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Abstract

In this paper we will explore the metric space structure on Riemannian manifolds induced
by the metric. This will allow us to use analytic methods to find singularities in our manifold.
We will then switch focus to curvature by introducing sectional, Ricci, and Weyl curvature, with
their geometric interpretations. Finally we will view the non-triviality of the parallel transport
from the algebraic setting by studying the holonomy group of a connection. We will show how
the Riemannian holonomy related to the curvature tensor, and how it can be used to determine
local properties of a manifold.

1 Introduction

It should be noted that we utilized [Kem13] throughout will only be cited here.
A smooth manifold M is a Hausdorff, second countable topological space with a smooth

structure, with the property that every point contains a neighbourhood that is diffeomorphic to
Rn. On an arbitrary manifold there is no concept length, distance, or curvature thus making it
very difficult to talk about their shape.

Definition. Let M be a manifold, then a pseudo-Riemannian metric g is a symmetric, non-
degenerate (0, 2)-tensor on M . If g is pseudo-Riemannian metric, which is positive definite in the
sense that g(X,X) ≥ 0 for all vector fields X, then g is called a Riemannian metric. The pair
(M, g) is called a (pseudo-)Riemannian manifold.

A (pseudo-)Riemannian metric, as we will see allows us to a notion distance, length, and
curvature. With this added structure we can impose classical concepts from geometry to the
abstract manifold setting.

2 Manifold as a metric space

Before we can make (M, g) into a metric space, we first need a notion of length of a curve.

Definition. Let γ : [a, b]→M be a segment of some smooth curve. We define the L(γ) to be the
length of γ, given by

L(γ) =

∫ b

a
|γ′(t)|g(γ(t))dt,

where |X|g(p) ≡
√
gp(X,X).
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One can show that L is independent of reparametrization of γ and is clearly non-negative.
Before we define a distance function, we need to extend out definition of length to broader class of
curves.

Definition. Let γ : [a, b]→M be a continuous segment.

• We say γ is regular if γ is smooth and γ′(t) 6= 0 for all t ∈ [a, b].

• We say γ is piecewise regular curve segment or an admissible curve if there is a
subdivision a = a0 < a1 < · · · < ak = b such that each γ|[ai−1,ai] is a regular.

• We also consider the constant curve as γ : {a} →M , γ(a) = p to be admissible.

We can now extend our definition of length to an admissible curve by summing up the lengths
of each smooth segment. It can be shown that it is too independent of reparametrization. We now
have built up the machinery to define the notion of distance on a manifold.

Definition. Let p, q ∈M . The distance d(p, q) between p and q is defined as

d(p, q) ≡ inf{L(γ)|γ is a curve from p to q}

Theorem. d is a well-defined distance function in the sense that it satisfies the following identities:

• d(p, q) = d(q, p)

• d(p, q) ≤ d(p, r) + d(r, q)

• d(p, q) ≥ 0 where equality happens if and only if p = q

More over the metric space topology induced by (M,d) is the same as the underlying manifold
topology.

2.1 Length minimization

Definition. An admissible curve γ on M is said to be minimizing if L(γ) ≤ L(γ̃) for all admissible
curves γ̃ with the same end points at γ.

Clearly a curve is minimizing if and only if L(γ) = d(γ(a), γ(b)). In general a Riemannian
manifold need not have any minimizing curves between two points, for example if you look at
R2\{(0, 0)} with the euclidean metric, there is no minimizing curve between the points (−1, 0) and
(1, 0). Also even if such a curve exists, it need not be unique. For example, any two antipodal
points on the 2-sphere have infinitely many minimizing curves. So in thinking of L as a functional
that takes admissible curves and outputs their length, we want to find the admissible curves that
minimize L.

Theorem. [Lee97] The unit speed admissible curves γ are the critical points of L if and only if γ
is a geodesic. In particular, every minimizing curve is a geodesic.

Theorem. [Lee97] Every geodesic γ : I → M is locally length minimizing in the sense that for
every t ∈ I, there is an open neighbourhood U ⊂ I such that γ|U is length minimizing between any
two points on γ|U .

This implies that geodesics are precisely the curves that minimize the distance between points,
if such curves were to exist.
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2.2 Hofp-Rinow, and criterion for singularities

Recall that a manifold possesses a singularity if there is a maximal geodesic that is not defined
for all time. We want find a necessary and sufficient condition to determine which Riemannian
manifolds contain a singularity.

Definition. We say that a manifold is geodesically complete if there are no singularities in the
manifold, or equivalently if every maximal geodesic is defined for all time.

Definition. A metric space (X, d) is said to be complete if every every Cauchy sequence converges.

It turns out that these two notions of completeness are linked by the following theorem.

Theorem (Hofp-Rinow). [Lee97] A connected Riemannian manifold (M, g) is geodesically complete
if and only if (M,d) is complete as a metric space.

Due to this equivalence we will use complete and geodesically complete interchangeably. This
is a very powerful theorem in that is gives us a way to find singularities without explicitly finding
geodesics, but rather by measuring distance between points, and using the properties of metric
spaces.

Corollary. If M is compact, then M has no singularities there are no singularities.

This follows from the fact that a compact metric space is complete.

Corollary. [Lee97] If there exists a point p ∈ M such that expp is defined for all of TM , then M
is complete.

Theorem. [KN96] Every homogeneous Riemannian manifold is complete.

Hofp-Rinow gives us a fresh way at tackling the problem of finding singularities, because we
have a completely different new set of tools from metric space theory to determine completeness
as opposed to the manifold structure. This is not to say it makes the problem easier, but rather
different. If fact this method is slightly limited in approach to general relativity since we can only
only apply Hofp-Rinow to Riemannian manifolds, and it may not hold for general spacetime.

3 Sectional curvature

Note that this section utilized both [Lee97] [dC92] We begin by doing a quick recap of the Rieman-
nian curvature tensor.

Definition. Recall that if ∇ is an connection on a TM then we define the curvature tensor R∇
as a (1, 3)-tensor on M given by

R∇(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

When ∇ is the Levi-Civita connection, we call R∇ the Riemann curvature tensor and denote it as
R.

It is often more convenient to work with a (0,4) tensor over of a (1,3) one. We do this by
contracting with g.

R∇(X,Y, Z,W ) ≡ g(R∇(X,Y )Z,W )
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Theorem (Symmetries of R∇). Let ∇ be a connection on M and X,Y, Z,W be vector fields, then:

1. R∇(X,Y, Z,W ) = −R∇(Y,X,Z,W ).

2. R∇(X,Y, Z,W ) = −R∇(X,Y,W,Z) if ∇ is metric compatible.

3. (First Bianci Identity): R∇(X,Y, Z,W ) + R∇(Y,Z,X,W ) + R∇(Z,X, Y,W ) = 0 if ∇ is
torsion-free.

4. R(X,Y, Z,W ) = R(Z,W,X, Y ); this is only true for the Levi-Civita connection.

From this point forward we will assume that ∇ is the Levi-Civita connection.

Definition. Suppose that n = dim(M) ≥ 2. Let p ∈ M , Π be a 2-dimensional subspace of TpM .
Let {X,Y } be any basis for Π. Then we define the sectional curvature of (M, g) at Π by

K(Π) ≡ R(X,Y, Y,X)

g(X,X)g(Y, Y )− g(X,Y )2

One can show that K is actually independent of basis, and is therefore well defined. Clearly
K is determined by the curvature tensor. What is surprising is that if we know the K(Π) for all
2-planes Π in TpM then we can reconstruct Rp. So in fact K and R encode two equivalent pieces
of information. We know from lectures that R measures the non-triviality of the parallel transport
along an infinitesimal parallelogram. It is a natural question to ask where the sectional curvature
comes from, and why is it an intuitive way to think about curvature.

3.1 Second fundamental form

The goal of this section is to introduce sectional curvature and give a geometric interpretation.
Suppose the (M, g) is a n-dimensional manifold, and let p ∈M . There exists a open neighbourhood
U of p, such that ι : (U, g)→ (Rn+1, g̃) is an injective isometric immersion, where g̃ is the euclidean
metric and g = ι∗g̃. Since we will only be doing local computations, we will assume WLOG
that M = U . We will identify M with a surface ι(M) in Rn+1 and g with g̃. We have that
TpRn+1 ∼= TpM

⊕
NpM , where NpM ≡ (TpM)⊥ is the orthogonal complement of TpM which is

identified as a subspace of TpRn+1 since ι is an immersion.

Definition. We define the normal bundle of M by

NM ≡
⊔
p∈M

NpM.

Note that in our case NM is a 1-dimension manifold, and TRn+1 = TM
⊕
NM . There exists

an orthonormal frame {E1, . . . , En, N} for TRn+1 such that {E1, . . . , En} is a orthonormal frame
for TM and Np is a basis for NpM at every p ∈M .

Theorem (The Gauss Formula). Suppose that ∇̃, and ∇ are the Levi-Civita connections on Rn+1

and M respectively. If X, and Y are vector fields on M and X̃, Ỹ are any extensions to Rn+1, then
we have

∇̃X̃ Ỹ = ∇XY + Π(X,Y )N,

where Π is a symmetric (0,2)-tensor on M .
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Π is referred to as the second fundamental form in literature:, it should be noted that it is
uniquely determined up to a sign of N , so it is independent of choice. The reason for the peculiar
name is because the first fundamental form is usually referred to as the metric in classical geometry
of curves and surfaces. By raising one of the indices of Π we can define a (1,1)-tensor S called the
shape operator defined by

g(X,S(Y )) = Π(X,Y ), ∀X,Y ∈ Γ(TM).

Since Π is symmetric, we have that g(S(X), Y ) = g(X,S(Y )), which implies that S is selfadjoint
endomorphism on TM .

Theorem (Weingarten Equation). Let X be a vector field on M and let X̃ be any extension to
Rn+1. Then we have the following:

S(X) = −∇̃X̃N.

3.2 Gauss curvature

Definition. Let γ : I → Rn be a curve parametrized by arclength (unit speed). Then we define
the curvature of γ at t ∈ I to be

κ(t) ≡ |γ̈(t)|.

This notion of curvature of a curve comes from the classical sense, where the higher the accel-
eration of the curve, the more “curved” it is. We now bring our attention to geodesics. Suppose
that γ is a unit speed geodesic on M . Then the Gauss equation tells us that,

γ̈ = D̃tγ̇ = Dtγ̇ + Π(γ̇, γ̇)N = Π(γ̇, γ̇)N.

The second equality is true since γ is a geodesic implies Dtγ̇ = 0. So we have κ = ±Π(γ̇, γ̇). The
geometric interpretation of Π is that for any unit vector V ∈ TpM , Π(V, V ) is the curvature at p
of the geodesic γ which starts at p, with initial velocity V . It has a positive sign if γ is curving
towards N and a negative sign if it is curving away from N . Since S is self-adjoint we have that
it is diagonalizable. Therefore exists an orthonormal basis {E1, . . . , En} of eigenvectors of S with
eigenvalues κi. Note that κi are uniquely determined unto sign, because Π is unique upto a sign.

Definition. The eigenvalues κi of S are called the principal curvatures, and the corresponding
eigenvectors are called the principal directions. We define the Gauss curvature K by

K ≡ det(S) =

n∏
i=1

κi.

We also define the mean curvature H by

H ≡ 1

n
tr(S) =

1

n

n∑
i=1

κi.

All of these concepts are unique (upto a sign) because determinant and trace are independent
of basis. Since Π is a bilinear form, and curvatures of the κi correspond to how curvature of the
geodesics which start at p and have initial velocity Ei.
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3.3 Geometric interpretation

We now look at the case of n = 2, when we have a surface in R3. There is very little reason to
believe that K = κ1κ2 has much to do with the intrinsic geometry of M , since it depends on the
embedding. Gauss’s Theorema Egregium (roughly translates “totally awesome theorem”), which is
considered one of the most remarkable discoveries in classical geometry, says that despite all odds
K is invariant under isometry.

Theorem (Gauss’s Theorema Egregium). If (M, g) is a 2-dimensional submanifold of R3, where
g is the induced metric, then for any p ∈ M and any basis (X,Y ) for TpM , the Gauss curvature
K is given by

K =
R(X,Y, Y,X)

g(X,X)g(Y, Y )− g(X,Y )2

Since R, and g are invariant under isometry, so is K. We can now give a geometric interpretation
of the sectional curvature. Suppose that (M, g) is a Riemannian manifold and p ∈ M . Let Π be
a 2-dimensional plane in TpM and let V ⊂ TpM be a neighbourhood of 0 such that expp is a
diffeomorphism, then let SΠ ≡ expp(Π∩V ) be a 2-dimensional submanifold of M containing p. SΠ

is called the plane section determined by Π. So SΠ can the thought of as the set of swept out by
geodesics that start at p, with initial velocity in Π. We denote K(Π) to be the Gauss curvature of
SΠ, we then have the following relation.

Theorem. If X,Y are a basis for Π ⊂ TpM , then

K(Π) =
R(X,Y, Y,X

g(X,X)g(Y, Y )− g(X,Y )2
,

Thus the sectional curvature encodes the Gauss curvature of all plane sections of M .

4 Decomposition of the curvature tensor

The Riemann curvature tensor encodes a lot of information, and although it has many symmetries,
the fact that it is a (0, 4)-tensor makes it difficult to work with in general. We often want to
summarize relevant information from the curvature to simplify expressions or to get the meaningful
information without the clutter. Two of the most important tensors that encode information from
the Riemann curvature tensor are the Ricci tensor, and the Weyl tensor. We will explain what they
are, what they measure, and provide a geometric interpretation for each. Note we will be assuming
the connection is Levi-Civita for the remaining of our discussion with curvature.

4.1 Ricci curvature

The Ricci curvature is an incredibly important quantity since it plays such an important role in
the Einstein equation. It is essential to get a better geometric interpretation of what exactly it
measures.

Definition. The Ricci curvature tensor Ric is a symmetric (0, 2)-tensor whose indices are
defined by:

(Ric)jk ≡ Riijk,
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where Rlijk are the indices of the Riemann curvature tensor. The scalar curvature R is define to
be

R ≡ tr(Rc#) = Rjkg
jk

We will first give a geometric interpretation of what Ric is. Let X ∈ TpM be a unit vector. We
can choose an orthonormal basis for {X1, . . . , Xn} for TpM such that X = X1, then:

Ric(X,X) = R11 = Rii11 =
n∑
i=1

R(Xi, X1, X1, Xi) =
n∑
i=2

K(Xi, X1).

One can show that this is well defined in the sense that it is independent of the choice of orthonormal
basis. So we have Ric(X,X) is the sum of sectional curvatures of the planes spanned by X. Since
Ric is a symmetric bilinear form is, it is completely determined by R(X,X).

Similarly if {X1, . . . , Xn} is an orthonormal basis for TpM , then

R =
∑
i 6=j

K(Xi, Xj).

So we have Ric(X,X) is the sum of sectional curvatures of the planes spanned by orthogonal basis
pairs.

Another interpretation of Ric is the following. Let X ∈ TpM for some p ∈ M . Let U be any
neighbourhood of p. For each q ∈ C we define qt ≡ γq(t) where γq is the geodesic starting at q with
initial velocity X. We let Ut ≡ {qt|q ∈ U}. It can be shown that [Oll13]

Vol(Ut) = Vol(U)

(
1− t2

2
Ric(X,X) +O(t3)

)
,

so Ric controls the change in volumes under a geodesic flow. The limitation is that it does not tell
us how the shape of the object is changing. For example, we could have a ball undergo geodesic
flow and have it stretch into an ellipsoid, but always have the same volume at all times, and the
Ricci curvature tensor will not give any insight into how the shape is changing. To combat the
issue we examine the Weyl tensor.

4.2 Weyl curvature

The Weyl tensor, like the Ricci tensor is defined in terms of the Riemann curvature tensor. However
both tell the very different information about the curvature. We already showed that the Ricci
curvature encodes information about volume, Weyl curvature tell us information about the shape.

Definition. Assume that dim(M) ≥ 3, then the Weyl curvature is defined as

Cijkl = Rijkl −
2

n− 1
(gi[kRl]j − gj[kRl]i) +

2

(n− 1)(n− 2)
Rgi[kgl]j

Although this may seem complicated, the Weyl curvature has the same symmetries as the
Riemann curvature tensor as described in the beginning of section 3, with the added condition that
it is trace free. The Ricci curvature and Weyl curvature together encode the same information as
the curvature tensor.

Theorem. Weyl tensor is that is conformally invariant, meaning, if g̃ = fg, where f is a positive
smooth function, then the C̃ = C where C̃ is the Weyl tensor under the conformal change in metric.
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Since R vanished if and only if locally g is the euclidean metric, we have immediately by the
above theorem that the Weyl tensor vanishes if and only if g is locally conformal to the euclidean
metric. If the Weyl curvature vanishes then we say that (M, g) is conformally flat.

Gravitational tidal forces, gravitational waves usually stretch is some directions and contract in
other. Since the Ricci curvature cares about changes in volume, it doesn’t capture their information
unlike the Weyl tensor. For example as the moon travels around the earth, it does not change,
volume, but different parts of the moon are experiencing different magnitude of the gravitational
forces, the Weyl curvature tells us how object experiences the forces as it evolves. [Bae13]

5 Holonomy

Before we begin our discussion of holonomy we fix our notation by defining the parallel transport
of a vector field along a smooth curve. The reader is expected to be familiar with these and their
interpretation.

Definition. Let (M,∇) be a manifold with a connection on TM , p, q ∈ M , Xp ∈ TpM , and
γ : [0, 1] → M be a smooth curve such that γ(0) = p, γ(1) = q. A tensor field X̃ along γ is called
the parallel transport of Xp, if

1. X̃p = Xp

2. (DtX̃)(t) = 0 for all t ∈ [0, 1].

We will denote the parallel transport of along γ by Πγ : TpM → TqM

Πγ(Xp) = X̃q.

One can show that the parallel transport always exists and is unique, and that Πγ is invertible.
We know that one of the ways we measure shape of a manifold is by examining the non-triviality
of the parallel transport. It is natural to ask how badly does it fail, and if so, can we use it to get
more structure out of the manifold? The holonomy takes the set of all possible parallel transports
and we can study the group they generate under composition. To study this group we do not need
any structure other than a connection. Similar to connection, holonomy is a measure of how badly
parallel transport fails. We now define the holonomy group of a connection.

Definition. Let (M,∇) be a manifold with a connection on TM , p ∈ M , then the holonomy
group of ∇ based at p, is

Holp(∇) ≡ {Πγ ∈ GL(TpM)|γ : [0, 1]→M, is a smooth curve such thatγ(0) = γ(1) = p}

The restricted holonomy group based at p is the subgroup Hol0p(∇) of Holp(∇) of contractable
loops based at p.

We note that Holp(∇) is indeed a group under composition. We will now remove the need to
fix a base point, by showing that Holp(∇) ∼= Holq(∇) if p, q are in the same connected components
of M . This is due to the fact that if τ is a curve that joints p, q, then Φ : Holp(∇)→ Holq(∇)

Φ(Πγ) = ΠτΠγΠ−1
τ .

It is easy to verify Φ is an isomorphism between the two groups, since we follow parallel transport
from q to p via τ then along γ from p to p, and then τ in reverse. This results in a parallel transport
from q to q. We will now stop mentioning the basepoint because all the groups are isomorphic up
to conjugation. I will now list some facts about Hol(∇).
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Proposition. [KN96] Let ∇ be a connection on TM , and let Hol(∇), Hol0(∇) be the holonomy
group and restricted holonomy group of ∇ respectively. Then

1. Hol0(∇) is a connected Lie subgroup of GL(n,R).

2. Hol0(∇) is the identity component of Hol(∇), i.e. it is the connected component of Hol(∇)
that contains the identity.

3. If M is simply connected, then Hol(∇) = Hol0(∇).

4. M is flat with respect to ∇ iff the curvature tensor R vanishes iff Hol0(∇) is trivial.

The last point is important since it is tells us that holonomy is indeed a measure of how curved
a space is. This is natural since the curvature tensor measures the failure of the parallel transport
along an infinitesimal “parallelogram”. However, a parallelogram is contractable if we make it
small enough, and thus the parallel transport along it vanishes iff the curvature is 0 iff the parallel
transport is trivial iff Hol0(∇) is trivial. Although it measures the non-triviality of the parallel
transport, it tells us very different information than the curvature. The curvature tensor gives us
more of an analytic way to manipulate the non-trivialities of the parallel transport, whereas the
holonomy gives us an algebraic one. Both are useful in their own right, but offer a different view
on the same problem.

5.1 Riemannian holonomy

We now restrict our attention to the Levi-Civita connection. In this case we call Hol(∇) the
Riemannian holonomy. In the case that ∇ is the Levi-Civita connection we can say a lot more
about the structure of Hol(∇).

Theorem (Borel & Lichnerowicz). [KN96] The Riemannian holonomy group is a compact Lie
subgroup of SO(n,R).

The following theorem shows that in the case of the Riemannian holonomy, the curvature tensor
and the holonomy group are closely related.

Theorem (Ambrose-Singer theorem). [KN96] If M is simply connected, then the Lie-algebra h of
the Riemannian holonomy Holp(∇) is generated as a vector space by the curvature operator R(X,Y )
for all X,Y ∈ TpM .

Note that the above result is much more general, but it requires a lot more machinery to
introduce than is relevant for this exposition. Ambrose-Singer says states that the holonomy group
is generated by the curvature operator R(X,Y ), meaning they encode a lot of the same information.

5.2 DeRham decomposition

We will need to use basic facts from representation theory for this section.

Definition. If G is a group, and V is a finite dimensional vector space, we say that that V
is a representation of G is there is exists a group action ρ : G → GL(V ). If W ⊂ V be a
subspace, we say that W is a sub-representation of V if W is invariant under the action of
G, i.e. ρ(q)(W ) ⊂ W, ∀g ∈ G. Finally we say that a representation is irreducible if the only
sub-representations are are {0} and V .
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One result from representation theory we will use is if W is a sub-representation of V , then so
is W⊥, the orthogonal complement of W in V , and V = W

⊕
W⊥. So we can repeat this process

always decompose V as the direct sum of irreducible sub-representations. The holonomy group
Holp(∇) act naturally by left multiplication on to TpM , so TpM is a representation of Holp(∇).

So we have TpM =
⊕k

i=0 T
i
pM where T ipM is an irreducible sub-representation of TpM . We also

say that T 0
pM = {X ∈ TpM |Πγ(X) = X,∀Πγ ∈ Holp(∇)} is the trivial sub-representation of TpM

possible 0-dimensional. The following theorem tells us how the representations of the holonomy
group can give us insight on the local properties of a Riemannian manifold.

Theorem (de Rham decomposition). [KN96] Let (M, g) be a simply connected Riemannian man-
ifold with the Levi-Civita connection ∇. Let TpM =

⊕k
i=0 T

i
pM be the representation of Holp(∇),

where T ipM are irreducible, and T 0
pM , let T iM be the involutive distribution on M obtained by

parallel transport of T ipM . By Frobineus theorem [Lee03], there is a corresponding integral manifold
M i, such that M i satisfies TpM

i = T ipM . We have the following:

1. M0 is a euclidean space of dimension dim(T 0
pM).

2. M is locally isometric to V 0 × V 1 × · · · × V k, where V i is on open subset of M i.

3. Holp(∇) is the direct product of the holonomy groups of each of the Mi.

4. If M is complete (i.e. there are no singularities then), then so are M i and M is isometric to
M0 ×M1 × · · · ×Mk.

Thus the holonomy group gives a way to study the local structure of a Riemannian manifold.
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