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Abstract. In quantum state tomography we want to be able to construct an estimate

ρ̂ after performing repeated measurements on some unknown ρ. The most widely

used method right now to contruct ρ̂ is maximum likelihood estimation (MLE).

MLE is flawed because it produces estimates that are implausible, and gives no

bound on the errors. In this paper we introduce a relatively new approach to state

tomography; Bayesian mean estimation (BME). We discuss the properties of BME and

its advantages over MLE. BME is then used to construct confidence regions of ρ̂, an

analogue of confidence intervals from classical statistics.
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1. Introduction

Quantum tomography is the collection of methods used to characterize and validate

quantum devices. In order to validate a device, we want to be able to reconstruct a

state ρ by performing repeated independent measurements on N identically prepared

systems. Since there are only a finite number of measurements, it is impossible to

compute ρ exactly, however we can compute ρ̂, an estimator of ρ to arbitrary precision.

There are many approaches on how one should tackle this problem.

In this paper we will discuss some statistical methods to determine the best

estimator for ρ. We will begin with a discussion of maximum likelihood estimators and

the frequentest approach. We will see that this approach is insufficient and we must rely

on Bayesian mean estimators. Once we construct our estimator, we will discuss how

good the estimates are at determining the true ρ. In addition we will discuss multiple

approaches to constructing these confidence regions for ρ. Open problems and next

steps related to Bayesian mean estimation will be discussed.

For the purposes of this paper we will only discuss quantum state tomography as

process tomography is mathematically equivalent.
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2. Review of tomography

Before we begin our analysis, we need to briefly overview classical tomography as

discussed in class (to standardize notation). LetH = Cd be a Hilbert space. As discussed

in class, we need d2 − 1 linearly independent projective measurements in aggregate to

provide sufficient information to identify a unique ρ̂ [2]. Let D = {D1, . . . , DN}, be the

observed data after performing N independent measurements on our unknown state ρ,

where Di is the ith outcome. M = {E1, . . . , Em} be all the possible outcomes. Let ni
denote the frequency of outcome Ei, and fi ≡ ni

N
be relative frequency. The probability

of outcome Ei occurring is pi ≡ Tr(Eiρ).

For large N , fi ≈ pi due to the strong law of large numbers. So we define ρ̂tomo to

be the unique solution to the following linear equations in Hilbert-Schmidt space:

Tr(Eiρ̂tomo) = fi. (1)

This is the most natural definition of tomography because it produces a an operator that

best describes the observed frequencies based on Born’s rule. Although this is simple

and intuitive, it is not a very good approximation. We can guarantee ρ̂tomo has unit

trace, is hermitian, but we cannot ensure that the eigenvalues are non-negative (they

often are). In general, as d increases, the probability of viewing a negative eigenvalue

increases too. The underlying flaw with tomography is that the goal of this method is to

best match relative frequencies and Born’s rule, and pays no attention to positivity [4].

In addition this method does not let us quantify how bad our approximation is. Clearly

we need a more sophisticated approach to tomography.

3. The Maximum Likelihood Estimator

The frequentest approach yields the intuitive and simple maximum likelihood estimator

(MLE). MLE is based off idea that the best estimate of the ρ is the valid state ρ̂ that

maximizes the probability of the observed data occurring.

Definition 3.1 We define the likelihood function L(ρ) : P → [0, 1] by

L(ρ) = Pr(D|ρ). (2)

Where P is the set of density operators corresponding to states. The log-likelihood

function is defined to be log(L), and the maximum likelihood estimator ρ̂MLE is

the ρ that maximizes L or equivalently maximizes log(L).

By applying Born’s rule and using the fact that the measurements are independent we

get the following expression for L

L(ρ) = Pr(D|ρ) =
N∏
i

Tr(Diρ) =
m∏
j

Tr(Eiρ)nj . (3)



Statistical Methods for Quantum State Tomography 3

Since the likelihood function is positive, we can maximize L if and only if we

maximize log(L) =
∑N

i log(Tr(Diρ). Since the Tr(Diρ) is a non-negative linear function

of ρ, and the logarithm of a linear function is convex, log(Tr(Diρ)) is a convex function.

Therefore the log-likelihood function is convex, since it is the sum of convex functions.

This ensures that L has a unique local maximum which we call ρ̂MLE [4].

3.1. MLE Versus Tomography

Now that we know what ρ̂MLE is, and that it exists, we would like to determine its

relationship with ρ̂tomo. For MLE to be an improvement over tomography, when ρ̂tomo

is a valid state, we want it to equal ρ̂MLE . This leads us to the first theorem.

Theorem 3.2 [4] If ρ̂tomo is a valid quantum state, then ρ̂MLE = ρ̂tomo.

Proof. Let fj =
nj
N
, p̂j = Tr(Ejρ) as before. So we now have:

log(L(ρ)) =
m∑
j

nj log(Tr(Ejρ)) (4)

= N
m∑
j

fj log(pj)) (5)

= N
m∑
j

[fj log(fj)− (fj log(fj)− fj log(pj)] (6)

= −N [H(f) +D(f ||p)] (7)

Where H,D are the Shannon entropy and relative entropy respectively. Since we are

looking to maximize over ρ, H is irrelevant. The relative entropy is non-negative, and

is uniquely zero when fj = pj, ∀j. This is precisely (1), the set of linear equations

governing ρ̂tomo. Therefore if ρ̂tomo is a valid state, then ρ̂tomo = ρ̂MLE �

This theorem in a sense shows that MLE can be thought of as a correction to

tomography. Let A denote the polytope in Hilbert-Schmidt space enclosed by the

hyperplanes Tr(Eiρ) = pi = 0. Since for ρ̂tomo, satisfies, pi ≥ 0, we have ρ̂tomo ∈ A.

Let L̃ extend L to A in the natural way, refer to figure 1. By an identical argument as

Theorem 3.2, we have L̃ is maximized at ρ̂tomo = ρ̂MLE. If ρ̂tomo /∈ P ⊂ A, the maximum

of L̃|P = L is in ∂P (since P is compact). Therefore if ρ̂tomo is not a valid quantum

state we have ρ̂MLE is on the boundary of P . Thus ρ̂MLE will be rank deficient, and will

have some eigenvalues that are zero. [4]

In a sense MLE can be considered tomography restricted to the valid quantum

states. Hence MLE is truly an improvement over tomography in terms of estimation.

However, the fact that MLE gives rise to eigenvalues that are zero is very troublesome.
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Figure 1. [4] In our case P is the yellow circle, and A would be the entire surface. L
and L̃ coincide on P. This image shows the case where ρ̂tomo /∈ P, thus ρ̂MLE is on

the boundary of P

3.2. Zero Eigenvalues and Their Flaws

The problem with tomography and MLE is that both of those approaches are

fundamentally flawed. Both of those approaches interpret frequencies as probabilities,

and construct a state that best fits those probabilities. However the purpose of a

quantum state is to make predictions for future experiments, and not just explain the

observed data. The estimator we find should encode the knowledge we have about the

system, and the knowledge of the past is not necessarily the best description for the

future.

A rather extreme but relevant example would be coin flipping. Suppose you flipped

a coin N times and each time you flipped you got heads. This does not imply the

probability viewing a tails is zero, but if we viewed the MLE to compute the probability

of a tails occurring it would be zero. This shows that we need a more sophisticated

approach that will not only give us a state that well approximates the observed data

but one that also gives us a plausible one.

Similarly, since eigenvalues correspond to probabilities, having an eigenvalue that

is zero implies that you are absolutely certain that a particular state will never occur,

which is far too strong a conclusion to make after a finite number of experiments. [4]

An other problem is that zero eigenvalues are incompatible with any error bars.

Since probabilities are are always greater than or equal to zero, any error bar on the

eigenvalue will have a negative range.

4. Bayesian Mean Estimators

Bayesian methods have become popular in the last few decades. The Bayesian

philosophy is that the best estimate for ρ is the average of all states consistent with

the observed data weighted by their likelihood.

The procedure to determine the Bayesian mean estimator (BME) is as follows:
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(i) Use the given data to construct the likelihood function L as defined previously

(ii) Choose a probability distribution over P , π0(ρ)dρ which we will call the prior

distribution

(iii) Define a new probability distribution over P called the posterior distribution

given by the formula

πf (ρ)dρ = CL(ρ)π0(ρ)dρ, (8)

where C is a normalizing factor

(iv) We define the ρ̂BME by the expectation value of ρ with respect to the posterior

distribution

ρ̂BME ≡ 〈ρ〉πf =

∫
P
ρπf (ρ)dρ. (9)

The Bayesian mean estimator takes into account not only the optimal state,

but rather all the states that could produce the observed data. This gives a more

conservative and reliable estimate.

For example suppose that after N flips of a coin, n heads occur with probability p.

In this case the likelihood function is

L(p) = pn(1− p)N−n, (10)

and the MLE in this case is

p̂MLE =
n

N
. (11)

If we observe no heads(tails) then the MLE says that the probability of heads(tails)

occurring is zero; which is an unrealistic statement.

With the a Bayesian approach, we need to chose a prior. If we choose uniform

distribution with respect to the Lebesgue measure i.e. π0(p)dp = dp, then we get

p̂BME =
n+ 1

N + 2
. (12)

Since n is non-negative we get the the BME is always positive. When we have no

information (i.e. N = n = 0), we have that the probability of either heads or tails

occurring is one half, which one should expect given no information. Also if we get all

heads(tails), the estimator does not rule out the possibility of getting tails(heads), it

just makes their probability of occurring to be less. This property that BME has is very

useful for determining a plausible quantum state. This is because the probabilities of

unobserved events occurring are non-zero. [4]
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4.1. Robustness of Prior Distributions

An issue we have to deal with is the choice of the prior. If we had chosen the prior

to be dπ0(p) = 1
2
(δ(p) + δ(1 − p)), then if one tail were to occur then p̂BME would be

zero, which we do not want. Furthermore if both heads and tails are observed then the

posterior vanishes completely and is no longer a valid probability. The problem is that

the prior assigns zero probability to a possible set of observable events.

Definition 4.1 We define a prior to be fragile if the following 3 equivalent conditions

occur:

(i) π0 assigns zero probability to a finite-length measurement.

(ii) ∃ measurement record D such that the Bayesian estimation using π0 will result in

a zero probability.

(iii) ∃ a measurement record D that will annihilate π0 and the Bayesian estimation fails

completely.

We define a prior to be robust if it is not fragile. So by definition robust a prior

guarantees a full rank estimate.

So continuing the above example we see that π0(p)dp = dp is robust, and

dπ0(p) = 1
2
(δ(p) + δ(1− p)) is fragile.

An example of a robust prior in the quantum setting, is the Hilbert-Schmidt

measure, which is a probability measure on P , with the distribution being the uniform

Lebesgue measure on the Hilbert-Schmidt space. Each observation rules out at most one

state. For example if a |0〉〈0| observed then |1〉〈1| can not be the true state. Since there

are an uncountable number of states, there is no finite length sequence of measurements

that could rule out every possible state. Thus the Hilbert-Schmidt prior is robust.

The following theorem, provides a sufficient condition for robustness

Theorem 4.2 [4] A prior with support on a smooth curve in atleast (d−1)2 dimensions

is robust.

In general most priors that a good experimentalist would intuitively chose are

robust. From now on, unless stated otherwise we will assume that the priors we work

with are robust.

4.2. Natural error bars

One of the major flaws with MLE was that it produced zero eigenvalues, hence we could

not always put a bound on the error in the eigenvalues. Although BME ensures the

eigenvalues of the estimator are positive, that is not enough to say there are meaningful

estimate for the error. First we need to define what we mean by error. Intuitively we

want ∆ρ such that

ρ = ρ̂±∆ρ, (13)
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by which we mean ρij = ρ̂ij ± ∆ρij. However, (13) is a poor way to approach this

problem as this assumes the entries of the matrix are independent of each other. We

will discuss in further detail in section 5 how to construct the Bayesian equivalent of

confidence intervals, confidence regions. We can however put a bound on the error of

the eigenvalues of ρ̂BME.

Given an observale X and ρ ∈ P , we define the expectation value of X with respect

to ρ to be

〈X〉ρ ≡ Tr(Xρ), (14)

Then the expected error of X is the variance of the expectation value of X, ie ∆ 〈X〉2.

We can write this as

∆ 〈X〉2 =

∫
〈X〉2ρ πf (ρ)dρ−

[∫
〈X〉ρ πf (ρ)dρ

]2

. (15)

Since 〈X〉 parametrizes one dimension of the Hilbert-Schmidt space, to compute

the distribution of 〈X〉 we can we can integrate over the the other d2 − 2 dimensions

denoted by σ. Since dρ = dσd〈X〉 we have πf (〈X〉)d(〈X〉) =
∫
σ
πf (ρ)dρ by Fubini’s

theorem. This gives us:

∆〈X〉2 =

∫
〈X〉2πf (〈X〉)d〈X〉 −

[∫
〈X〉πf (〈X〉)d〈X〉

]2

. (16)

If |λ〉 is an eigenvector of ρ̂BME with eigenvalue λ then if we let X = |λ〉〈λ|, we

get 〈X〉 = λ. Hence ∆λ2 = ∆〈X〉2, since 0 ≤ λ ≤ 1, and πf (λ)dλ is a probability

distribution on the interval [0, 1]. By classical probability theory [3]

∆λ2 ≤ (λmax − E(λ))(E(λ)− λmin) = (1− λ)λ. (17)

This bound is saturated by the π0(λ) = (1− p)δ(λ) + pδ(1− λ).

In practice, well behaved priors produce convex posteriors, in which case ∆λ ≤ λ.

Thus every eigenvalue bounds its own uncertainty. Thus BME also gives reasonable

bounds on it’s eigenvalues. [4]

4.3. Optimality of BME with respect to operational divergence

It is not enough that Bayesian mean estimators give plausible results, for them to be

applicable they need to produce accurate results as well. We want ρ̂BME to be as “close”

to ρ as possible. We also want this measure of “closeness” to be physical. This brings

us to the following definition.

Definition 4.3 An operational divergence ∆(ρ : ρ̂), is a measure of how well ρ̂

estimates ρ where:

(i) ∆ represents an outcome of a physically implemented process.
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(ii) If ρ̂1 is a better estimate than ρ̂2, then ∆(ρ : ρ̂1) < ∆(ρ : ρ̂2).

(iii) ρ̂ = ρ is the best estimate of ρ, i.e. ∆(ρ : ρ) < ∆(ρ : ρ̂), ∀ρ̂.

It turns out that BME is not only an accurate estimate ρ, it is the most accurate

estimate of ρ. This is summarized in the following theorem.

Theorem 4.4 Let ∆ be an operational divergence for ρ. For any N , if we have

procedure that produces an estimate ρ̂ for ρ after N measurements, then

∆(ρ : ρ̂) > ∆(ρ : ρ̂BME). (18)

What makes this a remarkable result is that it is true for any N , not just asymptotically.

This result does not mean that ρ̂BME will be accurate, but it does mean that it will be

the most accurate result you will get. Another point of note is that BME optimizes

accuracy in terms of operational divergence, but it may not be the most accurate for

other measures of estimation such as trace-distance or fidelity. [4] [6]

5. Confidence Regions

In classical statistics, once you have estimated a quantity, you want to know how reliable

your estimate is. For a point estimate, one of these measures is confidence intervals. A

confidence interval allows us to determine possible intervals which contain the true value

of the quantity is question, with some fixed probability. This notion can be extended

to the quantum setting. It is natural to ask what regions of P contain ρ with some

probability α. Bayesian mean estimators allow us to construct such regions, and we can

construct them so that they are independent of prior.

We begin our analysis of such regions by the following definition:

Definition 5.1 Let 0 ≤ α ≤ 1, A ⊂ P. We define the coverage probability of A to

be,

Pr(ρ ∈ A). (19)

If Pr(ρ ∈ A) ≥ α we say that A is a confidence region of ρ with confidence α.

Finding a confidence region is not hard, for example P is always a confidence region

that contains ρ, hence P is a confidence region of ρ is confidence 1. Clearly, this is not

very useful information since does not tell us anything new about the ρ. In general

there are uncountably many confidence regions, the difficulty is find the one that gives

us the most information about where ρ is located in the Hilbert-Schmidt space. This

intuitively would be the smallest such confidence region with confidence α.

Another issue we want to avoid is the choice of prior. For a confidence region,

coverage probability of should not depend on prior since there is often debate about

which prior is the best, and different priors can produce drastically different results.

Given observed data D we want to construct a confidence region R̂(D) such that

the coverage probability of R̂(D) is at least some specified confidence level α.
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Remark 5.2 First point worth mentioning is that the following are not equivalent [5]:

(i) Pr(ρ ∈ R̂(D)) ≥ α,

(ii) Pr(ρ ∈ R̂(D)|D) ≥ α.

(i) says “the probability that R̂(D) will contain ρ is atleast α”, whereas (ii) says “given

the observed data, the probability that R̂(D) will contain ρ is atleast α.” This is a subtle

point, but (i) implies that R̂ is predetermined in the sense that once D is observed R̂(D)

is fixed, thus is independent of prior. However (ii) requires you to choose a prior in order

to compute. (ii) corresponds to credibility regions.

Definition 5.3 Let 0 ≤ α ≤ 1, A ⊂ P, and let D be observed data. Then we say A is

a credibility region with credibility α if

Pr(ρ ∈ A|D) ≥ α. (20)

By the above remark, to get a credible region, we need to choose a prior [1].

It should also be noted that confidence regions do not provide probabilistic data

about any particular experiment. So if we have our ρ̂BME, it is important to realize

that α is not the probability of success, it is a measure of how confident we are in our

estimator as a whole. [5]

In this paper we will discuss two methods to construct such regions. Both were

independently proposed within a few months of each other. Robin Blume-Kohout’s

approach was to use likelihood ratio estimates, whereas Christandl and Renner used

Bayesian credible regions for a Hilbert-Schmidt prior and enlarged said regions in a

specific way.

5.1. Likelihood Ratio Regions

Definition 5.4 Given observed data D, we define the log likelihood ratio λ : P →
[0,∞) by

λ(ρ) = −2 log

(
L(ρ)

L(ρ̂MLE)

)
. (21)

λ(ρ) is a measure of how close ρ is to ρ̂MLE, where ρ = ρ̂MLE if and only if λ(ρ) = 0.

The negative factor is is there to make λ positive and the 2 is there due to convention

from classical probability theory.

Definition 5.5 Given observed data D, and 0 ≤ α ≤ 1 we define R̂α(D) to be the

likelihood ratio region with confidence α, where

R̂α(D) = {ρ|λ(ρ) < λα(ρ)}. (22)

The threshold, λα(ρ) depends on α and the dimension of the Hilbert space, d.
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Clearly the threshold λα(ρ) plays an integral part in the construction of the

confidence regions. As λα gets larger R̂α(D) gets bigger, so we want to chose λα(ρ) such

that it is the smallest threshold that makes R̂α(D) a confidence region with coverage

probability α.

The main difficulty is determining what λα(ρ) is. The precise value of λα(ρ) depends

on the confidence level α and dimension of the Hilbert space, and there is currently no

closed form available. We can however approximate it.

Blume-Kohout shows that λα(ρ) is “almost” independent of ρ, in the sense that the

values fluctuate slightly as ρ changes. In order to remove the ρ dependence, we want to

find a λα such that

λα ≥ λα(ρ) ∀ρ ∈ P . (23)

Clearly λα will not be ideal, since coverage probability and region size increase as λα
increases, so we want to find the smallest value of λα to ensure we gain as little region

size as possible. By definition of R̂α we have ρ ∈ R̂α iff λ(ρ) < λ.

Definition 5.6 We define the complementary cumulative distribution function

by

F (λα|ρ) = Pr(λ(ρ) > λα|ρ). (24)

To get a valid λ we want to solve supρ F (λα|ρ) = 1− α. Again finding F explicitly

is a difficult task, however we can find upper bounds.

Theorem 5.7 For any data D, for any measurement of N copies of d-dimensional

systems we have

F (λα) ≤ Nd2−1e−λα/2. (25)

In the case where D is obtained from independent measurements of identically prepared

systems, one has

F (λ) ≤ γ(k/2, λα/2)

Γ(k/2)
+ e−λα/2

[(
1 +

√
3eλα
π

)k
−
√

3eλα
π

k
]
. (26)

Where k is the number of linearly independent observables measured, γ is the upper

incomplete gamma function, and Γ is the gamma function.

(26) is slightly stronger than (25), but also assumes a stronger result. One can

solve for λα numerically to obtain confidence regions. The proof is quite long, hence it

is omitted. Since we are estimating an upper bound for λα(ρ) we will get slightly larger

confidence regions than needed. [5]
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5.2. Bayesian Credible Regions from Hilbert-Schmidt Prior

Christandl and Renner’s approach is very different than the likelihood approach used

by Blume-Kohout which I will outline now. They start off with a slightly more general

set up. Let S1, . . . ,SN be identical finite dimensional quantum systems with associated

Hilbert spaces H = Cd. This collection is measured according to an arbitrary POVM

{Bn}n on H⊗n, where
∑

nBn = 1H⊗n . The POVM elements correspond to outcomes

resulting from the measurement on the n systems. This is more general because we are

not assuming that the measurements are independent.

For each Bn we can define a probability density

µBn(ρ)dρ = CBn Tr[Bnρ⊗n]dρ. (27)

Where dρ is the Hilbert-Schmidt measure, as defined previously. L(ρ) = Tr[Bnρ⊗n] is

the likelihood function as defined previously. Analogous to BME, µBn can be considered

the posteriori distribution with the Hilbert-Schmidt prior. Since this approach does not

use any properties of MLE or BME we will just refer to it as µBn . This is sufficient

information to compute the confidence regions.

Theorem 5.8 (Confidence Regions From Credible Regions) [7] Let α ∈ [0, 1].

For all Bn, let ΓµBn ⊂ P be a set of states satisfying∫
ΓµBn

µBn(ρ)dρ ≥ 1− (1− α)

2
(

2n+d2−1
d2−1

) ≥ α (28)

then we get the following confidence region ΓδµBn with confidence α, as in

PrBn(ρ ∈ ΓδµBn ) ≥ α. (29)

PrBn refers to the distribution of measurement outcomes Bn when measuring ρ⊗n (i.e.,

outcome Bn has probability tr[Bnρ
⊗n]). Finally,

ΓδµBn = {ρ|∃ρ′ ∈ ΓµBn such that F (ρ, ρ′)2 ≥ 1− δ2} (30)

where δ2 = 2
n

[
ln
(

2
1−α

)
+ 2 ln

(
2n+d2−1
d2−1

)]
and F (ρ, ρ′) = ‖√ρ

√
ρ′‖1 is the fidelity.

Thus is we can find any region satisfying (28), then we automatically get a

confidence region. Again the proof is omitted due to its length. What this theorem

says is that given a credible region ΓµBn for the Hilbert-Schmidt prior satisfying (28),

we can enlarge it to a confidence region by (29).

5.3. Differences in Approach

Both approaches have their advantages and drawbacks. Although Christandl and

Renner’s approach to constructing confidence regions is very different from MLE/BME,

their technique is not unrelated. As stated previously, µBn is the posteriori distribution
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with the Hilbert-Schmidt prior. This implies that their method is nearly optimal due

to the efficiency of BME.

We also have that their approach is in a sense more general than Blume-Kohout’s

because they do not assume independent measurements, which experimentally may

be too strong of an assumption. Finally it has the added advantage of producing a

credibility region as well as a confidence region for the Hilbert-Schmidt prior as opposed

to just a confidence region in the likelihood ratio case.

Their method is not perfect because there are a lot of questions left to be answered.

First of all, their method tells us if we can find a region satisfying (20) then we have

a confidence region, however it is unclear of how to find such a subset, let alone how

to decide the optimal one. The obvious choice would be to pick the smallest of all the

ΓµBn satisfying (28), however it is not an easy task in general to determine what those

are. A related flaw is verifying (28) can be a difficult task in general since computing

integrals over P in Hilbert-Schmidt space is not easy; we will discuss this issue in more

detail in the next section.

Finally Christandl, and Renner’s method offers no obvious way to compare the

strength this procedure has compared to other methods. By the sheer fact that there

method is related to BME’s indicates that is is efficient, but it is unclear how much

better it is than other methods, if at all.

In contrast Blume-Kohout’s method with likelihood region estimators is not as

general since he assumes independent measurements, however his method is far more

intuitive in approach. The likelihood ratio is a measure of how far a state deviates from

ρ̂MLE, and the likelihood region we defined says states that are close to ρ̂MLE are more

likely to be the true state, than those far away.

Some advantages of likelihood ratio regions include the following:

• They are optimized to give the smallest regions of any region estimator, and also

offer the most nearly-optimal worst-case behaviour. By smallest region, we mean

smallest volume with respect to any measure dρ on P [5].

• They are convex, because λ is convex, thus they can be manipulated using convex

programming [5].

• It is easy to determine whether or not a state ρ is in the the confidence region; one

simply computes λ(ρ) and compares an inequality.

The main issue is the likelihood regions are incredible difficult to compute precisely

and need to be estimated. Depending on how good the estimate of λα is, one can lose

quite a bit of efficiency. Another issue is that although we can easily determine if a state

is contained in the likelihood region, we do not have an explicit formula for Rα(D) so

performing manipulations can be difficult.

Overall the Bayesian credible region method proposed by Christanl and Renner is

more general, however the likelihood ratio method proposed by Blume-Kohout is easy

to implement. Even though Christanl and Renner’s philosophy is quite different than
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Blume-Kohout, their techniques are very similar, in the sense that both use Bayesian

methods in some way.

6. Criticisms of BME

Although Bayesian mean estimators are versatile, intuitive and offer the most accurate

estimate of ρ, they are not perfect. There are still some fundamental challenges that

need to be worked out.

6.1. Finding a Suitable Prior is Hard

One of the most important questions related to BME is “what is the best choice of

prior,”and “what is the penalty for choosing a wrong prior?”. The optimality of ρ̂BME

depends on how close the prior is to the true distribution of the unknown states. It

is unclear how bad the estimate can possibly be if the prior is not optimized for the

particular scenario. Even worse, it is unclear if choosing the prior that best matches the

true distribution is even robust or not.

In experiments, one wants to try and remain as impartial as possible, hence we

want the prior that shows the least amount of bias. Finding the most uninformative

prior is still an open question, since there is no natural choice. All of these are very

important questions that need to be discussed. [4]

6.2. Integration is Hard

MLE boils down to optimizing the likelihood function L. Computationally speaking

this is not that difficult of a task, since optimization has been studied quite extensively.

In contrast constructing ρ̂BME relies almost purely on integration. One advantage MLE

has over BME is that there are far more efficient algorithms available for MLE than

BME, since MLE is established. Algorithms for BME began developing fairly recently

so there is likely to be much faster methods as time goes on.

Another issue with BME is that even if one knows how to integrate, actually defining

the boundary can be difficult. Unlike classical probability where we tend to integrate

over simplices, in the quantum setting we often want to integrate over curved regions of

Hilbert-Schmidt space. Defining the boundary analytically is challenging.

It should be noted that although there is much difficulty, actually computing

ρ̂BME can be done. Blume-Kohout proposed an implementable quantum version of the

Metropolis-Hastings algorithm to compute ρ̂BME. The Metropolis-Hastings algorithm is

a commonly used algorithm in classical Bayesian estimation. It can be thought of as a

biased Monte Carlo simulation. [4]

6.3. Working With Large Systems is Hard

The final concern about Bayesian mean estimation is that it does not play nice with

large systems. Quantum devices can only provide coherent control over 8 to 12 quibit
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systems. Within the next 5 years that range is expected to jump to twenty to thirty. As

the dimension of a Hilbert space increases, performing state estimation becomes more

infeasible. For example the Hilbert space of a 30 quibit quantum register requires just

under 1 million terabytes of data to store one matrix. As time goes on we need to build

better hardware, and implement better techniques. The ideas presented in this paper

are still immature and much more work needs to be done. [4]

7. Conclusion

As quantum devices become more sophisticated, the need for better estimation tools

increases as well. We saw that the model used in standard tomography is far too sim-

plistic to give a good estimate of ρ. This led to the define the likelihood function and

the maximum likelihood estimator. Although ρ̂MLE was a better estimate than ρ̂tomo, it

was inherently flawed because it produced eigenvalues that are zero, and did not give a

natural bound on how bad the estimate was. We then approached the problem of quan-

tum state tomography using Bayesian mean estimators. We showed that BME provided

plausible and accurate states, with natural bounds on its error. Finally we discussed

how one can use the techniques related to Bayesian mean estimators and construct con-

fidence regions ρ independent of a prior distribution. Bayesian mean estimation is very

new but in time it can be a very powerful tool for experimentalists.
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