on the MLE, the Rocke, the UF-GSE, and the UBF-GSE
estimates. Weeks that contain one or more asset returns with values three MAD away
from the coordinatewise-median are in green.

those weeks as MD outliers (i.e., failed to flag these weeks as having estimated full

Mahalanobis distance exceeding the 99.99% quantile chi-squared distribution with

20 degrees of freedom). The MLE misses all but seven of the 59 green cases. The

Rocke-S estimate does slightly better but still misses one third of the green cases.

This is because it is severely affected by the large cellwise outliers that propagate to

40.1% of the cases. The UF-GSE estimate also does a relatively poor job. On the

other hand, the UBF-GSE estimate successfully flaggs all but five of the 59 green

cases.
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Figure 3.5: Pairwise scatterplots of the asset returns data for WTS versus HTLD,
HTLD versus WSBC, and WSBC versus SUR. Points with components flagged by
the univariate filter are in blue. Points with components additionally flagged by the
bivariate filter are in orange.

Figure 3.5 shows the pairwise scatterplots for WTS versus HTLD, HTLD versus

WSBC, and WSBC versus SUR with the results from the univariate and the bivariate

filter. The points flagged by the univariate filter are in blue, and those flagged by

the bivariate filter are in orange. We see that the bivariate filter has identified some

additional cellwise outliers that are not-so-large marginally but become more visible

when viewed together with other correlated components. These moderate cellwise

outliers account for 6.9% of the cells in the data and propagate to 56.7% of the cases.

The final median weight assigned to these cases by UF-GSE and UBF-GSE are 0.50

and 0.65, respectively. By filtering the moderate cellwise outliers, UBF-GSE makes

a more effective use of the clean part of these partly contaminated data points (i.e.,

the 56.7% of the cases).

Figure 3.6 shows the squared Mahalanobis distances produced by UBF-GRE-C

and UBF-GSE, for comparison. Here, we see that UBF-GRE-C has missed only 3

of the 59 green cases, while UBF-GSE has missed 6 of the 59. UBF-GRE-C has also

clearly flagged weeks 36, 59, and 66 (with final weights 0.6, 0.0, and 0.0, respectively)

as casewise outliers. In contrast, UBF-GSE gives final weights 0.8, 0.5, and 0.5 to

these cases. As shown in the simulations, UBF-GSE has difficulty down-weighting

some high dimensional outlying cases on datasets of high dimension.
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Figure 3.6: Squared Mahalanobis distances of the weekly observations in the small-
cap asset returns data based on the UBF-GSE and the UBF-GRE-C estimates.
Weeks that contain one or more asset returns with values three MAD away from
the coordinatewise-median are in green.

In this example, UBF-GRE-C makes the most effective use of the clean part of the

data and has the best outlier detecting performance among the considered estimates.

3.6 Conclusions

In this chapter, we overcome two serious limitations of GSE and UF-/UBF-GSE in

higher dimensions (p ≥ 20). First, these estimators show an incontrollable increase in

Gaussian efficiency, which is paid off by a serious decrease in robustness, for larger p.

Second, the initial estimator (extended minimum volume ellipsoids, EMVE) used by

GSE and UF-/UBF-GSE does not scale well in higher dimensions because it requires

an impractically large number of subsamples to achieve a high breakdown point in

larger dimensions.

To achieve a controllable efficiency/robustness trade off in higher dimensions, we

equip GSE and UF-/UBF-GSE with a Rocke type loss function. To overcome the
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high computational cost of the EMVE, we introduce a clustering-based subsampling

procedure. We show via simulation studies that, in higher dimensions, estimators

using the proposed subsampling with only 50 subsamples can achieve equivalent or

even better performance than the usual uniform subsampling with 500 subsamples.
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Chapter 4

Robust Regression Estimation and

Inference in the Presence of

Cellwise and Casewise

Contamination

4.1 Introduction

In this chapter, we study another classic but fundamental problem, linear regression

estimation and inference, under the same contamination paradigm as in the previous

chapters.

The vast majority of procedures for robust linear regression are based on the clas-

sical Tukey–Huber contamination model (THCM) in which a relatively small fraction

of cases may be contaminated. High breakdown point affine equivariant estimators

such as least trimmed squares (Rousseeuw, 1984), S-regression (Rousseeuw & Yohai,

1984) and MM-regression (Yohai, 1985) proceed by down-weighting outlying cases,

which makes sense and works well in practice, under THCM. However, in some appli-

cations, the contamination mechanism may be different in that random cells in a data

table (with rows as cases and columns as variables) are independently contaminated.

In this paradigm, a small fraction of random cellwise outliers could propagate to a

relatively large fraction of cases, breaking down classical high breakdown point affine

equivariant estimators (see Alqallaf et al., 2009). Since cellwise and casewise outliers

may co-exist in some applications, our goal in this chapter is to develop a method

for robust regression estimation and inference that can deal with both cellwise and
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casewise outliers.

There is a vast literature on robust regression for casewise outliers, but only

a scant literature for cellwise outliers and none for both types of outliers in the

regression context. Recently, Öllerer et al. (2015) combined the ideas of coordinate

descent algorithm (called the shooting algorithm in Fu, 1998) and simple S-regression

(Rousseeuw & Yohai, 1984) to propose an estimator called the shooting S. The

shooting S-estimator assigns individual weight to each cell in the data table to handle

cellwise outliers in the regression context. The shooting S-estimator is robust against

cellwise outliers and vertical response outliers.

In this chapter, we propose a three-step regression estimator which combines

the ideas of filtering cellwise outliers and robust regression via covariance matrix

estimate (Maronna & Morgenthaler, 1986; Croux et al., 2003), namely 3S-regression

estimator. By filtering, here we mean detecting outliers and replacing them by

missing values as defined in Chapter 2. Our estimator proceeds as follows: first,

it uses a univariate filter to detect and eliminate extreme cellwise outliers in order

to control the effect of outliers propagation; second, it applies a robust estimator of

multivariate location and scatter to the filtered data to down-weight casewise outliers;

third, it computes robust regression coefficients from the estimates obtained in the

second step. With the choice of a filter that has simultaneous good sensitivity (is

capable of filtering outliers) and good specificity (can preserve all or most of the clean

data), the resulting estimator can be resilient to both cellwise and casewise outliers;

furthermore, it attains consistency and asymptotic normality for clean data. In

this regards, we propose a new filter that is consistent under some assumptions on

the tails of the covariates distributions. By consistent filter, we mean a filter that

asymptotically can preserve all the data when they are clean.

The rest of the chapter is organized as follows. In Section 4.2, we introduce a new

family of consistent filters. In Section 4.3, we introduce 3S-regression. In Section 4.4,

we show some asymptotic properties of 3S-regression. In Section 4.5, we evaluate

the performance of 3S-regression in an extensive simulation study. In Section 4.6,

we analyze two real data sets with cellwise and casewise outliers. In Section 4.7,

we conclude with some remarks. Finally, we also provide all the proofs, additional
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simulation results, and other related material in Appendix C.

4.2 Consistent filter for general continuous data

Filtering is a method for preprocessing data in order to control the effect of potential

cellwise outliers. In this chapter, we pre-process the data by flagging outliers and

replacing them by missing values, NAs, similar to what was proposed in Chapter 2,

as well as in other applications (see e.g., Danilov, 2010; Farcomeni, 2014b,c).

Consistent filters are ones that do not filter good data points asymptotically.

Gervini & Yohai (2002) introduced a consistent filter for normal residuals in re-

gression estimation to achieve a fully-efficient robust regression estimator. Consis-

tent filters are desirable because their good asymptotic properties are shared by the

following-up estimation procedure. In this chapter, we introduce a new family of

consistent filters for univariate data that are sufficiently general in regression appli-

cation.

Consider a random variable X with a continuous distribution function G(x). We

define the scaled upper and lower tail distributions of G(x) as follows:

F u(t) = PG

(
X − ηu

med(X − ηu|X > ηu)
≤ t|X > ηu

)
and

F l(t) = PG

(
ηl −X

med(ηl −X|X < ηl)
≤ t|X < ηl

)
.

(4.1)

Here, med stands for median, ηu = G−1(1 − α), ηl = G−1(α), and 0 < α < 0.5.

We use α = 0.20, but other choices could be considered. To simplify the notation,

we set su = med(X − ηu|X > ηu) and sl = med(ηl − X|X < ηl). Alternatively, a

combined tails approach could be used for symmetric distributions as in Gervini &

Yohai (2002).

Let {X1, . . . , Xn} be a random sample from G, and let X(1) < X(2) < · · · < X(n)

be the corresponding order statistics. Consistent estimators for (ηu, su, ηl, sl) are

60



4.2. Consistent filter for general continuous data

given by

ηun = G−1
n (1− α), sun = med({Xi − ηun|Xi > ηun}),

ηln = G−1
n (α), sln = med({ηln −Xi|Xi < ηln}),

whereG−1
n (a) = X(dnae), 0 < a < 1, is the empirical quantile and med({Y1, . . . , Ym}) =

Y(dm/2e) is the sample median (see Lemma C.1 in Section C.4 in the Appendix for a

proof of the consistency for sun and sln). The empirical distribution functions for the

scaled upper and lower tails in (4.1) are now given by

F u
n (t) =

∑n
i=1 I(0 < (Xi − ηun)/sun ≤ t)∑n

i=1 I(Xi > ηun)
and

F l
n(t) =

∑n
i=1 I(0 < (ηln −Xi)/s

l
n ≤ t)∑n

i=1 I(Xi < ηln)
.

Upper and lower tails outliers can be flagged by comparing the empirical distri-

bution functions for the scaled tails with their expected distributions. We assume

that aside from contamination, F u and F l decay exponentially fast or faster. Let

{a}+ = max(0, a) denote the positive part of a. Then, we define the proportions of

flagged upper and lower tails outliers by

dun = sup
t≥t0
{F0(t)− F u

n (t)}+ and dln = sup
t≥t0

{
F0(t)− F l

n(t)
}+

,

where F0(t) = 1 − exp(− log(2)t) and t0 = 1/ log(2). When X − ηu|X > ηu is

exponentially distributed with a rate of λu > 0, the standardized tail (X−ηu)/su|X >

ηu have exponential distribution with a rate of log(2), leading to our choice of F0(t)

and t0. Finally, we flag bnudunc of the most extreme points in the upper tail and flag

bnldlnc of the most extreme points in the lower tail, where nu and nl are the number of

observations in {Xi|Xi > ηun} and {Xi|Xi < ηln}, respectively. Equivalently, setting

tun = min {t : F u
n (t) ≥ 1− dun} and tln = min

{
t : F l

n(t) ≥ 1− dln
}
,

we filter Xi’s with Xi < ηln − slntln or Xi > ηun + sunt
u
n.

We tried several heavy tail models for F0(t) including Pareto distributions with
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4.3. Three-step regression

different tail indexes, and we found that the chosen exponential model strikes a good

balance between the robustness and consistency of the filtering procedure.

Theorem 4.1 below shows that our filter is consistent under the following assump-

tion on the tails of G(x).

Assumption 4.1. G(x) is continuous, and F u(t) and F l(t) satisfy the following:

F0(t)− F u(t) ≤ 0, t ≥ t0 and F0(t)− F l(t) ≤ 0, t ≥ t0.

Theorem 4.1. Suppose that Assumption 4.1 holds for G(x). Then, dun → 0 a.s. and

dln → 0 a.s.

Proof: See Section C.4 in the Appendix.

In practice, the distributions F u(t) and F l(t) are unknown. To allow for some

flexibility, Assumption 4.1 does not completely specify F u(t) and F l(t), but it only

requires that their upper tails are as heavy as or lighter than the upper tail of F0(t).

4.3 Three-step regression

4.3.1 The estimator

Consider the model

Yi = α +XXX t
iβββ + εi (4.2)

for i = 1, . . . , n, where the error terms εi are i.i.d. and independent of the covariates

XXX i = (Xi1, . . . , Xip)
t. The least squares (LS) estimator (αLS,βββ

t
LS) are defined as the

minimizers of the sum squares of residuals,

(αLS,βββ
t
LS) = arg min

(α,βββt)∈R(p+1)

n∑
i=1

(Yi − α−XXX t
iβββ)2.
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4.3. Three-step regression

The solution to this problem is explicit:

βββLS = SSS−1
n,xxSSSn,xy,

αLS = mmmn,y −mmmt
n,xβββLS.

(4.3)

Here, SSSn,xx,SSSn,xy,mn,y, and mmmn,x are the components of the empirical covariance

matrix and mean:

SSSn =

(
SSSn,xx SSSn,xy

SSSn,yx Sn,yy

)
and mmmn =

(
mmmn,x

mn,y

)
(4.4)

for the joint data {ZZZ1, . . . ,ZZZn} with ZZZi = (XXX t
i, Yi)

t.

Several authors (see Maronna & Morgenthaler, 1986; Croux et al., 2003) proposed

to achieve robust regression and inference for casewise outliers by robustifying the

components in (4.3). Croux et al. (2003) replaced the empirical covariance matrix and

mean by the multivariate S-estimator (Davies, 1987). We will refer to this approach

as two-step regression (2S-regression). Croux et al. (2003) have shown that under

mild assumptions (including symmetry of εi and independence of εi and XXX i) 2S-

regression is Fisher consistent and asymptotically normal even if the S-estimators

of multivariate location and scatter themselves are not consistent. Furthermore, 2S-

regression is resilient to all kinds of outliers, that is, vertical outliers, bad leverage

points, and good leverage points. Note that down-weighting good leverage points

could lead to some efficiency loss, but it may also prevent the underestimation of the

variance of the estimator, which could be problematic for inferential purposes (see

for example, Ruppert & Simpson, 1990).

To deal with casewise and cellwise outliers, we propose to use a generalized S-

estimator that uses the consistent filter described in Section 4.2. The estimator is

similar to that in Agostinelli et al. (2015), but with the filter which is consistent for

a broader range of distributions. This generality is needed in the regression setting.
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4.3. Three-step regression

Our proposed globally robust regression estimator, called 3S-regression, is given by:

βββ3S = CCC−1
2S,xxCCC2S,xy

α3S = T2S,y − TTT t2S,mβββ3S.
(4.5)

Here, (TTT 2S,CCC2S) is a two-step generalized S-estimator computed as follows:

Step 1. Filter extreme cellwise outliers to prevent cellwise contaminated cases from

having large robust Mahalanobis distances in Step 2, and

Step 2. Down-weight casewise outliers by applying generalized S-estimator (GSE) for

multivariate location and scatter (Danilov et al., 2012) to the filtered data

from Step 1. The GSE is a generalization of the S-estimator for incomplete

data that are missing completely at random (MCAR). Since the independent

contamination model (ICM) assumes that cells are outlying completely at

random, the MCAR assumption is fulfilled if the ICM model holds.

More precisely, consider a set of covariates {XXX1, . . . ,XXXn}. We perform univariate

filtering as described in Section 4.2 on each variable, {X1j, . . . , Xnj}, j = 1, . . . , p.

Let {UUUn,1, . . . ,UUUn,n} be the resulting auxiliary vectors of zeros and ones with zeros

indicating the filtered entry in XXX i. More precisely, UUUn,i = (Un,i1, . . . , Un,ip)
t, where

Un,ij = I(ηlj,n − slj,ntlj,n ≤ Xi ≤ ηuj,n + suj,nt
u
j,n).

The goal of the filter is to prevent propagation of cellwise outliers. If the fraction

of cases with at least one flagged cell is very small (below 1%, say) then propagation of

cellwise outliers is not an issue and the filter can be safely turned off. The procedure

that turns the filter off when the fraction of affected cases is below a given small

threshold, ξ, is considerably simpler to analyze from the asymptotic point of view.

Moreover, it retains all the robustness properties derived from the filter. Let n0 =

#{1 ≤ i ≤ n : UUUn,i = 111} be the number of complete observations after filtering. We

set

UUU∗n,i = 111I

(
n− n0

n
≤ ξ

)
+UUUn,iI

(
n− n0

n
> ξ

)
, i = 1, . . . , n, (4.6)
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4.3. Three-step regression

with ξ equal to some small threshold. In this chapter, we use ξ = 0.01.

Finally, let Z = (ZZZ1, . . . ,ZZZn)t and Un = ((UUU∗n,1, . . . ,UUU
∗
n,n)t,111). The two-step

generalized S-estimator can now be defined as

TTT 2S = TTTGS(Z,Un),

CCC2S = CCCGS(Z,Un),
(4.7)

where TTTGS and CCCGS are robust multivariate location and scatter generalized S-

estimator for incomplete data, (Z,U), with Tukey’s bisquare rho function ρB(t) =

min(1, 1 − (1 − t)3) and 50% breakdown point (see Chapter 2 for full definition).

Note that when U = (111, . . . ,111) (i.e., when the input data is complete), the general-

ized S-estimator reduces to S-estimator (Danilov et al., 2012).

Alternatively, the second step can be replaced by GRE as introduced in Chapter

3. In the chapter, GSE was shown to lose robustness against casewise outliers for

higher dimensional data. GRE has been proposed to remedy this problem. So, in

the case of large p in X, GRE may be a more appropriate choice for the second

step than GSE. However, in this chapter, we generally focus on smaller to moderate

dimensional data (e.g., p ≤ 15) and hence, GSE should be sufficient.

4.3.2 Models with continuous and dummy covariates

For models with continuous and dummy covariates, the direct computation of 3S-

regression is likely to fail because the subsampling algorithm (needed to compute

the generalized S-estimator) is likely to yield collinear subsamples. In this case, we

endow 3S-regression with an iterative algorithm similar to that in Maronna & Yohai

(2000) to deal with continuous and dummy covariates.

Consider now the following model:

Yi = α +XXX t
iβββx +DDDt

iβββd + εi (4.8)

for i = 1, . . . , n where XXX i = (Xi1, . . . , Xipx)t is a px dimensional vector of continuous

covariates and DDDi = (Di1, . . . , Dipd)t is a pd dimensional vector of dummy covariates.
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4.3. Three-step regression

Set X = (XXX1, . . . ,XXXn)t, D = (DDD1, . . . ,DDDn)t, and YYY = (Y1, . . . , Yn)t. We assume that

the columns in X and D are linearly independent.

We modify the alternating M- and S-regression approach proposed by Maronna

& Yohai (2000). Our algorithm uses 3S-regression to estimate the coefficients of

the continuous covariates and regression M-estimators with Huber’s rho function

ρH(t) = min(1, t2/2) (Huber & Ronchetti, 2009) to estimate the coefficients of the

dummy covariates. More specifically, the algorithm works as follows:

(α̂(k), β̂ββ
(k)

x ) = g(X,YYY − Dβ̂ββ
(k−1)

d ),

β̂ββ
(k)

d = M(D,YYY − α̂(k) − X̂β̂ββ
(k)

x ), for k = 1, . . . , K,
(4.9)

where g(X,YYY ) denotes the operation of 3S-regression for a response vector (YYY ,X) as

defined in (4.5) and M(D,YYY ) denotes the operation of regression M -estimator with

no intercept for (YYY ,D). We let X̂ be the imputed X with the filtered entries imputed

by the best linear predictor using T̂TT
(k)

and ĈCC
(k)

, the generalized S-estimates at the

k-th iteration as defined in (4.7). We use X̂ instead of X to control the effect of

propagation of cellwise outliers.

As in Maronna & Yohai (2000), to calculate the initial estimates, (α̂(0), β̂ββ
(0)

x , β̂ββ
(0)

d ),

we first remove the effect of DDDi from the continuous covariates and the response

variable. Let

YYY = YYY − Dttt and X = X− DT,

where ttt = M(D,YYY ) and T is a pd × px-matrix with the j-th column as TTT j =

M(D, (X1j, . . . , Xnj)
t). Now, the initial estimates are defined by

(α̂(0), β̂ββ
(0)t

x ) = g(X,YYY ),

β̂ββ
(0)

d = M(D,YYY − α̂(0) − X̂β̂ββ
(0)

x ).

Finally, the procedure in (4.9) is iterated until convergence or until it reaches a

maximum of K = 20 iterations. We choose K = 20 because our simulation has shown

that the procedure usually converges for K < 20, provided good initial estimates are

used.
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4.4. Asymptotic properties of three-step regression

4.4 Asymptotic properties of three-step

regression

Theorem 4.2 establishes the equivalence between 3S-regression and 2S-regression

(Croux et al., 2003) for the case of continuous covariates. Let (α3S,βββ
t
3S) be the

3S-regression estimator and (α2S,βββ
t
2S) be the 2S-regression estimator based on the

sample {ZZZ1, . . . ,ZZZn}, where ZZZi = (XXX t
i, Yi). Let G(xxx) and Gj(x) be the distribution

functions for XXX i for Xij respectively.

Theorem 4.2. Suppose that Assumption 4.1 holds for each Gj, j = 1, . . . , p. Then,

with probability one, for sufficiently large n, α3S = α2S and βββ3S = βββ2S.

Proof: See Section C.4 in the Appendix.

Since 3S-regression becomes 2S-regression for sufficiently large n, 3S-regression

inherits the established asymptotic properties of 2S-regression. Corollary 4.3 states

the strong consistency and asymptotic normality of 3S-regression. The corollary

requires the following regularity assumptions that are needed for deriving the con-

sistency and asymptotic normality of 2S-regression (see Croux et al., 2003).

Assumption 4.2. Let Fε be the distribution of the error term εi in (4.2). The

distribution Fε has a positive, symmetric and unimodal density fε.

Assumption 4.3. For all vvv ∈ Rp and δ ∈ R, PG(XXX t
ivvv = δ) < 1/2.

Corollary 4.3. Suppose that Assumption 4.1 holds for each Gj, j = 1, . . . , p, and

Assumption 4.2–4.3 hold. Denote θθθ3S = (α3S,βββ
t
3S)t and θθθ = (α,βββt)t. Then,

(a) θ3S → θ a.s..

(b) Let H be the distribution of (XXX t, Y ) and let (TTTH ,CCCH) be the S-estimator func-

tional (see Lopuhaä, 1989). We use the same partition outlined in (4.4) for

(TTTH ,CCCH). Set X̃XX = (1,XXX t)t. Then,

√
n(θθθ3S − θθθ)→d N(000, ASV (H)),
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4.4. Asymptotic properties of three-step regression

where

ASV (H) = C(H)−1D(H)C(H)−1,

and where

C(H) = EH

{
w(dH(ZZZ))X̃XXX̃XX

t
}

+
2

σ2
ε(H)

EH

{
w′(dH(ZZZ))(Y − X̃XX t

θθθ)2X̃XXX̃XX
t
}
,

D(H) = EH

{
w2(dH(ZZZ))(Y − X̃XX t

θθθ)2X̃XXX̃XX
t
}
,

σε(H) =
√
CH,yy − βββtCCCH,xxβββ,

dH(ZZZ) = (ZZZ − TTTH)tCCC−1
H (ZZZ − TTTH),

w(t) = ρ′B(t).

Here, ρB(t) is the Tukey’s bisquare rho function.

Remark 4.1. Croux et al. (2003) proved the Fisher consistency of 2S-regression, but

the strong consistency also follows from that and Theorem 3.2 in Lopuhaä (1989).

The asymptotic covariance matrix needed for inference can be estimated in the

following natural way. Let (m̂mm, ŜSS) be the generalized S-estimate and (α̂3S, β̂ββ
t

3S) be

the 3S-regression estimate. Then, replace ZZZi = (XXX t
i, Yi) by ẐZZi = (X̂XX

t

i, Yi) and X̃XX i =

(1,XXX t
i)
t by

̂̃
XXX i = (1, X̂XX

t

i)
t, where X̂XX i is the best linear prediction of XXX i (which is

possibly incomplete due to filter) using (T̂TT , ĈCC). The identified cellwise outliers in XXX i

are filtered and imputed in order to avoid the effect of propagation of outliers on the

asymptotic covariance matrix estimation. Now,

̂ASV (H) = Ĉ(H)
−1

D̂(H)Ĉ(H)
−1

,
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where

Ĉ(H) =
1

n

n∑
i=1

{
w(dn(ẐZZi)) +

2

σ̂2
ε,n

w′(dn(ẐZZi))r̂
2
i

} ̂̃
XXX i
̂̃
XXX

t

i,

D̂(H) =
1

n

n∑
i=1

w2(dn(ẐZZi))r̂
2
i
̂̃
XXX i
̂̃
XXX

t

i,

σ̂ε,n =

√
ŝyy − β̂ββ

t

3SĈCCxxβ̂ββ3S,

dn(ẐZZi) = (ẐZZi − T̂TT )tĈCC
−1

(ẐZZi − T̂TT ),

r̂i = Yi − ̂̃XXX t

iθ̂θθ3S.

Although the asymptotic covariance matrix formula is valid under clean data, we

shall show in Section 4.5 that our proposed inference remains approximately valid in

the presence of a moderate fraction of cellwise and casewise outliers.

In the case of continuous and dummy covariates, Maronna & Yohai (2000) derived

asymptotic results for the alternating regression M- and S-estimates. However, there

is no proof of asymptotic results when regression S-estimators are replaced by 2S-

regression. The study of the asymptotic properties of the alternating M- and 2S-

regression is worth of future research.

4.5 Simulations

We carried out extensive simulation studies in R (R Core Team, 2015) to investigate

the performance of 3S-regression by comparing it with least square (LS) and two

robust alternatives:

(i) 2S-regression as in Croux et al. (2003). The location and scatter S-estimator

with bisquare ρ function and 50% breakdown point is computed by an iterative

algorithm that uses an initial MVE estimator. The MVE estimator is computed

by subsampling with a concentration step. This procedure is implemented in

the R package rrcov, function CovSest, option method="bisquare" (Todorov

& Filzmoser, 2009); and

(ii) Shooting S-estimator introduced in Öllerer et al. (2015) with bisquare ρ func-
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tion and 20% breakdown point (for each simple regression) as suggested by the

authors to attain a good trade-off between robustness and efficiency. The R code

is available at http://feb.kuleuven.be/Viktoria.Oellerer/software.

The generalized S-estimates needed by 3S-regression are computed using the R pack-

age GSE, function GSE with default options (Leung et al., 2015). The regression

M-estimates needed by the alternating M- and 3S-regression are computed using the

R package MASS, function rlm, option method="M" (Venables & Ripley, 2002). Fi-

nally, the proposed procedures are implemented in the R package robreg3S, which

is freely available on CRAN (the Comprehensive R Archive Network, R Core Team,

2015).

4.5.1 Models with continuous covariates

We consider the regression model in (4.2) with p = 15 and n = 150, 300, 500, 1000.

The random covariates XXX i, i = 1, . . . , n, are generated from multivariate normal

distribution Np(µµµ,ΣΣΣ). We set µµµ = 000 and Σjj = 1 for j = 1, . . . , p without loss

of generality because GSE in the second step of 3S-regression is location and scale

equivariant. To address the fact that 3S-regression and the shooting S-estimator

are not affine-equivariant, we consider the random correlation structure for ΣΣΣ as

described in Agostinelli et al. (2015). We fix the condition number of the random

correlation matrix at 100 to mimic the practical situation for data sets of similar

dimensions. Furthermore, to address the fact that the two estimators are not re-

gression equivariant, we randomly generate βββ as βββ = Rbbb, where bbb has a uniform

distribution on the unit spherical surface and R is set to 10. We set α = 0 because

GSE is location equivariant. The response variable Yi is given by Yi = XXX t
iβββ + εi,

where εi are independent (also independent of XXX i’s) identically normally distributed

with mean 0 and σ = 0.5. Finally, we consider the following scenarios:

• Clean data: No further changes are done to the data;

• Cellwise contamination: Randomly replace a fraction ε of the cells in the co-

variates by outliers Xcont
ij = E(Xij) + k × SD(Xij) and ε proportion of the
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Table 4.1: Maximum MSE in all the considered scenarios for models with continuous
covariates.

Clean 1% Cellwise 5% Cellwise Casewise

n = 150 300 150 300 150 300 150 300

3S 0.012 0.005 0.039 0.020 0.902 0.797 0.223 0.143
ShootS 0.034 0.017 0.134 0.080 1.129 0.912 1.570 1.460
2S 0.010 0.004 0.025 0.014 3.364 3.041 0.109 0.122
LS 0.009 0.004 2.723 2.440 4.812 4.732 8.286 8.182

responses by outliers Y cont
ij = E(Yij) + k × SD(εi), where k = 1, 2, . . . , 10;

• Casewise contamination: Randomly replace a fraction ε of the cases by lever-

age outliers (XXXcont
i

t
, Y cont

i ), where XXXcont
i = cvvv and Y cont

i = XXXcont
i

t
βββ + εconti with

εconti ∼ N(k, σ2), where k = 1, 2, . . . , 15. Here, vvv is the eigenvector correspond-

ing to the smallest eigenvalue of ΣΣΣ with length such that (vvv−µµµ)tΣΣΣ−1(vvv−µµµ) = 1.

Monte Carlo experiments show that the placement of outliers in this direction,

vvv, is the least favorable for our estimator. We repeat the simulation study in

Agostinelli et al. (2015) for dimension 16 and observe that c = 8 is the least

favorable value for the performance of the scatter estimator.

We consider ε = 0.01, 0.05 for cellwise contamination, and ε = 0.10 for casewise

contamination. The number of replicates for each setting is N = 1000.

Coefficient estimation performance

We examine the effect of cellwise and casewise outliers on the bias of the estimated

coefficients. We evaluate the bias using the Monte Carlo mean squared error (MSE):

MSE =
1

N

N∑
m=1

1

p

p∑
j=1

(β̂
(m)
n,j − β

(m)
j )2

where β̂
(m)
n,j is the estimate for β

(m)
j at the m-th simulation run.

Table 4.1 shows the MSE for clean data and the maximum MSE for all the

cellwise and casewise contamination settings for n = 150, 300. Figure 4.1 shows the
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1% Cellwise 5% Cellwise Casewise

0.0

0.1

0.2

0.3

0.4

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 12 14
k

M
S

E
Estimators 3S ShootS 2S LS

Figure 4.1: MSE for various cellwise and casewise contamination values, k, for
models with continuous covariates. The sample size is n = 300.

curves of MSE for various cellwise and casewise contamination values for n = 300.

The results for n = 150 are similar and the corresponding figure is shown in Section

C.1 in the Appendix.

In the cellwise contamination setting, 3S-regression is highly robust against mod-

erate and large cellwise outliers (k ≥ 3), but less robust against inliers (k ≤ 2).

Notice that inliers also affect the performance of the shooting S-estimator but to a

lesser extent. Since the filter does not flag inliers, 3S-regression and 2S-regression

perform similarly in the presence of inliers (see the central panel of Figure 4.1).

The shooting S-estimator is highly robust against large outliers, but less so against

moderate cellwise outliers. As expected, 2S-regression breaks down in the case of

ε = 0.05, when the propagation of large cellwise outliers is expected to affect more

than 50% of the cases.

In the casewise contamination setting, 2S-regression has the best performance,

as expected. 3S-regression also performs fairly well in this setting. The shooting

S-estimator performs less satisfactorily in this case.

We have also considered other simulation settings and observed similar results

(not shown here). In particular, we considered p = 5 with n = 50, 100 and p = 25

with n = 250, 500 under the same set of scenarios (clean data, cellwise contamination,

and casewise contamination). Moreover, we studied the performance of 3S-regression
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for larger casewise contamination levels up to 20%. 3S-regression maintains its com-

petitive performance, outperforming Shooting S and not falling too far behind 2S-

regression, which is expected to win in these situations.

Performance of confidence intervals

We then assess the performance of confidence intervals for the regression coefficients

based on the asymptotic covariance matrix as described in Section 4.4. Intervals that

have a coverage close to the nominal value, while being relatively short, are desirable.

The 100(1− τ)% confidence interval (CI) of 3S-regression has the form:

CI(β̂n,j) =

[
β̂n,j − Φ−1(1− τ/2)

√
ÂSV (β̂n,j)/n, β̂n,j + Φ−1(1− τ/2)

√
ÂSV (β̂n,j)/n

]
,

for j = 0, 1, . . . , p, where β̂n,0 = α̂n. We consider τ = 0.05 here. We evaluate the

performance of CI using the Monte Carlo mean coverage rate (CR):

CR =
1

N

N∑
m=1

1

p

p∑
j=1

I(β
(m)
j ∈ CI(β̂

(m)
n,j )),

and the Monte Carlo mean CI lengths:

CIL =
1

N

N∑
m=1

1

p

p∑
j=1

2Φ−1(1− τ/2)

√
ÂSV (β̂n,j)/n.

Figure 4.2 shows the CR in the case of clean data, 5% cellwise contamination

(k = 5), and 10% casewise contamination (k = 3) simulation, with different sample

sizes n = 150, 300, 500, 1000. The nominal value of 95% is indicated by the horizontal

line in the figure.

For clean data, the coverage rates of all the intervals reach the nominal level when

the sample size grows, as expected. For data with casewise outliers, 2S-regression

yields the best coverage rate, which is closest to the nominal level. However, 3S-

regression has an acceptable performance, comparable with that of 2S-regression.
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Figure 4.2: CR for clean data and for cellwise and casewise contaminated data of
various sample size, n.

Table 4.2: Average lengths of confidence intervals for clean data and for cellwise and
casewise contamination.

Clean 1% Cell., k = 5 5% Cell., k = 5 10% Case., k = 3

Size (n) 3S 2S 3S 2S 3S 2S 3S 2S

150 0.341 0.352 0.355 0.402 0.450 1.519 0.329 0.355
300 0.242 0.247 0.244 0.275 0.294 1.148 0.239 0.253
500 0.187 0.189 0.190 0.212 0.222 0.912 0.189 0.197

1000 0.133 0.133 0.134 0.150 0.155 0.662 0.137 0.140

For data with cellwise outliers, 3S-regression yields intervals with a coverage rate

relatively closer to the nominal value than LS and 2S-regression.

Furthermore, the length of the intervals obtained from 3S regression is comparable

to that LS for clean data and that of 2S-regression for clean data and data with

casewise outliers. For data with cellwise outliers, 3S-regression yields intervals with

lengths relatively closer to the case of clean data. Table 4.2 shows the average

lengths of the confidence intervals obtained from 3S- and 2S-regression in the case of

clean data, 1% cellwise contamination (k = 5), 5% cellwise contamination (k = 5),

and 10% casewise contamination (k = 3) simulation, with different sample sizes

n = 150, 300, 500, 1000. The results of LS are not included here.

In general, 3S-regression yields slightly shorter intervals than 2S-regression in
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all scenarios because the asymptotic variance is calculated on the data with the

filtered cells imputed instead of the complete data. On the other hand, 2S-regression

tends to yield longer intervals in the cellwise contamination model, even when the

propagation of outliers is below the 0.5 breakdown point under THCM, for example,

when ε = 0.01. This maybe because 2S-regression loses a significant amount of clean

data for estimation when it down-weights cases with outlying components.

4.5.2 Models with continuous and dummy covariates

We now conduct a simulation study to assess the performance of our procedure

when the model includes continuous and dummy covariates. We consider the re-

gression model in (4.8) with px = 12, pd = 3, and n = 150, 300. The random

covariates (XXX i,DDDi), i = 1, . . . , n, are first generated from multivariate normal distri-

bution Np(000,ΣΣΣ), where ΣΣΣ is the randomly generated correlation matrix with a fixed

condition number of 100. Then, we dichotomize Dij at Φ−1(πj) where πj = 1
4
, 1

3
, 1

2

for j = 1, 2, 3, respectively. Finally, the rest of data are generated in the same way

as described in Section 4.5.1.

In the simulation study, we consider the following scenarios:

• Clean data: No further changes are done to the data;

• Cellwise contamination: Randomly replace a ε fraction of the cells in X by

outliers Xcont
ij = E(Xij) + k × SD(Xij) and ε proportion of the responses by

outliers Y cont
ij = E(Yij) + k × SD(εi), where k = 1, 2, . . . , 10;

• Casewise contamination: Let ΣΣΣx be the sub-matrix of ΣΣΣ with rows and columns

corresponding to the continuous covariates. Randomly replace a ε fraction

of the cases in X by leverage outliers XXXcont
i = cvvv, where vvv is the eigen-

vector corresponding to the smallest eigenvalue of ΣΣΣx with length such that

(vvv − µµµx)tΣΣΣ−1(vvv − µµµx) = 1. In this case, the number of continuous variables

is 13 (instead of 16) and the corresponding least favorable casewise contam-

ination size is found to be c = 7 (instead of 8) using the same procedure
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Table 4.3: Maximum MSE in all the considered scenarios for models with continuous
and dummy covariates.

Clean 1% Cellwise 5% Cellwise Casewise

n = 150 300 150 300 150 300 150 300

3S 0.010 0.004 0.018 0.008 0.636 0.507 0.090 0.071
ShootS 0.012 0.005 0.026 0.015 0.746 0.468 0.450 0.387
2S 0.008 0.003 0.014 0.007 1.894 1.341 0.060 0.054
LS 0.007 0.003 2.785 2.532 5.162 4.981 1.332 1.322

as in Section 4.5.1. Finally, we replace the corresponding response value by

Y cont
i = XXXcont

i
t
βββx +DDDt

iβββd + εconti with εconti ∼ N(k, σ2), where k = 1, 2, . . . , 10.

Again, we consider ε = 0.01, 0.05 for cellwise contamination, and ε = 0.10 for casewise

contamination. The number of replicates for each setting is N = 1000.
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Figure 4.3: MSE for various cellwise and casewise contamination values, k, for
models with continuous and dummy covariates. The sample size is n = 300.

Table 4.3 shows the MSE for clean data and the maximum MSE for all the

cellwise and casewise contamination settings for n = 150, 300. Figure 4.3 shows the

curves of MSE for various cellwise and casewise contamination values for n = 300.

The results for n = 150 are similar and the corresponding figure is shown in Section

C.1 in the Appendix. Overall, 3S-regression remains competitive in the case of

continuous and dummy covariates.
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We also consider the case of non-normal covariates. The covariates are generated

from several asymmetric distributions, and the data are contaminated in a similar

fashion. The performance of 3S-regression in the case of non-normal covariates is

similar to the performance in the case of normal covariates. Results are available in

Section C.2 in the Appendix.

4.6 Real data example: Boston Housing data

We illustrate the effect of cellwise outlier propagation on classical robust estimators

using the Boston Housing data. The data, available at the UCI repository (Bache

& Lichman, 2013), was collected from 506 census tracts in the Boston Standard

Statistical Metropolitan Area in the 1970s on 14 different features. We consider the

nine quantitative variables that were extensively studied (e.g., see in Öllerer et al.,

2015). The variables are listed and described in Table C.2 in the Appendix. There is

no missing data. The original objective of the study in Harrison & Rubinfeld (1978)

was to analyze the association between the median housing values (medv) in Boston

and the residents’ willingness to pay for clean air, as well as the association between

medv and those variables on the list.

We fit the following model using 3S-regression, the shooting S-estimator, 2S-

regression and the LS estimator:

log(medv) = α + β1 log(crim) + β2 nox
2 + β3 rm

2 + βx,4 age

+ β5 log(dis) + β6 tax+ β7 ptratio+ β8 black + β9 log(lstat) + ε.

The regression coefficient estimates and their P-values are given in Table 4.4. In

particular, we observe that the regression coefficients for the covariates age and

black are very different under 3S and 2S-regression. Moreover, age is significant

under 2S-regression but highly non-significant under 3S-regression. 2S-regression is

somewhat inefficient because it throws away a substantial amount of clean data due

to the propagation of cellwise outliers. It fully down-weights 16.4% of the cases in the

dataset (cases that receive a zero weight by the multivariate S-estimator). Slightly
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Table 4.4: Estimates and p-values of the regression coefficients for the original Boston
Housing data.

Variable 3S ShootS 2S LS

Coeff. P-Val. Coeff. P-Val. Coeff. P-Val. Coeff. P-Val.
log(lstat) -0.243 <0.001 -0.266 - -0.153 <0.001 -0.395 <0.001
rm2 0.015 <0.001 0.013 - 0.018 <0.001 0.007 <0.001
tax -0.051 <0.001 -0.021 - -0.046 <0.001 -0.028 0.006
log(dis) -0.125 <0.001 -0.157 - -0.126 <0.001 -0.139 <0.001
ptratio -0.026 <0.001 -0.027 - -0.025 <0.001 -0.029 <0.001
nox2 -0.578 0.013 -0.463 - -0.445 0.023 -0.451 <0.001
age -0.023 0.645 -0.040 - -0.152 0.001 0.050 0.391
black -0.726 0.398 0.787 - -0.007 0.993 0.500 <0.001
log(crim) -0.006 0.513 0.004 - 0.005 0.527 -0.002 0.813

Table 4.5: Pairwise squared norm distances between the estimates for the original
Boston housing data.

3S ShootS 2S LS

3S - 1.389 3.145 6.725
ShootS - 4.312 4.661
2S - 16.614
LS -

more than half of these cases (8.7%) are affected by the propagation of cellwise

outliers mainly in the covariates nox2 and black (1.3% of the cells in the dataset

are flagged by the consistent filter). After filtering, these cases have relatively small

partial Mahalanobis distances, indicating they are close to the bulk of the data for

the remaining variables.

We further compare the four estimators by computing their squared norm dis-

tances, n×
∑p

j=1(β̂n,j,A− β̂n,j,B)2×MAD({X1j, . . . , Xnj})2 (see Öllerer et al., 2015),

where MAD is the median absolute deviation. Table 4.5 shows the squared norm

distances for the considered estimators. Overall, the three robust estimators are very

different from LS. As expected, 3S-regression and shooting S are closer to each other

than they are to 2S-regression. We next illustrate that the observed differences be-

tween the three robust estimators are indeed mostly caused by the propagation of

cellwise outliers in the Boston housing data.
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Table 4.6: Estimates and p-values of the regression coefficients for the imputed
Boston Housing data.

Variable 3S ShootS 2S LS

Coeff. P-Val. Coeff. P-Val. Coeff. P-Val. Coeff. P-Val.
log(lstat) -0.243 0.000 -0.264 - -0.227 <0.001 -0.385 <0.001
rm2 0.015 0.000 0.013 - 0.014 <0.001 0.009 <0.001
tax -0.051 0.000 -0.030 - -0.047 <0.001 -0.032 0.002
log(dis) -0.125 0.000 -0.161 - -0.129 <0.001 -0.144 <0.001
ptratio -0.026 0.000 -0.028 - -0.025 <0.001 -0.027 <0.001
nox2 -0.578 0.013 -0.522 - -0.619 0.010 -0.479 <0.001
age -0.023 0.645 -0.037 - -0.037 0.471 0.051 0.386
black -0.726 0.398 0.371 - -0.882 0.376 -0.206 0.519
log(crim) -0.006 0.513 -0.001 - -0.012 0.233 -0.012 0.213

Table 4.7: Pairwise squared norm distances between the estimates for the imputed
Boston housing data.

3S ShootS 2S LS

3S - 0.862 0.172 5.486
ShootS - 1.158 3.992
2S - 6.366
LS -

Recall that half of the cases fully down-weighted by 2S-regression have entries

flagged as cellwise outliers. We replace these flagged cells by their best linear pre-

dictions (using the 3S-regression estimate) and then, refit the model with the four

considered estimators. The resulting coefficient estimates and their P-values are

given in Table 4.6. Notice that the covariate age is no longer significant under 2S-

regression. Moreover, Table 4.7 shows the norm distances between all the estimates

calculated from such imputed data. Now, 2S-regression is considerably closer to the

cellwise robust estimators, and it no longer fully down-weights the cases formerly

affected by cellwise outliers (the median weight of these cases is now 0.64, closer

to the overall median weight, 0.69). The LS estimator remains different from the

robust estimators, possibly due to the existence of casewise outliers in the data.

MM-regression (Yohai, 1985) behaves similarly to 2S-regression in this example.
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4.7 Conclusions

High breakdown point affine equivariant robust estimators are neither efficient nor

robust in the independent cellwise contamination model (ICM). By efficiency here

we mean the ability to use the clean part of the data. In fact, classical robust

estimators are inefficient under ICM because they may down-weight an entire row

with a single component being contaminated. Therefore, they may lose some useful

information contained in the data. Furthermore, the classical high breakdown point

affine equivariant robust estimators may break down under ICM. A small fraction of

cellwise outliers could propagate, affecting a large proportion of cases. For instance,

the probability ε that at least one component of a case is contaminated is ε =

1− (1− ε)p, where ε is the proportion of independent cellwise outliers. This implies

that even if ε is small, ε could be large for large p, and could exceed the 0.5 breakdown

point under THCM. For example, if ε = 0.1 and p = 10, then ε = 0.65; and if ε = 0.05

and p = 20, then ε = 0.64.

To overcome these deficiencies of the classical robust estimators, we introduce a

three-step regression estimator that can deal with cellwise and casewise outliers. The

first step of our estimator is aimed at reducing the impact of outliers propagation

posed by ICM. The second step is aimed at achieving robustness under THCM. As

a result, the robust regression estimate from the third step is shown to be efficient

(in terms of data usage) and robust under ICM and THCM. We also prove that our

estimator is consistent and asymptotically normal at the central regression model

distribution. Finally, we extend our estimator to models with continuous and dummy

covariates and provide an algorithm to compute the regression coefficients.
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Chapter 5

Conclusions

In this thesis, two important aspects of robust analysis are studied:

• Multivariate location and scatter matrix under cellwise and casewise contami-

nation;

• Regression analysis under cellwise and casewise contamination.

The following is an outline of the main results, some limitations that the proposed

methods have, and the directions we foresee for future work.

In Chapter 2 and 3, a two-step procedure for estimating multivariate location

and scatter matrix is proposed. Four estimators are derived from the procedure:

• UF-GSE for less correlated data in moderate dimensions (p ≤ 15);

• UBF-GSE for more correlated data in moderate dimensions (p ≤ 15);

• UF-GRE for less correlated data in high dimensions (p > 15); and

• UBF-GRE for more correlated data in high dimensions (p > 15).

Simulation results have shown that these estimators provide fairly high resistance

against cellwise and casewise outliers, when comparing with the best performing

robust estimators in their settings. However, the two-step procedure still has some

limitations. For sample sizes 2p < n ≤ 5p, the estimator may encounter convergence

problems and result in close-to-singular estimates. The problems may be remedied

by using graphical lasso (GLASSO; Friedman et al., 2008) to make close-to-singular

(or even singular) estimates better conditioned. However, for sample sizes n ≤ 2p,

the estimators fail to exist.
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There is a recently proposed cellwise robust estimator for high dimensional data

with small n/p called the GGQ estimator by Öllerer & Croux (2015), which in spirit

coincides with the work of Tarr et al. (2016). The GGQ estimator is defined by a

procedure of calculating correlations pairwise using normal scores (also known as the

Gaussian rank correlation), then applying GLASSO to the pairwise scatter matrix.

Because the correlation estimation is done pairwise, it can handle data with n < p.

In our preliminary study, we have found that GGQ exhibits fairly high robustness

against cellwise outliers, but is not so robust against casewise outliers. We believe

that pairwise estimation itself is not sufficient to deal with casewise outliers and finely

structured high dimensional data. Hence, there is still a need for further research on

high dimensional estimation in the presence of cellwise and casewise contamination

when n/p is small.

In Chapter 4, a three-step procedure for robust regression with continuous co-

variates is proposed. The procedure coincides with the classical two-step procedure

for robust regression of Croux et al. (2003), when the first step of filtering is re-

moved. The method is extended to handle both continuous and dummy covariates.

Simulation results and example have shown that the procedure handles both cell-

wise outliers and casewise outliers similarly well. Asymptotic results are provided

for the case of continuous covariates, but no results are available for the case of

continuous and dummy covariates, which is a major limitation of the procedure. In-

terestingly, there are also no asymptotic results for the classical procedure of Croux

et al. (2003), in this setting. Hence, we believe the study of the asymptotic properties

of the extended procedure for regression with continuous and dummy covariates is a

worthwhile project for future research.

Due to the novelty of the topic of cellwise and casewise contamination, we hope

that in general further research will follow this thesis.
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Appendix A

Supplementary material for

Chapter 2

A.1 Additional tables from the simulation study

in Section 2.4

Table A.1: Maximum average LRT distances under cellwise contamination. The
sample size is n = 5p.

Corr. p ε MCD MVE-S Rocke HSD Snip DMCDSc UF- UBF-
GSE GSE

Random 5 0.05 4.1 1.5 4.1 2.3 52.8 3.4 3.5 5.8
0.10 14.3 12.8 63.9 9.0 154.2 8.7 7.9 10.3

10 0.05 9.7 13.4 32.0 11.7 18.7 5.8 5.6 5.8
0.10 142.9 134.4 156.3 56.9 66.4 16.4 16.5 16.1

15 0.05 41.2 60.9 62.9 30.8 13.0 9.0 9.2 9.6
0.10 198.5 198.4 202.6 134.7 26.9 21.3 21.5 21.5

20 0.05 72.9 94.8 90.7 55.9 15.4 11.2 12.2 12.4
0.10 240.9 240.7 242.1 243.4 19.8 26.1 25.1 25.1

AR1(0.9) 5 0.05 3.8 1.5 3.7 1.5 39.6 2.3 3.2 5.9
0.10 21.3 15.6 44.5 2.6 117.6 5.3 4.6 9.2

10 0.05 15.4 19.8 44.6 3.7 11.9 5.1 3.6 2.7
0.10 219.1 187.4 220.6 19.8 90.7 15.1 11.8 5.3

15 0.05 96.3 99.9 134.2 12.2 12.5 9.7 6.8 3.3
0.10 367.3 369.6 387.6 83.9 55.4 26.8 21.8 8.8

20 0.05 174.4 197.3 235.9 28.5 19.1 14.9 10.9 4.4
0.10 518.5 526.5 557.8 260.8 34.3 39.8 33.7 15.3
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A.1. Additional tables from the simulation study in Section 2.4

Table A.2: Maximum average LRT distances under casewise contamination. The
sample size is n = 5p.

Corr. p ε MCD MVE-S Rocke HSD Snip DMCDSc UF- UBF-
GSE GSE

Random 5 0.10 4.1 1.5 3.0 1.7 8.2 3.4 4.7 9.7
0.20 32.3 12.1 30.5 7.2 29.9 26.3 35.9 54.3

10 0.10 11.1 3.9 4.7 5.1 27.8 9.0 15.9 28.9
0.20 128.2 71.0 16.6 28.1 57.2 62.9 86.6 102.7

15 0.10 28.7 7.6 4.9 8.8 41.3 26.3 33.1 47.9
0.20 146.5 109.3 20.5 64.1 81.5 86.9 122.1 143.2

20 0.10 76.6 17.8 6.7 16.0 57.6 49.2 59.7 67.5
0.20 167.7 141.9 19.0 111.0 103.4 110.1 154.4 183.3

AR1(0.9) 5 0.10 3.9 1.4 1.9 1.6 8.9 2.5 2.2 3.8
0.20 18.7 8.0 28.4 3.7 22.6 6.9 11.2 13.3

10 0.10 9.4 3.9 3.3 2.7 19.1 4.8 4.9 5.9
0.20 122.7 59.2 29.1 11.6 44.8 31.0 69.0 57.2

15 0.10 19.3 7.1 4.3 3.9 29.8 8.5 10.1 13.1
0.20 139.8 98.0 32.6 22.8 64.0 69.5 100.2 103.4

20 0.10 72.3 16.3 5.6 6.3 48.7 16.6 34.9 37.3
0.20 161.5 127.2 23.6 48.5 87.5 108.5 129.3 133.8

Table A.3: Finite sample efficiency for first order autoregressive correlations, AR1(ρ),
with ρ = 0.9. The sample size is n = 5p.

p MCD MVE-S Rocke HSD Snip DMCDSc UF- UBF-
GSE GSE

5 0.22 0.62 0.50 0.50 0.21 0.30 0.45 0.29
10 0.32 0.86 0.55 0.71 0.08 0.39 0.74 0.61
15 0.42 0.94 0.55 0.83 0.28 0.44 0.84 0.71
20 0.48 0.96 0.56 0.88 0.17 0.48 0.87 0.77
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A.2. Proofs of propositions and theorem

A.2 Proofs of propositions and theorem

Proof of Proposition 2.1

Proof. Without loss of generality, set µ0 = 0 and σ0 = 1. Let Z0i = Xi−µ0
σ0

= Xi and

Zi = Xi−T0n
S0n

. Denote the empirical distributions of Z01, . . . , Z0n and Z1, . . . , Zn by

F+
0n(t) =

1

n

n∑
i=1

I (|Z0i| ≤ t) and F+
n (t) =

1

n

n∑
i=1

I (|Zi| ≤ t) .

By assumption, with probability one, there exists n1 such that n ≥ n1 implies

0 < 1− δ ≤ S0n ≤ 1 + δ and −δ ≤ T0n ≤ δ, and we have

F+
n (t) =

1

n

n∑
i=1

I (−t ≤ Zi ≤ t) =
1

n

n∑
i=1

I

(
−t ≤ Xi − T0n

S0n

≤ t

)
=

1

n

n∑
i=1

I (−tS0n + T0n ≤ Xi ≤ tS0n + T0n)

≥ 1

n

n∑
i=1

I (−t(1− δ) + T0n ≤ Xi ≤ t(1− δ) + T0n)

≥ 1

n

n∑
i=1

I (−t(1− δ) + δ ≤ Xi ≤ t(1− δ)− δ)

=
1

n

n∑
i=1

I (|Xi| ≤ t(1− δ)− δ) = F+
0n(t(1− δ)− δ).

Now, by the Glivenko–Cantelli Theorem, with probability one there exists n2 such

that n ≥ n2 implies that supt |F+
0n(t)−F+

0 (t)| ≤ ε/2. Also, by the uniform continuity

of F+
0 , given ε > 0, there exists δ > 0 such that |F+

0 (t(1− δ)− δ)− F+
0 (t)| ≤ ε/2.

Finally, note that

F+
n (t) ≥ F+

0n(t(1− δ)− δ)

=
(
F+

0n(t(1− δ)− δ)− F+
0 (t(1− δ)− δ)

)
+ (F+

0 (t(1− δ)− δ)− F+
0 (t)) + (F+

0 (t)− F+(t)) + F+(t).
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Let n3 = max(n1, n2), then n ≥ n3 imply

sup
t>η

(F+(t)− F+
n (t)) ≤ sup

t>η

∣∣F+
0 (t(1− δ)− δ)− F+

0n(t(1− δ)− δ)
∣∣

+ sup
t>η

∣∣F+
0 (t)− F+

0 (t(1− δ)− δ)
∣∣+ sup

t>η
(F+(t)− F+

0 (t))

≤ ε

2
+
ε

2
+ 0 = ε.

This implies that n0/n→ 0 a.s..

Proof of Proposition 2.2

We need the following lemma for the proof.

Lemma A.1. Consider a sample of p-dimensional random vectorsXXX1, . . . ,XXXn. Also,

consider a pair of multivariate location and scatter estimators TTT 0n and CCC0n. Suppose

that TTT 0n → µµµ0 and CCC0n → ΣΣΣ0 a.s.. Let Di = (XXX i − TTT 0n)tCCC−1
0n (XXX i − TTT 0n) and

Di = (XXX i − µµµ0)tΣΣΣ−1
0 (XXX i − µµµ0). Given K < ∞. For all i = 1, . . . , n, if D0i ≤ K ,

then:

Di → D0i a.s..

Proof of Lemma A.1. Note that

|Di −D0i| = |(XXX i − TTT 0n)tCCC−1
0n (XXX i − TTT 0n)− (XXX i − µµµ0)tΣΣΣ−1

0 (XXX i − µµµ0)|

= |((XXX i − µµµ0) + (µµµ0 − TTT 0n))t(ΣΣΣ−1
0 + (CCC−1

0n −ΣΣΣ−1
0 ))((XXX i − µµµ0) + (µµµ0 − TTT 0n))

− (XXX i − µµµ0)tΣΣΣ−1
0 (XXX i − µµµ0)|

≤ |(µµµ0 − TTT 0n)tΣΣΣ−1
0 (µµµ0 − TTT 0n)|+ |(µµµ0 − TTT 0n)t(CCC−1

0n −ΣΣΣ−1
0 )(µµµ0 − TTT 0n)|

+ |2(XXX i − µµµ0)tΣΣΣ−1
0 (µµµ0 − TTT 0n)|+ |2(XXX i − µµµ0)t(CCC−1

0n −ΣΣΣ−1
0 )(µµµ0 − TTT 0n)|

+ |(XXX i − µµµ0)t(CCC−1
0n −ΣΣΣ−1

0 )(XXX i − µµµ0)|

= An +Bn + Cn +Dn + En.

By assumption, there exists n1 such that for n ≥ n1 implies An ≤ ε/5 and

Bn ≤ ε/5.

92



A.2. Proofs of propositions and theorem

Next, note that

|(XXX i − µµµ0)tΣΣΣ
−1/2
0 yyy| = |yyytΣΣΣ−1/2

0 (XXX i − µµµ0)|

≤ ||yyy||||ΣΣΣ−1/2
0 (XXX i − µµµ0)|| = ||yyy||

√
(XXX i − µµµ0)tΣΣΣ−1

0 (XXX i − µµµ0) ≤ ||yyy||
√
K.

So, there exists n2 such that n ≥ n2 implies

Cn = |2(XXX i − µµµ0)tΣΣΣ−1
0 (µµµ0 − TTT 0n)|

= |2(XXX i − µµµ0)tΣΣΣ
−1/2
0 ΣΣΣ

−1/2
0 (µµµ0 − TTT 0n)|

≤ 2||ΣΣΣ−1/2
0 (µµµ0 − TTT 0n)||

√
K

≤ ε/5.

Similarly, there exists n3 such that n ≥ n3 implies

Dn = |2(XXX i − µµµ0)t(CCC−1
0n −ΣΣΣ−1

0 )(µµµ0 − TTT 0n)|

= |2(XXX i − µµµ0)tΣΣΣ
−1/2
0 ΣΣΣ

1/2
0 (CCC−1

0n −ΣΣΣ−1
0 )(µµµ0 − TTT 0n)|

≤ 2||ΣΣΣ1/2
0 (CCC−1

0n −ΣΣΣ−1
0 )(µµµ0 − TTT 0n)||

√
K

≤ ε/5.

Also, there exists n4 such that n ≥ n4 implies

En = |(XXX i − µµµ0)t(CCC−1
0n −ΣΣΣ−1

0 )(XXX i − µµµ0)|

= |(XXX i − µµµ0)tΣΣΣ
−1/2
0 ΣΣΣ

1/2
0 (CCC−1

0n −ΣΣΣ−1
0 )(XXX i − µµµ0)|

≤ ||ΣΣΣ1/2
0 (CCC−1

0n −ΣΣΣ−1
0 )(XXX i − µµµ0)||

√
K

≤ ||(CCC−1
0n −ΣΣΣ−1

0 )|| ||ΣΣΣ1/2
0 (XXX i − µµµ0)||

√
K

≤ ||(CCC−1
0n −ΣΣΣ−1

0 )||K

≤ ε/5.
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Finally, let n5 = max{n1, n2, n3, n4}, then for all i, n ≥ n5 implies

|Di −D0i| ≤ ε/5 + ε/5 + ε/5 + ε/5 + ε/5 = ε.

Proof of Proposition 2.2. LetD0i = (XXX i−µµµ0)tΣΣΣ−1
0 (XXX i−µµµ0) andDi = (XXX i−TTT 0n)tCCC−1

0n (XXX i−
TTT 0n). Denote the empirical distributions of D01, . . . , D0n and D1, . . . , Dn by

G0n(t) =
1

n

n∑
i=1

I (D0i ≤ t) and Gn(t) =
1

n

n∑
i=1

I (Di ≤ t) .

Note that

|Gn(t)−G0n(t)| =

∣∣∣∣∣ 1n
n∑
i=1

I (Di ≤ t)− 1

n

n∑
i=1

I (D0i ≤ t)

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

I (Di ≤ t) I(D0i > K) +
1

n

n∑
i=1

I (Di ≤ t) I(D0i ≤ K)

− 1

n

n∑
i=1

I (D0i ≤ t) I(D0i > K)− 1

n

n∑
i=1

I (D0i ≤ t) I(D0i ≤ K)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

I (Di ≤ t) I(D0i > K)− 1

n

n∑
i=1

I (D0i ≤ t) I(D0i > K)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

I (Di ≤ t) I(D0i ≤ K)− 1

n

n∑
i=1

I (D0i ≤ t) I(D0i ≤ K)

∣∣∣∣∣
= |An|+ |Bn|.

We will show that |An| → 0 and |Bn| → 0 a.s..

Choose a large K such that PG0(D0 > K) ≤ ε/8. By law of large numbers, there

exists n1 such that for n ≥ n1 implies | 1
n

∑n
i=1 I(D0i > K) − PG0(D0 > K)| ≤ ε/8
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and

|An| =

∣∣∣∣∣ 1n
n∑
i=1

[I (Di ≤ t)− I (D0i ≤ t)]I(D0i > K)

∣∣∣∣∣
≤ 1

n

n∑
i=1

|I (Di ≤ t)− I (D0i ≤ t) |I(D0i > K)

≤ 1

n

n∑
i=1

I(D0i > K)

≤ PG0(D0 > K) + ε/8

≤ ε/8 + ε/8 = ε/4.

By assumption, we have from Lemma A.1 that Di → D0i a.s. for all i where

D0i ≤ K. Let Ei = Di − D0i. So, with probability 1, there exists n2 such that

n ≥ n2 implies that −δ ≤ Ei ≤ δ for all i. Then,

Bn =
1

n

n∑
i=1

[I (Di ≤ t)− I (D0i ≤ t)]I(D0i ≤ K)

=
1

n

∑
i:D0i≤K

[I (Di ≤ t)− I (D0i ≤ t)]

=
1

n

∑
i:D0i≤K

[I (D0i ≤ t− Ei)− I (D0i ≤ t)]

≤ 1

n

∑
i:D0i≤K

[I (D0i ≤ t+ δ)− I (D0i ≤ t)]

≤ 1

n

n∑
i=1

[I (D0i ≤ t+ δ)− I (D0i ≤ t)].
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Also,

Bn =
1

n

∑
i:D0i≤K

[I (D0i ≤ t− Ei)− I (D0i ≤ t)]

≥ 1

n

∑
i:D0i≤K

[I (D0i ≤ t− δ)− I (D0i ≤ t)]

≥ 1

n

n∑
i=1

[I (D0i ≤ t− δ)− I (D0i ≤ t)]

Now, by the Gilvenko–Cantelli Theorem, with probability one there exists n3 such

that n ≥ n3 implies that supt | 1n
∑n

i=1 I (D0i ≤ t+ δ)−G0(t+ δ)| ≤ ε/16,

supt | 1n
∑n

i=1 I (D0i ≤ t− δ)−G0(t−δ)| ≤ ε/16, and supt | 1n
∑n

i=1 I (D0i ≤ t)−G0(t)| ≤
ε/16. Also, by the uniform continuity of G0, there exists δ > 0 such that |G0(t +

δ)−G0(t)| ≤ ε/8 and |G0(t− δ)−G0(t)| ≤ ε/8. Together,

1

n

n∑
i=1

I (D0i ≤ t− δ)− I (D0i ≤ t) ≤ Bn ≤
1

n

n∑
i=1

I (D0i ≤ t+ δ)− I (D0i ≤ t)

G0(t− δ)− ε/16−G0(t)− ε/16 ≤ Bn ≤ G0(t+ δ) + ε/16−G0(t) + ε/16

(G0(t− δ)−G(t))− ε/8 ≤ Bn ≤ (G0(t+ δ)−G0(t)) + ε/8

−ε/8− ε/8 = −ε/4 ≤ Bn ≤ ε/8 + ε/8 = ε/4.

Finally, note that

G(t)−Gn(t) = (G(t)−G0(t)) + (G0(t)−G0n(t)) + (G0n(t)−Gn(t)).

Let n4 = max{n1, n2, n3}, then n ≥ n4 implies

sup
t>η

(G(t)−Gn(t)) ≤ sup
t>η

(G(t)−G0(t)) + sup
t>η

(G0(t)−G0n(t)) + sup
t>η

(G0n(t)−Gn(t))

≤ (ε/4 + ε/4) + ε/16 + 0 ≤ ε.
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Proof of Theorem 2.1

We need the following Lemma proved in Yohai (1985).

Lemma A.2. Let {ZZZi} be i.i.d. random vectors taking values in Rk, with common

distribution Q. Let f : Rk × Rh → R be a continuous function and assume that for

some δ > 0 we have that

EQ

[
sup

||λ−λ0||≤δ
|f(ZZZ, λ)|

]
<∞.

Then, if λ̂n → λ0 a.s., we have

1

n

n∑
1=1

f(ZZZi, λ̂n)→ EQ [f(ZZZ, λ0)] a.s..

Proof of Theorem 2.1. Define

(µ̂µµGS, Σ̃ΣΣGS) = arg min
µµµµµµµµµ,|ΣΣΣ|=1

sGS(µµµµµµµµµ,ΣΣΣ, Ω̂ΩΩ). (A.1)

We drop out X and U in the argument to simplify the notation. Since sGS(µµµ, λΣΣΣ, Ω̂ΩΩ) =

sGS(µµµ,ΣΣΣ, Ω̂ΩΩ), to prove Theorem 2.1 it is enough to show

(a)

(µ̂µµGs, Σ̃ΣΣGS)→ (µµµ0,ΣΣΣ00) a.s., and (A.2)

(b)

sGS(µ̂µµµµµµµµGS, Σ̃ΣΣGS, Σ̃ΣΣGS)→ σ0 a.s.. (A.3)

Note that since we have

EH0

(
ρ

(
d (XXX,µµµµµµµµµ0,ΣΣΣ0)

σ0cp

))
= b,

then part (i) of Lemma 6 in the Supplemental Material of Danilov et al. (2012)
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implies that given ε > 0, there exists δ > 0 such that

lim
n→∞

inf
(µµµ,ΣΣΣ)∈CC

ε ,|ΣΣΣ|=1

1

n

n∑
i=1

cpρ

(
d (XXX i,µµµµµµµµµ,ΣΣΣ)

σ0cp (1 + δ)

)
> (b+ δ)cp, (A.4)

where Cε is a neighborhood of (µµµ0,ΣΣΣ00) of radius ε and if A is a set, then AC denotes

its complement. In addition, by part (iii) of the same Lemma we have for any δ > 0,

lim
n→∞

1

n

n∑
i=1

cpρ

(
d (XXX i,µµµµµµµµµ0,ΣΣΣ00)

σ0cp (1 + δ)

)
< b cp. (A.5)

Let

Qi(µµµ,ΣΣΣ) = cpρ

(
d (XXX i,µµµ,ΣΣΣ)

σ0cp(1 + δ)

)
and

Q
(UUU)
i (µµµ,ΣΣΣ) = cp(UUU i)ρ

d∗
(
XXX

(UUU i)
i ,µµµ(UUU i),ΣΣΣ(UUU i)

)
S cp(UUU i)

∣∣∣Ω̂ΩΩ(UUU i)
∣∣∣1/p(UUU i)

 ,

Now, if |ΣΣΣ| = 1 and S = σ0(1 + δ)/|Ω̂ΩΩ|1/p, we have

1

n

n∑
i=1

Q
(UUU)
i (µµµ,ΣΣΣ) =

1

n

∑
pi=p

Qi(µµµ,ΣΣΣ) +
1

n

∑
pi 6=p

Q
(UUU)
i (µµµ,ΣΣΣ). (A.6)

We also have

1

n

∑
pi 6=p

Q
(UUU)
i (µµµ,ΣΣΣ) ≤ cp(1− tn) (A.7)

and, therefore, by Assumption 2.4 we have

lim
n→∞

sup
µµµ,|ΣΣΣ|=1

1

n

∑
pi 6=p

Q
(UUU)
i (µµµ,ΣΣΣ) = 0 a.s.. (A.8)

98



A.2. Proofs of propositions and theorem

Similarly, we can prove that

lim
n→∞

sup
µµµ,|ΣΣΣ|=1

1

n

∑
pi 6=p

Qi(µµµ,ΣΣΣ) = 0 a.s. (A.9)

and

cp −
1

n

n∑
i=1

cp(UUU i) → 0, a.s.. (A.10)

Then, from (A.4) and (A.6)–(A.10) we get

lim
n→∞

inf
(µµµ,ΣΣΣ)∈CC

ε ,|ΣΣΣ|=1

1

n

n∑
i=1

Q
(UUU)
i (µµµ,ΣΣΣ) > (b+δ) lim

n→∞

1

n

n∑
i=1

cp(UUU i) = (b+δ)cp a.s.. (A.11)

Using similar arguments, from (A.5) we can prove

lim
n→∞

1

n

n∑
i=1

Q
(UUU)
i (µµµ0,ΣΣΣ00) < b lim

n→∞

1

n

n∑
i=1

cp(UUU i) = b cp a.s.. (A.12)

Equations (A.11)–(A.12) imply that

lim
n→∞

inf
(µµµ,ΣΣΣ)∈CC

ε ,|ΣΣΣ|=1
sGS(µµµµµµµµµ,ΣΣΣ, Ω̂ΩΩ) > S a.s.

and

lim
n→∞

sGS(µµµµµµµµµ0,ΣΣΣ00, Ω̂ΩΩ) < S a.s..

Therefore, with probability one there exists n0 such that for n > n0 we have

(µ̂µµGS, Σ̃ΣΣGS) ∈ CC
ε . Then, (µ̂µµGS, Σ̃ΣΣGS)→ (µµµ0,ΣΣΣ00) a.s. proving (a).

Let

Pi(µµµ,ΣΣΣ, s) = cpρ

(
d (XXX i,µµµ,ΣΣΣ)

cp s

)
and

P
(UUU)
i (µµµ,ΣΣΣ, s) = cp(UUU i)ρ

d
(
XXX

(UUU i)
i ,µµµ(UUU i),ΣΣΣ(UUU i)

)
cp(UUU i) s

 .
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Since |Σ̃ΣΣGS| = 1, we have that sGS(µ̂µµGS, Σ̃ΣΣGS, Σ̃ΣΣGS) is the solution in s in the following

equation

1

n

n∑
i=1

P
(UUU)
i (µ̂µµGS, Σ̃ΣΣGS, s) =

b

n

n∑
i=1

cp(UUU i). (A.13)

Then, to prove (A.3) it is enough to show that for all ε > 0

lim
n→∞

1

n

n∑
i=1

P
(UUU)
i (µ̂µµGS, Σ̃ΣΣGS, σ0 + ε) < b cp a.s. and

lim
n→∞

1

n

n∑
i=1

P
(UUU)
i (µ̂µµGS, Σ̃ΣΣGS, σ0 − ε) > b cp a.s.

(A.14)

Using Assumption 2.4, to prove (A.14) it is enough to show

lim
n→∞

1

n

n∑
i=1

Pi(µ̂µµGS, Σ̃ΣΣGS, σ0 + ε) < b cp a.s. and

lim
n→∞

1

n

n∑
i=1

Pi(µ̂µµGS, Σ̃ΣΣGS, σ0 − ε) > b cp a.s.

(A.15)

It is immediate that

E

(
ρ

(
d (XXX,µµµ0,ΣΣΣ0)

cp (σ0 + ε)

))
< E

(
ρ

(
d (XXX,µµµ0,ΣΣΣ0)

cp σ0

))
= b

and

E

(
ρ

(
d (XXX,µµµ0,ΣΣΣ0)

cp (σ0 − ε)

))
> E

(
ρ

(
d (XXX,µµµ0,ΣΣΣ0)

cp σ0

))
= b.

Then Equation (A.15) follows from Lemma A.2 and part (a). This proves (b).
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Appendix B

Supplementary material for

Chapter 3

B.1 Efficiency of GRE and tuning parameter α

in Rocke-ρ function

The tuning parameter α in the Rocke-ρ function in γ in (3.1) is chosen small to control

the efficiency. In this chapter, we used the conventional choice α = 0.05, as seen to

achieve reasonable efficiency while achieving high robustness. Here, we explore the

performance of GRE-C with smaller values of α. We repeat the simulation study as

in Section 3.4 for p = 10, 30, 50 and n = 10p. The number of replicates is N = 30.

Table B.1 reports the finite sample efficiency and maximum average LRT distances

under 20% casewise contamination. In general, higher efficiency can be achieved

using smaller values of α, but with the cost of some loss in robustness.

Table B.1: Finite sample efficiency and maximum average LRT distances for GRE-C
with various values of α. The sample size is n = 10p.

p Efficiency, clean data Max LRT, 20% casewise

α = 0.05 α = 0.01 α = 0.001 α = 0.05 α = 0.01 α = 0.001

10 0.54 0.67 0.67 33.1 32.1 32.1
30 0.58 0.85 0.95 16.0 20.2 28.7
50 0.55 0.58 0.93 27.1 28.1 47.7
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Table B.2: Maximum average LRT distances. The sample size is n = 10p.

p ε EMVE GSE EMVE-C GRE-C

10 0.10 8.7 4.6 17.3 10.9
0.20 81.4 84.8 43.4 36.1

20 0.10 20.8 24.1 9.2 8.1
0.20 123.0 156.8 13.1 14.9

30 0.10 31.2 54.8 13.4 9.4
0.20 299.1 223.2 24.3 16.0

40 0.10 77.5 80.7 21.9 12.2
0.20 511.8 287.9 43.2 17.1

50 0.10 172.5 125.1 29.4 16.5
0.20 644.3 349.8 60.2 26.3

B.2 Performance comparison between GSE and

GRE

We conduct a simulation study to compare the standalone performances of the second

steps (i.e. the estimation step) in the two-step S-estimators: GRE-C starting from

EMVE-C versus GSE starting from EMVE.

We consider clean and casewise contaminated samples from a Np(µ0µ0µ0,Σ0Σ0Σ0) distri-

bution with p = 10, 20, . . . , 50 and n = 10p. The simulation mechanisms are the

same as that of Chapter 2, but in addition, 5% of the cells in the generated samples

are randomly selected and assigned a missing value. The number of replicates is

N = 500.

Table B.2 shows the maximum average LRT distances from the true correlation

matrices among the considered contamination sizes and, for brevity, shows only the

values for random correlations. EMVE is capable of dealing small fraction of outliers

with 500 subsamples, but breaks down when the fraction gets larger, and brings

down the performance of GSE. EMVE-C with more refined subsampling procedure

and larger subsample sizes shows better performance than EMVE, even for relatively

larger fraction of outliers. Overall, GRE performs better than GSE. The Rocke ρ

function used in GRE is capable of giving smaller weights to points that are moderate-

to-large distances from the main mass of points (Rocke, 1996); see, for example,
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LR
T
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Figure B.1: Average LRT distances for various contamination sizes, k, for random
correlations under 10% casewise contamination. The dimension is p = 30 and the
sample size is n = 10p.

Table B.3: Finite sample efficiency. The sample size is n = 10p.

p EMVE GSE EMVE-C GRE-C

10 0.24 0.89 0.26 0.54
20 0.30 0.95 0.30 0.59
30 0.34 0.98 0.33 0.58
40 0.35 0.98 0.34 0.47
50 0.37 0.99 0.35 0.48

Figure B.1 that shows the average LRT distance behaviors for 10% contamination for

dimension 30 and sample size 300 data. In the figure, we see that GRE outperforms

GSE for moderate sizes contamination points, as expected.

Table B.3 shows the finite sample relative efficiency under clean samples, taking

the classical EM estimator as the baseline. As expected, GSE shows an increasing

efficiency as p increases. GRE, overall, has lower efficiency.
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Appendix C

Supplementary material for

Chapter 4

C.1 Additional figures from the simulation study

in Section 4.5

1% Cellwise 5% Cellwise Casewise
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Figure C.1: MSE for various cellwise and casewise contamination values, k, for
models with p = 15 continuous covariates. The sample size is n = 150. For details
see Section 4.5.1 in the chapter.
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C.2. Investigation on the performance on non-normal covariates
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Figure C.2: MSE for various cellwise and casewise contamination values, k, for
models with px = 12 continuous and pd = 3 dummy covariates. The sample size is
n = 150. For details see Section 4.5.2 in the chapter.

C.2 Investigation on the performance on

non-normal covariates

Here, we conduct a modest simulation study to compare the performance of 3S-

regression, the shooting S-estimator, 2S-regression and the LS estimator for data

with non-normal covariates.

We consider the same regression model with p = 15 and n = 300 as in Section

4.5, but the covariates are generated from a non-normal distribution as follows. The

random covariates XXX i, i = 1, . . . , n, are first generated from multivariate normal

distribution Np(000,ΣΣΣ), where ΣΣΣ is the randomly generated correlation matrix with a

fix condition number of 100. Then, we transform the variables by doing the following:

(Xi1, Xi2, . . . , Xip)← (G−1
1 (Φ(Xi1)), G−1

2 (Φ(Xi2)), . . . , G−1
p (Φ(Xip))),

where Φ(x) is the standard normal. We set Gj as N(0, 1) for j = 1, 2, 3, χ2(20) for

j = 4, 5, 6, F (90, 10) for j = 7, 8, 9, χ2(1) for j = 10, 11, 12, and Pareto(1, 3) for

j = 13, 14, 15.

In the simulation study, we consider the following scenarios:
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C.2. Investigation on the performance on non-normal covariates

• Clean data: No further changes are done to the data;

• Cellwise contamination: Randomly replace ε = 0.05 fraction of the cells in the

covariates by outliers Xcont
ij = k×G−1

j (0.999) and ε proportion of the responses

by outliers Y cont
ij = E(Yij)+k×SD(εi). We present the results for k = 1, 5, 10,

but for larger values of k we obtain similar results.

The number of replicates for each setting is N = 1000.

The performance of the estimator in terms of MSE are summarized in Table

C.1. The performance of 3S-regression is comparable to that of LS and 2S-regression

for clean data and outperforms the shooting S, LS and 2S-regression for cellwise-

contaminated data, even under some deviations from the assumptions on the tail

distributions of the covariates.

Table C.1: MSE for clean data and cellwise contaminated data.

Estimators Clean Cellwise

k = 2 k = 5 k = 10

3S 0.007 0.014 0.013 0.015
ShootS 0.254 0.839 1.048 0.882
2S 0.003 4.102 3.851 4.057
LS 0.001 4.311 6.438 6.588
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C.3. Supplementary material for the Boston housing data analysis

C.3 Supplementary material for the Boston

housing data analysis

Table C.2: Description of the variables in the Boston Housing data

Variables Description
medv (response) corrected median value of owner-occupied homes in USD 1000’s
crim per capita crime rate by town
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted distances to five Boston employment centers
tax full-value property-tax rate per USD 1,000,000
ptratio pupil-teacher ratio by town
black (B − 0.63)2 where B is the proportion of blacks by town
lstat percentage of lower status of the population

C.4 Proofs of lemmas and theorems

Proof of Theorem 4.1

We need to following lemma in the proof.

Lemma C.1. Let X,X1, . . . , Xn be independent with a continuous distribution func-

tion G(x). Given 0 < α < 1, let η = G−1(1− α) and s = med(X − η|X > η). Now,

consider the following estimator: ηn = G−1
n (1−α) and sn = med({Xi−ηn|Xi > ηn}).

Then, sn → s a.s.

Proof. Without loss of generality, assume that X1 < X2 < · · · < Xn. So, ηn =

G−1
n (1− α) = Xdn(1−α)e, and

#{Xi|Xi > ηn} = n− dn(1− α)e = n− (n+ d−nαe) = bnαc.
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C.4. Proofs of lemmas and theorems

Then, Xk = med({Xi|Xi > ηn}) where

k = dn(1− α)e+

⌈
bnαc

2

⌉
= n− bnαc+

⌈
bnαc

2

⌉
= n−

⌊
bnαc

2

⌋
= n−

⌊nα
2

⌋
.

In other words, med({Xi|Xi > ηn}) = Xdn(1−α/2)e = G−1
n (1− α/2), and

sn = G−1
n (1− α/2)− ηn.

Therefore, sn → s a.s., where s = G−1(1− α/2)− η.

Proof of Theorem 4.1

Proof. Without loss of generality, we consider only the upper tail. Also, to simplify

the notation, we drop out the G in the probability and the u that was used to

distinguish between the notations for upper tail and lower tail.

Define F (t) and Fn(t) by

F (t) =
P (0 < (X − η)/s ≤ t)

P (X > η)
and Fn(t) =

1
n

∑n
i=1 I(0 < (Xi − ηn)/sn ≤ t)

1
n

∑n
i=1 I(Xi > ηn)

.

Let F0(t) = 1− e−t. It is sufficient to prove that for every ε > 0 there exists N such

that for all n ≥ N ,

sup
t≥t0
{F0(t)− Fn(t)}+ < ε.
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Note that

|F0(t)− Fn(t)| ≤
∣∣∣∣F0(t)− P (0 < (X − η)/s ≤ t)

P (X ≥ η)

∣∣∣∣
+

∣∣∣∣P (0 < (X − η)/s ≤ t)

P (X > η)
− P (0 < (X − ηn)/sn ≤ t)

P (X > η)

∣∣∣∣
+

∣∣∣∣P (0 < (X − ηn)/sn ≤ t)

P (X > η)
− P (0 < (X − ηn)/sn ≤ t)

P (X > ηn)

∣∣∣∣
+

∣∣∣∣P (0 < (X − ηn)/sn ≤ t)

P (X > ηn)
−

1
n

∑n
i=1 I(0 < (Xi − ηn)/sn ≤ t)

P (X > ηn)

∣∣∣∣
+

∣∣∣∣ 1
n

∑n
i=1 I(0 < (Xi − ηn)/sn ≤ t)

P (X > ηn)
−

1
n

∑n
i=1 I(0 < (Xi − ηn)/sn ≤ t)

1
n

∑n
i=1 I(Xi > ηn)

∣∣∣∣
= A+B + C +D + E.

By Assumption 4.1, A = 0.

Note that

B =
1

α
|P (0 < (X − η)/s ≤ t)− P (0 < (X − ηn)/sn ≤ t)|

=
1

α
|[G(st+ η)−G(snt+ ηn)]− [G(η)−G(ηn)]|.

Next, we show that supt |G(st+η)−G(snt+ηn)| < εα/4 and |G(η)−G(ηn)| < εα/4.

Given a small δ0 > 0 such that s − δ0 > c and η − δ0 > c for c > 0. Choose a

large K > 0 such that for Kδ0 = (s− δ0)K + η− δ0, G(Kδ0) > 1− εα
4

. First, consider

t > K. Since δ0 > 0, we have st + η > (s − δ0)K + (η − δ0) = Kδ0 , and therefore,

G(st + η) > G(Kδ0). Also, by Lemma C.1, sn → s a.s. and ηn → η a.s.. So, there

exists N0 such that |sn − s| < δ0 and |ηn − η| < δ0 for all n ≥ N0. So, we have

sn > s − δ0 and ηn > η − δ0, which implies snt + ηn > (s − δ0)K + (η − δ0) = Kδ0

and G(snt+ ηn) > G(Kδ0). Therefore,

sup
t>K
{G(st+ η)−G(snt+ ηn)} ≤ εα

4
.

Now, consider t ≤ K. We have |(st + η) − (snt + ηn)| ≤ t|s − sn| + |η − ηn| <
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C.4. Proofs of lemmas and theorems

Kδ0 +δ0 < δ1. Now by the uniform continuity of G, given ε > 0, there exists N1 such

that for n ≥ N1, |(st+η)− (snt+ηn)| < δ, and therefore, |G(st+η)−G(snt+ηn)| <
εα
4

. Similarly, there exists N2 such that for n ≥ N2, |η − ηn| < δ, and therefore,

|G(η)−G(ηn)| < εα
4

.

So, with probability one, take N = max{N0, N1, N2} such that for n ≥ N , it

implies that |(st+ η)− (snt+ ηn)| < δ and |η − ηn| < δ. Then, we have

B ≤ 1

α

[
sup
t
|G(st+ η)−G(snt+ ηn)|+ |G(η)−G(ηn)|

]
≤ 1

α
(
εα

4
+
εα

4
) =

ε

2
.

Next, we have

C ≤ |G(snt+ ηn)−G(ηn)|
(1−G(η))(1−G(ηn))

|G(η)−G(ηn)|

≤ 1

1−G(η)
|G(η)−G(ηn)| ≤ 1

α

εα

4
=
ε

4
.

By the Gilvenko–Cantelli Theorem, with probability one, we can show that there

exists N3 such that for n ≥ N3, supt |P (0 < (X − ηn)/sn ≤ t) − 1
n

∑n
i=1 I(0 <

(X − ηn)/sn ≤ t)| < εα
16
. Note that for large enough n, we have P (X > ηn) > α

2
. So,

D =

∣∣∣∣P (0 < (X − ηn)/sn ≤ t)

P (X > ηn)
−

1
n

∑n
i=1 I(0 < (Xi − ηn)/sn ≤ t)

P (X > ηn)

∣∣∣∣ ≤ 2

α

εα

16
=
ε

8
.

Next, by the Gilvanko–Cantelli Theorem again, there exists N4 such that for n ≥
N4, |P (X > ηn) − 1

n

∑n
i=1 I(Xi > ηn)| < supt |P (X > t) − 1

n

∑n
i=1 I(Xi > t)| < εα

16
.
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Then, we have

E ≤ (
1

n

n∑
i=1

I(0 < (Xi − ηn)/sn ≤ t))

∣∣P (X > ηn)− 1
n

∑n
i=1 I(Xi > ηn)

∣∣
P (X > ηn) ( 1

n

∑n
i=1 I(Xi > ηn))

≤ (
1

n

n∑
i=1

I(Xi > ηn))

∣∣P (X > ηn)− 1
n

∑n
i=1 I(Xi > ηn)

∣∣
P (X > ηn) ( 1

n

∑n
i=1 I(Xi > ηn))

≤ 2

α

εα

16
=
ε

8
.

Finally, take N = max{N0, N1, N2, N3, N4}, we have

sup
t
{F (t)− F̂n(t)} ≤ A+B + C +D + E ≤ ε

2
+
ε

4
+
ε

8
+
ε

8
= ε.

Proof of Theorem 4.2

Proof. Let (UUUn,1, . . . ,UUUn,n)t be the matrix of zeros and ones with zero corresponding

to a filtered component in (XXX1, . . . ,XXXn)t, and n0 be the number of complete observa-

tions after the filter step. Now, let Cj = {i, 1 ≤ i ≤ n : Un,ij = 0} and C = ∪pj=1Cj.

So, Cj is the set of indices of filtered values for variable j, and C is the set of indices

of incomplete observations. By Boole’s inequality,

n− n0 = #C ≤
p∑
j=1

#Cj.

Let ξ > 0 be as described in Section 4.3. Now, for each variable {X1j, . . . , Xnj},
j = 1, . . . , p, apply Theorem 4.1 to obtain Nj such that, with probability one,

#Cj ≤ nξ/p, for n ≥ Nj.
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Set N = max{N1, . . . , Np}. Hence, with probability one,

n− n0 ≤
p∑
j=1

#Cj ≤
p∑
j=1

nξ/p = nξ,

for n ≥ N , or equivalently,
n0

n
≥ 1− ξ.

Therefore, UUU∗n,i = (1, . . . , 1)t according to (4.6), and Un = I, where I has every entry

equal to 1. In other words, for n ≥ N , the GSE in Section 4.3 becomes

TTT 2S = TTTGS(Z, I)

CCC2S = CCCGS(Z, I).

Since GSE on complete data reduces to the regular S-estimator (Danilov et al., 2012),

this implies that 3S-regression reduces to S-regression for n ≥ N .
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