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Abstract

We begin our exploration of the FRW cosmologies by deriving the Friedman equations.
We then explore both analytically and numerically evolution of the scale factor in different
epochs, including the cases where the universe has non-zero curvature. After that we discuss
the condition required to have a universe where the scale parameter shrinks to a finite value,
non-zero value, an continues to expand forever. We end our exploration with a discussion of the
evolutions of the scale parameter under the presence of multiple types of matter.

Before we begin our exploration, we should note that all the diagrams and computations were
done using Maple 16, and lecture notes were extensively used throughout this entire project, and
will only be cited here [Kem13].

1 Derivation of Friedman equations

The evolution of the universe in FRW spacetime is governed by the Friedman equations. We begin
by briefly outlining how these equations are derived. In the FRW universe, it is assumed that the
universe is modelled as a Lorentzian 4-manifold (M, g) which can be decomposed into the following
form:

M = I × Σ,

g = −dt2 + a(t)2g,

where I ⊂ R is an interval, t ∈ I is called cosmic time, and a(t) is called the scale factor, which
is a smooth function of M , that is spatially constant. (Σ, g) is a fully isotropic, and homogeneous
Riemannian 3-manifold. Note that these conditions imply that Σ has constant sectional curvature
K.

Spaces of constant sectional curvature have a very rigid structure:

• If K > 0, then Σ is isometric to a 3-sphere and Σ is closed.

• If K = 0, then Σ is isometric to R3 and Σ is flat.

• If K < 0, then Σ is isometric to 3-dimensional hyperbolic space.

To derive the Friedman equations we first define a tetrad locally around a point p = (t0, p0) ∈M
by the following equations:

θ0 ≡ dt,

θi ≡ a(t)θ
i
,
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where θ is an orthonormal triad locally around p0 ∈ (Σ, g). We note that θi form an orthonormal
tetrad for (M, g). Our goal now is the derive the curvature 2-form M .

To do so, we calculate dθi in two ways.

1. By applying the definition of d and the 1st structure equation for Σ we get:

dθi = − ȧ
a
θi ∧ θ0 − ωij ∧ θi. (1)

2. By directly applying the 1st structure equation to dθi on M to get:

dθi = −ωi0 ∧ θ0 − ωij ∧ θj . (2)

Equating 1,2 results in the following identity:

ωi0 =
ȧ

a
θi and ωij = ωij . (3)

Now we compute the curvature 2-form for M . By applying the second structure equation when
1 ≤ i, j ≤ 3, we obtain:

Ωi
j = dωji + ωiµ ∧ ω

µ
j

= Ω
i
j + ωi0 ∧ ω0

j .
(4)

Since Σ is a space of constant sectional curvature K, the curvature 2-form is given by

Ω
i
j = Kθ

i ∧ θj =
K

a2
θi ∧ θj . (5)

Substituting 3,5 into 4 and simplifying results in

Ωi
j =

K + ȧ2

a2
θi ∧ θj . (6)

Using an analogous argument we can compute Ω0
i .

Ω0
i =

ä

a
θ0 ∧ θi. (7)

Combining 6,7 with the fact that Ωµν = 1
2Rµνσξθ

σ ∧ θξ, we can obtain the curvature tensor Rµνσξ.
From the curvature tensor, we can find the Ricci tensor Rµν ,= and the scalar curvature R by
summing of the appropriate indices of the curvature tensor. Substituting these into the Einstein
tensor Gµν = Rµν − 1

2gµνR gives us

G00 = 3

(
ȧ2 +K

a2

)
, Gii = −2

ä

a
− ȧ

a2
− K

a2
. (8)

The off-diagonal entries are 0 since gµν and Rµν are both diagonal in the θi frame. So the Einstein
equation tells us that Gµν = 8πGTµν , implying the energy-momentum tensor Tµν is also diagonal.
We know that the entries of Tµν are as follows:

T00 = ρ, Tii = p, (9)
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where ρ is the matter energy density and p is the matter pressure. Note that we have
incorporated the cosmological constant into the definition of ρ and p. Substituting 8,9 into the
Einstein equation we get the Friedman equations:

3

(
ȧ2

a2
+
K

a2

)
= 8πGρ (10)

−2
ä

a
− ȧ

a2
− K

a2
= 8πGp. (11)

We can clean this up a bit by eliminating the ȧ term from 11 to get

ä = −4πGa

3
(ρ+ 3p). (12)

2 Evolution during epochs

Recall that an epoch is a period of time where the equation of state parameter w(ρ) is constant.
Ie. we have a linear dependency between pressure and density,

p(ρ) = wρ. (13)

As shown in class we have that the Friedman equations implies

ρ̇ = −3
ȧ

a
(ρ+ p), (14)

or equivalently,
d

da
(ρa3) = −3pa2. (15)

Substituting in (13) into (15) and simplifying we get,

dρ

da
= −3

ρ

a
(w + 1). (16)

To solve 16, we apply separation of variables to get ρ as a function of the scale factor,

ρ(a) = ρ0a
−3(w+1). (17)

To keep physical we will assume that ρ0 is non negative. Using 17, 10 becomes,

ȧ2

a2
+
K

a2
=

8πG

3
ρ0a

−3(w+1) (18)

To solve this equation for the different epochs we need to look at the case where the curvatures are
different.

2.1 K = 0

The simplest case is when we assume the universe is spatially flat, thus K = 0. In this case 18
simplifies significantly:

ȧ = ±
√

8πGρ0

3
a−

3(w+1)
2

+1 = ±Ca−
3(w+1)

2
+1, (19)
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where C =
√

8πGρ0
3 . Again we can solve for a by apply separation of variables to 19:

a(t) =


(
±3(w+1)C

2 t+A
) 2

3(w+1)
, if w 6= −1

Ae±Ct, if w = −1
(20)

here A is a constant that depends on initial conditions, and whether we chose ± depends ȧ(t0).
Let’s examine 20 in more detail.

2.2 w ≥ −1

When w > −1, the solutions all contain a singularity when a = 0. This signifies that these epochs
must have come into existence as a result of a “big bang”, and then continued to expand forever.
Since we are assuming that a > 0 and time is going forward, we can conclude that the universe in

these epochs continues to increase indefinitely. The rate at which a(t) increases is O
(
t

2
3(w+1)

)
.

In particular, in the case of matter-dominated universe (w = 0) we have that a is increasing at

a rate of O
(
t
2
3

)
, and in a radiation-dominated universe (w = 1

3) we have that a increases at a rate

of O
(
t
1
2

)
.

When w = −1, i.e. in the case where the cosmological constant dominates, we have that a
grows (decays) exponentially if ȧ is positive (negative). One point of note is that in this epoch we
do not have a singularity as a is never 0. So this epoch does not suggest the existence of a big bang.

Figure 1 contrast how the scale factor evolves during each of the epochs.

Figure 1: The diagram shows how a evolves during cosmological constant (black), matter-dominated
(blue), radiation-dominated (red) epochs under the same initial conditions.
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2.3 Curved spacetime

We now consider the case where the universe has non-negative scalar curvature, so K 6= 0. To find
how the scaling factor evolves during each epoch we need to solve 18, with K 6= 0. As in the flat
universe case, we need to apply separation of variables to solve for a; because of the curvature term,
it is very difficult to solve analytically. We will perform some qualitative analysis and numerical
methods. First note that 18 and 12 tell us,

|ȧ| =
√

8πG

3
ρ0a−3w−1 −K (21)

ä = −4πGa

3
ρ(1 + 3w). (22)

For any given epoch, as K increases, |ȧ| decreases, so the greater the curvature the slower a will
grow or decay for any given epoch. So higher curved space acts as a retardant on the expansion
of the universe, since it resists rapid growth or decay. Regardless of the curvature, we have that
22 implies ä > 0 when w < −1

3 and ä < 0 when w > −1
3 . First let us assume that w < −1/3. In

this case case 21 implies that a→∞, which implies ȧ does as well. When a is large, the curvature

term is negligible and we have ȧ ∼
√

8πG
3 ρ0a−3w−1, meaning that when a is large the rate at which

it grows is the same regardless of curvature. Since we already know the rate when K = 0, we

have that regardless of curvature a grows at a rate of O
(
t

2
3(w+1)

)
when −1 < w < −1/3, and

exponentially when w = −1.
If K > 0, then |ȧ| needs to always be positive. If a is increasing then 21 implies |ȧ| will also

increase as long as a−3w−1 increases with a. This is only possible if −3w − 1 > 0 or w < −1
3 . If

w > −1
3 then a−3w−1 decreases to 0 as a→∞. Eventually |ȧ| will reach 0 for some finite a. When

w > −1/3 we have that ä is negative, meaning that when |ȧ| = 0, a is at a local maximum, and
thus a will collapse into a “big crunch” in some finite time. When w = −1

3 if K = 8πG
3 ρ0 then a

will be constant, and if K > 8πG
3 ρ0, then a will increase (or decrease) linearly with time.

If K < 0 then 21 implies |ȧ| > 0 for all a so either a will always increase with time or decrease
(depending on initial conditions), and will not switch signs. When w ≥ −1

3 we have that as a

approaches infinity ȧ approaches
√
K. So in the limit a increases a rate of O(t).

Figure 2 shows how a(t) evolves with time, for the different epochs with the same initial condi-
tions.

Figure 2: The diagrams shows how a evolves during cosmological constant (left), matter-dominated
(middle), radiation-dominated epochs(right) under the same initial conditions when K = −1(blue),
K = 0(black), and K = −1(red).
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2.4 w less than -1, oh no!

We recall that w ∈ [−1, 1] for all known forms of matter. However recent data indicated that
currently for our universe w = −1.19. Let us examine in further detail what an epoch with an
equation of parameter below -1 means for the evolution of a(t). We first note that when w < −1
then 17 implies that

ρ(a) = ρ0a
ε, (23)

for some ε > 0. 23 implies that as the universe expands, the density also increases. This is very
counter-intuitive, as one expects the universe to dilute as a increases. This implies that as time
increases we will approach an infinite density, and expansion. In the case of a flat universe we have
that 20 implies that

a(t) =
1

(±At+B)ε
, (24)

for some constants A,B, and ε > 0. This implies that for some finite time there is a singularity.
Solutions for the different curvatures are plotted below.

In the case of different curvatures, our remark in the previous section regarding |ȧ| with different
curvatures did not use the fact that w ≥ −1, so regardless of curvature we have that a increases
at the same rate. This implies that regardless of the curvature we have a singularity at some finite
time. In general as K increases, then |ȧ| decreases, which implies the singularity occurs later for
higher curvatures, compared to lower ones, as seen in Figure 3.

If this is indeed the universe we are in and there are no phase transitions causing w to remain
below -1, then our universe will eventually be “ripped” apart by the unknown matter and we have
an expiry date.

Figure 3: The diagrams shows how a when w = −1.19 under the same initial conditions when
K = −1(blue), K = 0(black), and K = −1(red).
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3 Boing!

We have already seen examples of universes where the scale parameter expands and then eventually
collapses in some finite time. However in every case we have seen so far, we note that a collapses
back down to 0, resulting in a singularity, or a “big crunch”. A reasonable question to ask, is if
it is possible for the scale parameter to decrease to a finite non-zero value, and then expand once
again, a so called “bounce”? The answer turns out to be yes, and we will outline the necessary
conditions for w(ρ).

We begin by noting that for a bounce to occur there needs to exist time t0 such that ȧ(t0) = 0
and ä(t0) > 0 locally at t0, ie a local minimum. Under these conditions 10,11 imply the following.

ȧ2

a2
=

8πG

3
ρ− K

a2
= 0, (25)

ä =
−4πGaρ

3
(1 + 3w) > 0. (26)

First lets look at the case where the universe is spatially flat and K = 0. Then we have that 25
implies that ρ(t0) = 0, but then 26 implies that p(t0) < 0. Since w = p

ρ → −∞ as t → t0 which
clearly cannot happen since w ∈ [−1, 1]. So we cannot have that in a flat universe a bounce cannot
happen.

If there is curvature present to have 25 satisfied, then for a bounce to occur at t0 we need ρ(t0)
and K to have the same sign, and ρ ∝ K

a2
. Note that in the case of negative curvature, 25 can

only be satisfied if the density is negative, or equivalently the cosmological constant is negative and
dominates at time t0. Now if K > 0 then ρ0 ≡ ρ(t0) > 0, which implies that 1+3w < 0 or w < −1

3 .
Similarly, when K < 0 we need w > −1

3 .

Recall during an epoch we have that 17 tells us that ρ ∝ a−3(w+1). Setting −3(w + 1) = −2
we find that w = −1

3 . So the problem has been reduced to finding w(ρ) that satisfies the following
criterion:

• w(ρ0) = −1
3 .

• w is approximately constant at ρ0, so that w approximates an epoch.

• w need to be strictly less (greater) than −1
3 when the curvature is positive (negative) locally

at ρ0 for the concavity to be positive

One such valid w(ρ) is the following:

w(ρ) =

{
−1

3 − sgn(K)2
3 exp

(
− 1

(ρ−ρ0)2

)
, if ρ 6= ρ0

−1
3 , if ρ = ρ0

, (27)

where sgn(K) is 1 is K > 0 and is -1 when K < 0. This particular 27 is between (−1,−1
3 ] in the

positive curvature case and between [−1
3 ,

1
3) in the negative curvature case. It is smooth, but not

analytic at ρ0 since every derivative is 0 at ρ0. Thus this function is approximately “constant” at
ρ0 but is locally either less than (greater than) −1

3 in the case of positive (negative) curvature. See
figure 4 for the bounce. Mathematically speaking, such an equation of state parameter is possible
for some choice of scalar field and potential; whether it is physically possible or likely is beyond the
scope of this paper.
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Figure 4: The left is the w(ρ) defined at the end of section 3. The right is a(t) in a universe with
an equation of state parameter as described in the left diagram.

4 Evolution of the scale factor

[Car03] Now we shift our attention to a universe with multiple types of matter. We begin by
defining the Hubble parameter H by

H ≡ ȧ

a
.

We also define the critical density and the density parameter respectively as

ρcrit ≡
3H2

8πG
, Ω ≡ ρ

ρcrit
. (28)

So substituting 4 into 10, the Friedman equation becomes

H2 =
8πG

3
ρ− K

a2
(29)

or equivalently by dividing through by H2, and substituting 28 into 29,

Ω− 1 =
K

H2a2
. (30)

This then gives us an equivalent measure of when the curvature is positive, zero, or negative,
summarized below:

K > 0⇔ Ω > 1,

K = 0⇔ Ω = 1,

K < 0⇔ Ω < 1.

(31)

In order to analyze how a evolves under the presence of multiple forms of matter, we make the
following simplifying assumptions:

1. The universe has three forms of densities: vacuum, matter, and radiation, denoted by ρΛ, ρm,
and ρr. We pressure for each density is pi = wiρi, (where wΛ = −1, wm = 0, and wr = 1

3). In
other words we have

ρ = ρΛ + ρm + ρr,

p = wΛρΛ + wmρm + wrρr.
(32)

8



2. These forms of matter do not interact with each other. In other words there are no phase
transitions.

3. Finally we will assume that each ρi will evolve as if they were evolving in their respective
epoch. Therefore their evolution is governed by 17, or equivalently,

ρi = ρi0a
−3(wi+1), (33)

where ρi0 are constants.

The first assumption is very fair since those were the main forms of matter that dominate the
universe as it evolves. So to find ρ, p can be considered the total density and pressure. Assumption
2 is a poor one to make for modelling early universe as there was a large amounts of phase transition
from radiation to matter. However our main goal in this section is to explore how the scale factor
will evolve in the future, and we know that the universe now is primarily dominated by matter and
the cosmological constant, with negligible radiation. Assumption 3 is a fair one to make because
since we are assuming that the different forms of matter are not interacting, they each evolve how
they would in their own epoch. Now we define

Ωi ≡
ρi
ρcrit

. (34)

With this definition we have Ω = ΩΛ + Ωm + Ωr. To simplify notation we also define

ΩK ≡ −
K

H2a2
, ρK ≡ −

3K

8πGa2
. (35)

With this notation we can now write the Friedman equation as

1 = Ω + ΩK . (36)

If we have the initial condition that a(t0) = 1. Also we can define units so that H(t0)2 = 8πG
3 .

Thus we have

ρ(t0) =
∑
i

ρi0 =
8πG

3H(t0)2

∑
i

ρi0 =
∑
i

Ωi(t0) = 1

Where the sum is over i = Λ,K,m, r. So keeping ρK0 = − 3K
8πG constant, and letting ρm0, ρΛ0, ρr0

vary, completely determines the behaviour of the system. So we just need to specify ρi0 for i =
Λ,m, r.

We will now assume the universe is completely dominated by the cosmological constant, and
matter, with radiation being negligible compared to the two (similar to our universe right now).
Thus we have ρr0 ≈ 0, and

ρK0 = 1− ρΛ0 − ρm0. (37)

So in this universe the entire evolution of a is purely determined by the pair (ρm0, ρΛ0) ∈ [0,∞)×R,
since we are assuming ρm is non-negative.

We have Ω(t0) = ρΛ0 + ρm0. By 31 we have that if ρΛ0 + ρm0 > 1 then K < 0, if ρΛ0 + ρm0 = 1
then K = 0, and if ρΛ0 + ρm0 < 1 then K > 0. Also want to find the conditions where the universe
will expand forever or eventually contract. To answer this equation we need to find when ȧ = 0 for
some positive a. If ρΛ0 is negative we will always have H = 0 in some finite time as a gets large
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enough. When ρΛ0 > 0 we have to do a bit more work. Substituting in H = 0 in 29 we get the
following cubic equation:

0 = ρ(a) = ρm0a
−3 + ρK0a

−2 + ρΛ0

or equivalently,
0 = ρm0 + (1− ρΛ0 − ρm0a+ ρΛ0a

3

[Car03] Solving this cubic and finding restrictions to when the root is positive, we get a(t)→∞ if

ρΛ0 ≥

{
0, 0 ≤ ρm0 ≤ 1

4ρm0 cos3
(

1
3 arccos

(
1−ρm0

ρm0

)
+ 4π

3

)
, ρm0 > 1

,

and collapses in a finite time otherwise. figure 5 shows some samples of the scale parameter
(ρm0, ρΛ0, and summarizes the results.

Figure 5: The first figure shows plots a(t) for various (ρm0.ρΛ0). The universe we are currently
in (.3,.7) is in black. (.5,0),(1,0),(4,0.1),(2,-0.5) are in blue, red, orange, and green respectively.
The second figure shows the curature and long term behaviour of a for various inition conditions
of (ρm0.ρΛ0). a will expand forever, if (ρm0.ρΛ0) iff if (ρm0.ρΛ0) are on or above the flat curve.
Points above the line ρm0 + ρΛ0 = 1 imply the universe has positive curvature. Points below the
line ρm0 + ρΛ0 = 1 imply the universe has negative curvature. Points on the line ρm0 + ρΛ0 = 1
imply the universe is flat.

References

[Car03] Sean Carroll. Spacetime and Geometry: An Introduction to General Relativity. Benjamin
Cummings, 2003.

[Kem13] Achim Kempf. General relativity for cosmology fall 2013, 2013.

10


	Derivation of Friedman equations
	Evolution during epochs
	K=0
	w-1
	Curved spacetime
	w less than -1, oh no!

	Boing!
	Evolution of the scale factor

