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1 Introduction

The likelihood method for parameter estimation and inference lies at the foundation of
statistics. We assume our data is X1, X2, . . . is drawn from F ∈ F , where F is a family of
distributions parametrized by some Θ. The likelihood function, L(X|θ) is a measure of how
likely we are to observing our data given the samples are drawn form θ ∈ Θ. We can then
use this function to generate point estimates such as the MLE, perform inference, generate
confidence regions and perform hypothesis testing. Asymptotically these methods have some
really properties that make them very useful.

The problem however with these methods is that we must specify a parametric model
and the quality of our analysis is very dependent on how good F is at representing our data.
If our model is not a good approximation of our data, then we run into the trouble of making
potentially very inaccurate statistic claims.

Owen [Owe88] proposed a non-parametric alternative to the tradition likelihood method
by introducing the empirical likelihood (EL) function. This method, allows us to perform
inference and retain many of the cherished theoretical asymptotic properties of the traditional
likelihood method without having to specify a specific model for our data. Since his enaugaral
paper, emperical likelihood methods have become very prevalent in many applied areas such
as economics and finance, (e.g. [Bra07] [TAOT14]) and has become an active area of research.
However, unlike the simplicity of the computation of the parametric likelihood function, the
emperical likelihood function is defined implicitly via a constrained optimization problem
and requires some fineness to compute, when defined.

For the remainder of this report, we will give an overview of the empirical likelihood
(EL) method. We will then give explore the new method proposed by Owen in [Owe13]
to compute the emperical likelihood using a property called self-concordance to achieve a
provably bound on the sub-optimalitity of the procedure. We will then compare compare
and contrast to the alternative method proposed by Chen in [CVA08], called the adjusted
emperical likelihood (AEL) that approximates the EL by adjusting the EL constraints that
ensures it is globally well defined and retains the asymptotic properties of the EL. Finally
we test both methods on some simulated data.

2 Emperical Likelihood

Suppose we have an i.i.d sample of data X1, . . . , Xn ∈ Rd that is drawn from true distribution
F0. Our goal is to perform a discrete approximate F0 by some distribution F supported on
the observed values X1, . . . , Xn.

Let pi ≡ PF (xi) be the probability of observing Xi = xi under F , since F is supported
on our data pi ≥ 0 and

∑n
i=1 pi = 1. We define the empirical likelihood of F as

L(F ) =
n∏
i=1

pi,

where pi is the probability under F of observing Xi. It will be convenient to work with the
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log-empirical likelihood function `(F ) as

`(F ) =
n∑
i=1

log pi.

So far the naive thing to do would be to find F such that L(F ) or equivalently `(F )
is optimize. This turns out to be short sighted, as ` is trivially optimized by the empirical
distribution Fn, that assigned each observation equal probability, i.e., PFn(xi) = 1/n. Indeed,
this can be seen by a simple consequence of Jensens inequality. Suppose F is any distribution
supported on our data.

log
L(F )

L(Fn)
) = log

n∏
i=1

PF (xi)

PFn(xi)

=
n∑
i=1

log(npi)

= n
n∑
i=1

1

n
log(npi)

≤ n log

(
n∑
i=1

1

n
npi

)

= n log

(
n∑
i=1

pi

)
= 0.

The inequality was using Jensen’s inequality on the concave function log. Thus we have
L(F ) ≤ L(Fn). This naturally leads us to define the empirical likelihood ratio R(F ) to be
the ratio L(F ) relative to maximum of L. I.e.

R(F ) =
L(F )

L(Fn)
=

n∏
i=1

npi.

We have 0 ≤ R(F ) ≤ 1, is a measure of how how likely our approximation F is to F0

compared to the optimal Fn. Up until this point R, is not very useful beyond telling us how
poor our model is compared to the trivial Fn.

2.1 Profile Empirical Likelihood

In practice we often have parameters θ ∈ Θ ∈ Rp, where the true parameter θ0 is known to
satisfy

EF0(m(X, θ0)) = 0

where m : Rd × Rp → Rq is the called the estimating equations of our model. m(X, θ)
represents the constraints in our model that we wish our data to satisfy, at least on average.
Given θ ∈ Θ we will define the profile empirical likelihood function R(θ) as the maximum of

3



the ELR given our F satisfies the estimating equation where the expectation is taken with
respect to F .

R(θ) = sup{R(F ) : EF (m(X, θ)) = 0}

= sup

{
n∏
i=1

npi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pim(xi, θ) = 0

}
.

Although, the following analysis will hold true for general m, we will focus our attention
to the case where p = d and m(X, θ) = X − θ. I.e. we are interested in the profile empirical
likelihood function for the mean. Given µ ∈ Rd, define the profile empirical likelihood
function for the mean as

R(µ) = sup

{
n∏
i=1

npi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pixi = µ

}
.

As before it will be useful to work with the logR(µ),

logR(µ) = sup

{
n∑
i=1

log(npi) : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pixi = µ

}
. (1)

Note we can take the log inside the supremum since log is monotone. We will now discuss
how to solve this convex optimization problem.

Remark 2.1. Before we begin computing logR(µ), note that the third constraint in (1) is
only true if and only if µ can be written as a convex combination of our data, if and only if
µ is in the convex hull generated by X1, . . . , Xn, we will denote as Conv(X).

If µ ∈ ∂Conv(X), then there must be an i such that pi = 0, and thus R = 0. If µ is in
the interior of the convex hull, denoted by int(Conv(X)), there exists pi > 0 for all i such
that

∑n
i=1 piXi = µ. Therefore a finite solution exists to (2) if and only if µ ∈ int(Conv(X)),

in which case the maximizing pi must be non-zero. Therefore we will now assume that
µ ∈ int(Conv(X)) and pi > 0.

2.2 Computation of the Profile log Empirical Likelihood

We will now go over the standard procedure for solving computing logR(µ) as outlined
in [Owe01], [Owe13] by reformulating the (1) as the optimization problem,

maximize:
n∑
i=1

log(npi)

subject to: pi > 0,
n∑
i=1

pi = 1,

n∑
i=1

piXi = µ, µ ∈ int(Conv(X))

(2)
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To solve this constrained optimization problem, we employ the method of Lagrange
multipliers. We define the Lagrangian for G(p, λ, δ) as,

G(p, λ, δ) =
n∑
i=1

log(npi) + δ(
n∑
i=1

pi − 1)− λT
n∑
i=1

piZi, (3)

where −nλ ∈ Rd and δ ∈ R are Lagrange multipliers, and Zi = Xi − µ. We find the critical
point of G by taking the gradient of (3) with respect to p to get

∂G

∂pi
=

1

pi
+ δ − nλTZi.

We define p̂i, δ̂, λ̂ to be the solution to ∇G = 0. This leads to the following system of
equations.

1

p̂i
+ δ̂ − nλ̂TZi = 0. (4)

We now multiply (4) by p̂i and sum over i to get.

0 =
n∑
i=1

(1 + δ̂p̂i − nλ̂T p̂iZi)

= n+ δ̂
n∑
i=1

pi − nλ̂t
n∑
i=1

p̂iZi

= n+ δ̂

The last line used the constraints in (1). Thus we have δ̂ = −n. Substituting this into (4),
we get,

0 =
1

p̂i
− n− nλ̂tZi,

or equivalently,

p̂i =
1

n

1

1 + λ̂TZi
. (5)

Substituting (5) in to
∑n

i=1 p̂iZi = 0, we get λ̂ must solve,

0 =
n∑
i=1

Zi

1 + λ̂TZi
. (6)

Recall by Remark 2.1 µ ∈ int(Conv(X), if and only if p̂i are strictly positive and sum to
1, we must have pi < 1 for all i. This along with (5) implies that λ̂ must satisfy.

1 + λ̂TZi >
1

n
. (7)
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2.2.1 Duality

We define the function f : Rd → R as,

f(λ) = −
n∑
i=1

log(1 + λTZi).

We first claim that f is convex on its domain D(f) = {λ : 1 + λTZi > 0, 1 ≤ i ≤ n}.
To see this, we note that g = − log(λ) is convex on D(g) = {λ : λ ≥ 0}. Let us define
the affine transformation, Ai : λ → 1 + λTZi. Since convex function applied to an affine
transformation preserves convexity, we have g ◦Ai are convex functions with convex domain
D(g ◦ Ai) = {λ : A(λ) ≥ 0}. Since sums preserve convexity, we have

f(λ) =
n∑
i=1

g ◦ Ai(λ)

is convex. Also the intersection of convex sets is convex, thus D(f) =
⋂n
i=1D(g ◦ A) is

convex.
Therefore we have f is convex function over a convex domain. Also note that, the gradient

of f with respect to λ is given by

∇f(λ) = −
n∑
i=1

Zi
1 + λTZi

.

So if λ̂ ∈ D(f) is a critical point of f , then we have λ̂ satisfies (6) and thus the corresponding
of p̂i defined by (5) is an optimal weight our original problem (2).

Since f is a convex function, defined on a convex set, infλ f(λ) is either attained at the
critical point λ̂ or on the boundary. If µ ∈ int(Conv(X)), we showed that and the end of
the pervious section that if λ̂ and p̂i satisfy (6) and (5) respectively then 1 + λ̂Zi > 1/n for
all i. Thus λ̂ ∈ int(D(f)) and is a global minimizer.

Thus when µ ∈ int(Conv(X)) we have reduced our original n-dimensional optimization
problem (2), into the d-dimensional problem,

minimize: f(λ) = −
n∑
i=1

log(1 + λTZi)

subject to: 1 + λTZi > 0, 1 ≤ i ≤ n

. (8)

2.3 Traditional Empirical Likelihood

We we are only interested in the of the optimal solution, which occurs when 1 +λTZi > 1/n
for all i, we can modify (16) into an unconstrained optimization problem by replacing log
with log? : R→ R, which replaces log(x) with the second order Taylor approximation to log
for x ≤ 0. I.e.

log?(x) =

{
log x x > 1

n

log(1/n)− 3/2 + 2nx− (nx)2/2 x ≤ 1
n

.
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We have f?(λ) = −
∑n

i=1 log?(1 +λTZi) is convex on all of R and has the same minimizer as
f when µ ∈ int(Conv(X)). Thus for µ ∈ int(Conv(X)), (2) is equivalent to the optimization
problem,

minimize: f?(λ) = −
n∑
i=1

log?(1 + λTZi) . (9)

Since f? is in C2(Rd) and convex, with gradient and Hessian given by,

∇f?(λ) = −
n∑
i=1

log′?(1 + λTZi)Zi

∇2f?(λ) = −
n∑
i=1

log′′?(1 + λTZi)ZiZ
T
i .

We can solve (9) iteratively via our favourite first or second order unconstrained convex
optimization method such as a damped Newton’s method.

When λ /∈ Conv(X), we have the gradient of f? is

∇f?(λ) = −
n∑
i=1

log′?(1 + λTZi)Zi ≡ −
n∑
i=1

Wi(Xi − µ).

Where Wi = log′?(1 + λTZi) > 0 since log′?(x) > 0 for all x. If wi = Wi/
∑n

j=1Wj and
∇f?(λ) = 0 then,

n∑
i=1

wi(Xi − µ) = 0.

But wi > 0 and sum to 1, which contradicts the fact that λ /∈ Conv(X). Therefore f? does
not have any critical points. Our optimization leads to ‖∇f?(λ)‖ → 0 which is only possible
if log′?(1 + λTZi)→ 0 for all i or equivalently ‖λ‖ → ∞.

In summary, if the resulting minimizer λ̂ of (9) satisfies (7), then we have µ ∈ int(Conv(X))
and we can recover our optimal p̂i and we will denote

logR(µ) =
n∑
i=1

log(np̂i) =
n∑
i=1

log(1 + λ̂TZi).

If ‖λ‖ → ∞ , and pi = (n(1 + λTi Zi))
−1 → 0 for all i, we can conclude µ /∈ Conv(X). We

will call the process of computing R(µ) via solving (9) the “traditional” approach.

3 Self-Concordance for Empirical Likelihood

The traditional method for computing the profile empirical likelihood given by solving (9)
performs well enough in practice, but convergence is only guaranteed assuming our objective
function, is sufficiently well behaved. In the case of Newton’s method, we need the Hessian
to be both well conditioned and Lipschitz continuous as shown in section 9.5.3 of [BV04].
Although these conditions are often true, but they are not immediately guaranteed and can
be tedious/computationally expensive to check in practice so in general we don’t.
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More over the analysis of Newton’s method gives sub-optimality bounds on f(λ) −
infλ f(λ) that depend on the condition number and Lipschitz constants, and how close the
initialization was to the optimal value. Again, these are not known in practice, therefore we
cannot exploit these bounds to create a usable stopping criterion.

This is where self-concordance comes to the rescue. Ensuring our objective function
is self-concordant not only guarantees convergence, it also offers a viable easy to compute
sub-optimality bound that does not depend on unwieldy constants. The main contribution
in [Owe13] was realizing that one mirror the analysis above and replacing log in (16) with
a globally defined convex, self-concordant function instead of the merely globally defined
convex function log? in the traditional method.

3.1 Self Concordance

The crux of the work done in [Owe13] exploits the notion of self-concordance. So let us
define and build some intuition about what self-concordance is.

Definition 3.1. A convex function f : D(f) → R, defined on an open convex D(f) ⊂ R is
self-concordant if for all x ∈ D(f),

|f ′′′(x)| ≤ 2f ′′(x)3/2, (10)

Remark 3.2. In the definition the 2 is merely there to make the math more convenient. In
general if

|f ′′′(x)| ≤ Cf ′′(x)3/2,

for some C ∈ (0,∞), then it is immediate consequence that f̃ = C2

4
f is self-concordant.

We can now naturally extend the notion of self-concordance to multivariate functions,
by forcing self concordance along every line in the domain.

Definition 3.3. A convex function g : D(g)→ R, defined on an open convex D(g) ⊂ Rd is
self-concordant if and only if it g is self concordant on every line in its domain. I.e, for all
x ∈ D(g) and v ∈ Rd, we have f(t) = g(x+ tv) is self-concordant function of one variable.

It is trivial to verify that self-concordance is preserved under summation and composition
is affine transformations. I.e. if f, g are self concordance functions on Rd and A : Rn → Rd is
an affine function, then f+g and f ◦A are also self-concordant. In particular, if g : D(g)→ R
is a self concordant function for convex D(g) ⊂ R, then we have f : D(g)→ R

f(λ) =
n∑
i=1

g(1 + λTZi), (11)

is a self concordant function for convex D(g) ⊂ Rd. For an example of self-concordance, note
that g(x) = − log x satisfies (10) with equality on for all x > 0 and is thus, self-concordant.
This along with (11) tells us our objective function for (16) given by

f(λ) = −
n∑
i=1

log(1 + λTZi),
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is self-concordant on D(f) ⊂ Rd.
The self-concordance condition (10) puts a bound on the growth rate of f ′′′, which essen-

tially says that f ′′(x) can’t change too rapidly. This can be seen more clearly in the following
way. Then (10) is equivalent to the following,

|f ′′′(x)| ≤ 2f ′′(x)3/2

⇐⇒
∣∣∣∣− f ′′′(x)

2f ′′(x)3/2

∣∣∣∣ ≤ 1

⇐⇒
∣∣∣∣ ddxf ′′(x)−1/2

∣∣∣∣ ≤ 1

⇐⇒ − 1 ≤ d

dx
f ′′(x)−1/2 ≤ 1

⇐⇒ −∆x ≤
∫ x+∆x

x

d

dt
f ′′(t)−1/2dt ≤ ∆x

⇐⇒ −∆x ≤ f ′′(x+ ∆x)−1/2 − f ′′(x)−1/2 ≤ ∆x

Rearranging the last line gives tells us f is self-concordant if and only if

f ′′(x)

(1 + ∆xf ′′(x)1/2)2
≤ f ′′(x+ ∆x) ≤ f ′′(x)

(1−∆xf ′′(x)1/2)2
.

The key point is that knowing a function is self-concordant gives us control on the second
order fluctuation without needing to invoke strong convexity or forcing our function to be
Lipschitz. In particular we get the control for free without needing to introduce hard to
compute constants. This allows us to analyse our Hessian and the convergence of Newton’s
method very cleanly.

3.2 Newton decrement

Let us suppose that f is a convex function on a convex D(f) ⊂ Rd and let f ∗ denote the
solution to the optimization problem.

minimize: f(x)

subject to: x ∈ D(f)
(12)

Given x ∈ D(f), we define the Newton’s step at x as the the ∆xnt ∈ Rd that minimizes the
quadratic approximation Qf,x(v) of f at x. I.e.,

∆xnt = argminvQf,x(v)

= argminvf(x) +∇fT (x)v +
1

2
vT∇2f(x)v

= argminvf(x) +∇fT (x)v +
1

2
‖v‖2

∇2f(x)

9



Where ‖v‖∇2f(x) = (vT∇2f(x)v)1/2 is the Hessian norm of v with respect to the Hessian,
which is well defined since the Hessian is positive definite. This is a measure of how big the
change v is in the natural scale of our Hessian.

It is a routine exercise by taking derivatives to show that ∆xnt = −(∇2f(x))−1∇f(x).
We will denote the Newton decrement ν(x) as the Hessian norm of our Newton step ∆xnt.

ν(x) = ‖∆xnt‖∇2f(x)

= (∆xTnt∇2f(x)∆xnt)
1/2

= ((∇f(x))T (∇2f(x))−1∇f(x))1/2

Intuitively ν(x) is a natural measure how far x is from the optimal minimizer of quadratic
approximation given by x+ ∆xnt.

The difference between f and minimum of the quadratic approximation is given by

f(x)−Qf,x(∆xnt) =
1

2
(∇f(x))T (∇2f(x))−1∇f(x) =

1

2
ν(x)2

f(x)−Qf,x(∆xnt) = −∇fT (x)∆xnt −
1

2
‖∆xnt‖2

∇2f(x)

= (∇f(x))T (∇2f(x))−1∇f(x)− 1

2
ν(x)2

=
1

2
ν(x)2

Therefore ν2/2 measures the sub-optimality of f(x) compared to the minimum of its quadratic
approximation at x.

Heuristically, we can use the Newton decrement to derive a sub-optimality bound on how
far f(x) is from the true minimum f ∗ in the case where f is self-concordant by using the
the quadratic approximation as an intermediary. This was done in a detailed rigorous way
in Section 9.6.3 in [BV04]. The proof was very clear and not missing any steps, so we will
avoid the details and give the general ideas involved in the proof.

Indeed, self-concordance gives us a bound on how quickly the second derivative can
change, and consequently gives a bound on the error between f and the quadratic approxi-
mation.The newton decrement gives us the error between f and the and minimum of of the
quadratic approximation. Combing the two we can get an error between f(x) and f ∗.

Theorem 3.4. Let f : D(f) → R for convex D(f) ⊂ Rd be self-concordant with minimum
f ∗. Then if 0 < ε < 0.682 and ν(x)2 ≤ ε, then

f(x)− f ∗ ≤ ε.

Therefore in the case of self-concordant functions, we have a natural stopping criterion for
our optimization problem. When ν(x)2 is less than our desired accuracy ε, we are guaranteed
to be within ε of the global minimum.
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3.3 Self-Concordant Empirical Likelihood

We now return to the problem of solving (16). In the traditional approach we showed that
it was equivalent to solving the unconstrained convex optimization problem (9) by replacing
log with a globally defined convex approximation log?, and applying Newton’s method. We
will follow the same recipe as the traditional approach but will chose a globally defined
convex, and self-concordant approximation to replace log.

Recall we arrived at log?(x) by restricting to log x when x ≥ 1/n and using the second
order Taylor expansion of log for x ≤ 1/n, that log? ∈ C2(R) and is convex. We also have
log? is self concordant for x > 1/n since log x is and similarly when x < 1/n, we have
log? is self concordant since log′′′(x) = 0. The only point log? fails self-concordance is at
x = 1/n since the third derivative is not defined. We will fix this by replacing the second
order approximation at x < 1/n with a higher order one.

Define for a > 0, we define Lk,a : R→ R as

Lk,a(x) =

{
log(x) x > a∑k

i=0 log(i)(a) (x−a)i

i!
x ≤ a

,

where log(i)(a) is the i-th derivative of log at a. Note that log? = L2, 1
n
. We want to find

a k that ensures self-concordance. When k = 3, we have L3,a is not even convex, but we
find −L4,a is both globally convex and self-concordant. The proof of self-concordance was a
simple calculation done in great detail and clarity in Theorem 1 in [Owe13] and thus we will
omit it here. Although they showed self concordance for a general a > 0, we are really only
interested in a ≤ 1/n since our analysis in section 2 showed that the optimal solution to (16)
only occurs when 1 + λ̂TZi > 1/n for all i. For the sake of convenience, we will denote L4, 1

n

as log♥.
We now define f♥ : Rd → R by

f♥(λ) = −
n∑
i=1

log♥(1 + λTZi).

From (11), we know that f♥ is self-concordant. We now examine the following unconstrained
convex optimization problem

minimize: f♥(λ) = −
n∑
i=1

log♥(1 + λTZi) . (13)

The analysis of the solution to the traditional problem(9) is identical to that of the self-
concordant one given by (13). Indeed, we can now restate Section 2.3 verbatim replacing
log? with log♥, and everything would still hold true. So we will avoid that and just go
straight to the punch line.
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The gradient and Hessian of f♥ are given by,

∇f♥(λ) = −
n∑
i=1

log′♥(1 + λTZi)Zi

∇2f♥(λ) = −
n∑
i=1

log′′♥(1 + λTZi)Zi

From this we can run our Newton’s method to achieve accuracy ε, with the stopping criterion
that we stop when

ν(x)2 = (∇f♥(x))T (∇2f♥(x))−1∇f♥(x) ≤ ε.

Just as with the traditional approach, when µ ∈ int(Conv(X)), then the minimizer λ̂
and the corresponding p̂i = (n(1 + λ̂TZi))

−1 are solutions to (16) and (2) respectively, and
can be used to compute R(µ) by the formula,

logR(µ) =
n∑
i=1

log(np̂i) =
n∑
i=1

log(1 + λ̂TZi).

If ‖λ‖ → ∞ and pi = (n(1 +λTZi))
−1 → 0 for all i, then we can conclude µ 6∈ Conv(X). We

will call the method for computing R(µ) via solving via (13), the self-concordant approach .

4 Adjusted Empirical Likelihood

A lot of the difficulty that comes with computing for R(µ), comes from the fact that our
constraints in (2) may not always satisfied and thus R(µ) may not be defined. As stated
in [Owe01] and [CVA08], under certain mild moment condition on X, we have the true mean
µ0 will be contianed in the convex hull of the data, with as n→∞ almost surely. However,
when µ is not close to µ0 or n is not very large, we will have that there is a good chance
that µ /∈ Conv(X).

Chen, Variyath, and Abraham in [CVA08] circumvented this issue by defining a new
function function called the adjusted empirical likelihood (AEL) function, which we will
denote at RAEL : Rd → R, well-defined on all of Rd, that approximates the R when µ is
close to µ0, and has has the same asymptotic properties as R.

First suppose µ ∈ Rd is fixed. Let X = {X1, . . . , Xn}. We want to introduce new centered
pseudo-sample Xn+1 into our data that by defining

(Xn+1 − µ) = −an
n

n∑
i=1

(Xi − µ) = −an(X̄ − µ) (14)

for an > 0 specified by the user. We will let X̃ = X ∪ {Xn+1} be the new augmented data.
We now define the adjusted empirical likelihood function RAEL(µ) as the profile likelihood
of X̃. I.e.

RAEL(µ; an) = sup

{
n+1∏
i=1

(n+ 1)pi : pi ≥ 0,
n+1∑
i=1

pi = 1,
n+1∑
i=1

piXi = µ

}
(15)

12



Since RAEL(µ) is the just the profile empirical likelihood for the data X̃, we can compute
RAEL(µ) using the same strategy via duality outlined in Section 2

4.1 Properties of AEL

First of all note that if pi = an/(nan + n) for i = 1 . . . n and pn+1 = n/(nan + n), then,
pi ≥ 0, sum to 1, and

n+1∑
i=1

pi(Xi − µ) =
an

nan + n

n∑
i=1

(Xi − µ) +
n

nan + n
(Xn+1 − µ)

=
nan

nan + n

1

n

n∑
i=1

(Xi − µ)− nan
nan + n

(X̄n − µ)

= 0.

Thus we have µ ∈ int(Conv(X̃)) is which implies RAEL(µ; an) is defined on all of Rd. A
stronger consequence of the above computation is that logRAEL(µ; an) is actually bounded
from below.

logRAEL(µ; an) ≥
n+1∑
i=1

log(npi)

=
n∑
i=1

log

(
n

an
nan + n

)
+ log

(
n

n

nan + n

)
= n log

(
an

an + 1

)
+ log

(
n

an + 1

)
.

This is in contrast to logR(µ) that approaches −∞ as µ approaches ∂Conv(X) from the
interior and is undefined outside of Conv(X).

Since this is not a report on the properties of the adjusted empirical likelihood, we will
focus on developing some heuristic intuition without getting bogged down in details.

The addition of Xn+1 is the is equivalent to adding in an new pseudo-samples whose di-
rection opposes the difference between µ and the true mean µ0. This can be seen heuristically
(14) and the law of large numbers implies for n large enough

Xn+1 − µ = an(X̄n − µ) ≈ −an(µ0 − µ)

Thus we are adding Xn+1 into the data so that we expand out convex hull approximately in
the direction of µ− µ0 and the an controls the rate of expansion.

Also note that when n is large and µ is close to µ0, then Xn+1 ≈ 0, and thus will not
contribute much to our constraint in (15) RAEL(µ; an) ≈ R(µ). This motivates that at µ0,
RAEL(µ0; an) should have similar asymptotic behaviour as R(µ0) for an not growing too
quickly. If an grows too fast, Xn will dominate over the other samples in the optimization.
Indeed it was shown in [CVA08] that if an is op(n

2/3) then logRAEL(µ0; an) is equivalent to
logR(µ0) asymptotically, upto first order.
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Overall the pros of the RAEL are not insignificant. It is well defined and bounded from
below on all of Rd, the constraints are always satisfies, it shares the same nice asymptotic
properties at R when µ is near µ0, and outputs reasonable values when µ is far away from
µ0. However it does come with it’s own challenges. The performance, and asymptotics are
greatly dependant on our choice of an, which there is no natural methodical way of choosing.
Furthermore, when n is small, the asymptotic fail to hold and it’s the values are not as
meaningful. Finally, the empirical likelihood was defined in a more natural way than the
adjusted empirical, and is thus more interpretable and easy to explain to non-experts.

5 Confidence region

One of the most important properties about the empirical likelihood method is that asymp-
totically the profile empirical likelihood ratio shares the same limiting distribution as the
parametric likelihood ratio, and admits its own non-parametric version of Wilk’s theorem
called the empirical likelihood theorem (ELT).

Theorem 5.1 (ELT). [Owe01] Let X1, . . . , Xn be i.i.d. random vector in Rd with mean µ0

and variance matrix V of rank r. Let R be the profile likelihood defined in Section 2. Then
we have

−2 logR(µ0)
d−−−→

n→∞
χ2

(r).

A similar result was shown in [CVA08] for the adjusted empirical likelihood ratio, which
we will call the adjusted empirical likelihood theorem (AELT)

Theorem 5.2 (AELT). Let X1, . . . , Xn be i.i.d. random vector in Rd with mean µ0 and
variance matrix V of rank d, and an = op(n

2/3). Let R be the profile likelihood defined in
Section 2. Then we have

−2 logRAEL(µ0; an)
d−−−→

n→∞
χ2

(d).

Theorem 5.1 and 5.2 suggests that assuming the variance matrix of X has full rank and
an = op(n

2/3), then

CEL
α = {µ : −2 logR(µ) ≤ χ2

(d)(1− α)}
CAEL
α = {µ : −2 logRAEL(µ; an) ≤ χ2

(d)(1− α)}

are a good approximation for a 100(1−α)% confidence region for the mean, where χ2
(d)(1−α)

is the 1− α quantile of the chi-square distribution with d degrees of freedom. The following
lemmas will be when computing CEL

α .

Lemma 5.3. For all 0 < α ≤ 1, we have X̄n ∈ CEL
α , and X̃n = 1

n

∑n+1
i=1 Xi ∈ CAEL

α .

Proof. Let us compute the empirical likelihood ratio.

R(X̄) = sup{
n∑
i=1

log(npi) : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piXi = X̄n}.

Then we note that when pi = 1/n, we have the constraints are satisfied and
∑n

i=1 log(npi) =
0. Since R(µ) ≤ 0 whenever defined, we have R(X̄n) = 0. Thus X̄n ∈ Cα for all α.

An analogous argument works to show X̃n ∈ CAEL
α .
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Lemma 5.4. R is a concave function on it’s domain, and CEL
α is convex.

Proof. Let µ1, µ2 ∈ D(R), and t ∈ [0, 1], then let µ = tµ1 + (1 − t)µ2. Suppose ri, si ≥ 0,∑n
i=1 ri =

∑n
i=1 si = 1 and

∑n
i=1 riXi = µ1,

∑n
i=1 siXi = µ2. Then,

t
n∑
i=1

log(nri) + (1− t)
n∑
i=1

log(nsi) =
n∑
i=1

(t log(nri) + (1− t) log(nsi))

≤
n∑
i=1

log(n(tri + (1− t)si)).

The last line used the concavity of log. Now note that tri+(1−t)si ≥ 0,
∑n

i=1 tri+(1−t)si = 1
and

∑n
i=1(tri + (1− t)si)Xi = tµ1 + (1− t)µ2 = µ. Thus we have

t
n∑
i=1

log(nri) + (1− t)
n∑
i=1

log(nsi) ≤ R(µ).

Now taking the supremum on the left hand side over all possible ri, si that satisfy our
constraints, gives us

tR(µ1) + (1− t)R(µ2) ≤ R(µ).

Thus we have shown R is concave.
Since R is concave, we have −2R is convex. The sub-level sets of a convex function are

convex, therefore Cα is convex.

Remark 5.5. It was also shown in [CH13] that the confidence regions of for the adjusted
empirical likelihood were are convex.

6 Implementation

We will now discuss how to numerically compute R(µ) and RAEL(µ). We will compute
these quantities by solving the dual problem (16) associated with them using Newton’s
method. Owen suggested in [Owe13] to use a damped Newton’s method given by algorithm
9.5 in [BV04], and Chen et. al. recommended using a modified Newton method outlined
in [CVA08].

6.1 Outline of optimization methods

Suppose we have the following convex optimization problem, we wish to solve.

minimize: f(x)

subject to: x ∈ D(f)
. (16)

Traditional newton method involves moving iteratively from xk → xk+1 = xk + ∆xk,
where

∆xk = −(∇2f(x))−1∇f(x).
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In the damped Newton method our update is still in the direction of the Newton step,
but is of the form xk + t∆xk. We perform a backtracking line search on t until our objective
function decreases sufficiently. Let β ∈ (0, 1), α ∈ (0, 1/2) and initialize tk = 1, and we keep
replacing tk by βtk until

f(xk + tk∆x
k) ≤ f(xk) + αtk∇Tf(xk)∆xk).

Then define xk+1 = xk + tk∆x
k. We stop our algorithm when the newton decrement

ν(x)2/2 ≤ ε for our desired accuracy ε. In the case where f is self-concordant we can
stop when ν2 ≤ ε.

The modified Newton method of Chen is similar to the damped newton method where
we compute the Newton step and then backtrack. Our update is of the form xk + δk∆x

k,
where we initialize δk = (1 + k)−1/2, we then replace δk by δ2 until xk + δk∆x

k ∈ D(f) and

f(xk + δk∆x
k) ≤ f(xk).

Then define xk+1 = xk + δ∆xk, and we stop when ‖∆xk‖ ≤ ε.
Damped Newton method assumes we are working in the unconstrained setting whereas

Chen’s method is proven to work for empirical likelihood calculation [CSW02].

6.1.1 Computation of R(µ) and RAEL(µ; an)

We can solve for logR(µ) by solving (16) using Chen’s Newton method, we will call the
output of this logRChen. We can also use the damped Newton’s method to solve for logR(µ)
using the traditional and self-concordant method. We will denote the solution to (9), (13) as
logRtrad and logRSC respectively. If our final output for λ̂ does not satisfy the constraints
1 + λTZi ≥ 1/n for all i, we will define logR(µ) = −∞.

Similarly we can solve for logRAEL(µ; an) by augmenting Xn+1 = −an(X̄ − µ) + µ to
our data and then solving the associated (16) problem using Chen’s Newton method, we will
call the output of this logRChen

AEL . We can also use the damped Newton’s method to solve
for logRAEL(µ; an) using the traditional and self-concordant method. We will only look at
the self-concordant method, since global convergence is guaranteed and we will denote this
as logRSC

AEL.
In each of these cases we initialize λ0 = 0 as it is guaranteed to be in the domain of our

objective function. For damped Newton method we set α = 0.3 and β = 0.8 as recommended
by [Owe13] in his code. Our desired accuracy will be ε = 10−8 in all cases. In case of the
AEL, we will use an = max(1, log n/2) as suggested in [CVA08].

6.2 Comparison of Methods

To test the performance, on random samples generated from a Poison(3) and Normal(0, diag(1, 10)
of size 30. The goal of these experiments is to test to see how well the 5 different methods
perform for different values of µ as opposed to doing inference. We chose these two distribu-
tions since it gives up a chance to see how the algorithms handle data in both the discrete
and continuous setting in 1 and 2 dimensions for various values of µ. Poisson is also a good
choice since it is asymmetric about the mean.
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We choose size n = 30, to ensure the n is large enough for the asymptotic approximations
for the confidence regions to be valid, but also don’t want n so large so that the ELR
concentrates at the mean, thus making it difficult to see differences between AEL and EL
confidence regions.

We generated the data in R using the seed 072892.

6.2.1 Results: Poisson Data

We generated 30 samples with mean 3 and sample mean µ0 = 2.96 and range

[x(1), x(30)] = [1, 7]

. A histogram of the data is plotted below,

Figure 1: Histogram of the Poisson data

We now compute the EL and AEL near µ0, near the edge and some where in between.
We list the results of mu = 3, 6, 1.0001 in Table 1, 2 and 3 respectively. Th
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Table 1: Poisson Data, n = 30, µ0 = 3
µ = 3

Value Iterations λ̂
RChen(µ) -0.009294779 5 -0.01844364
Rtrad(µ) -0.009294779 2 -0.01844389
RSC(µ) -0.009294779 2 -0.01844389
RChen
AEL (µ) -0.008144133 5 -0.01728203
RSC
AEL(µ) -0.008144133 2 -0.01728222

Table 2: Poisson Data, n = 30, µ0 = 3
µ = 6

Value Iterations λ̂
RChen(µ) -29.37578 44 -0.94555
Rtrad(µ) -29.37578 6 -0.5896481
RSC(µ) -29.37578 12 -0.5896476
RChen
AEL (µ) -8.3734 50 -0.1824219
RSC
AEL(µ) -8.3734 10 0.04849103

Table 3: Poisson Data, n = 30, µ0 = 3
µ = 1.0001

Value Iterations λ̂
RChen(µ) -207.2654 100 8799.667
Rtrad(µ) -207.2654 20 8089.754
RSC(µ) -207.2654 21 8089.753
RChen
AEL (µ) -7.976862 29 0.2810761
RChen
AEL (µ) -7.976862 4 0.2810761
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6.2.2 Results: Multivariate Gaussian Data

We generated 30 samples with µ0 = 0 and Σ = diag(2, 10). The data is plotted below in
Figure 2.T he sample mean x̄ = (0.050019460.47875169) We now compute the EL and AEL
near µ0, near the boundary of the convex hull and some where in between We list the results
of mu = (0, 0, (3, 6), (−2.5, 3.1) in table 4, 5, 6 respectively.

Figure 2: Plot of the multivariate Gaussian data. The red point is the sample mean, and
the green points are the µ we are testing.

Table 4: Normal Data, n = 30, µ0 = 0,Σ = diag(2, 10)
µ = (0, 0)

Value Iterations λ̂
RChen(µ) -0.4689824 20 (0.02499763 0.06551925)
Rtrad(µ) -0.4689824 3 (0.02499767 0.06551926)
RSC(µ) -0.4689824 3 (0.02499767 0.06551926)
RChen
AEL (µ) -0.4138172 20 (0.02296238 0.06131776)
RSC
AEL(µ) -0.4138172 3 (0.02296241 0.06131777)
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Table 5: Normal Data, n = 30, µ0 = 0,Σ = diag(2, 10)
µ = (1, 2)

Value Iterations λ̂
RChen(µ) -8.629085 55 (-0.59216340 -0.02584358)
Rtrad(µ) -8.629085 7 (-0.536938901 -0.006552615)
RSC(µ) -8.629085 9 (-0.492759316 0.008880111)
RChen
AEL (µ) -6.57169 49 (-0.41747434 -0.03753552)
RSC
AEL(µ) -6.57169 6 (-0.41747433 -0.03753553)

Table 6: Normal Data, n = 30, µ0 = 0,Σ = diag(2, 10)
µ = (−2.1, 3.5)

Value Iterations λ̂
RChen(µ) -117.7297 100 (18.57244, -13.43548)
Rtrad(µ) -117.7297 13 (9.357252, -6.587463)
RSC(µ) -117.7297 19 (9.357246 -6.587458)
RChen
AEL (µ) -10.02464 48 (0.15980045 -0.04820261)
RSC
AEL(µ) -10.02464 12 (-0.06062915 0.01168551)
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6.2.3 Analysis

First point of note amongst the results above is that the three methods for computing the
EL and the 2 methods for computing the AEL both gave nearly identical results, for the log
profile (adjusted) empirical likelihood function at the µ we chose to compare. Also when µ
was close to the sample mean, we found that the AEL and EL gave very similar results. The
real divergence came the closer we got the the boundary of the convex hull, which again is to
be expected since the log AEL profile is bounded from below and the log EL profile diverges
to infinity near the boundary. Both the EL and AEL took significantly more iterations for
the algorithm to terminate as µ deviated from the sample mean.

In all scenarios, we found that the damped Newton’s method performed significantly
better that the modified Newton’s method of Chen. Although it gave the same output at
the damped version, it took significantly more iterations to terminate. This was the case for
both the EL and AEL.

Comparing the traditional approach to the self-concordant approach, we found surpris-
ingly that the traditional approach performed the best. The profile value was outputted were
identical and λ̂ only deviated from of the self-concordant output but was on the same order
of magnitude. However, we found that the traditional approach consistently terminated in
fewer iterations than the self-concordant approach and the difference became more appar-
ent as µ deviated from the sample mean. This suggests that although the self-concordant
method has provable convergence properties that the traditional approach lacks, it is not as
effective in practice as the traditional approach.

6.3 Comparison of Confidence Regions

We will now outline how to construct confidence regions for µ. Recall that the confidence
regions of µ of signifincant 100(1− α)% is well approximated by

CEL
α = {µ : −2 logR(µ) ≤ χ2

(d)(1− α)}
CAEL
α = {µ : −2 logRAEL(µ) ≤ χ2

(d)(1− α)}

By Lemma 5.3 we know that the sample mean x̄ ∈ int(CEL
α ) and it maximizes R. By Lemma

5.4 we know that −2R and CEL
α are convex, and thus for each x ∈ ∂CEL

α , there is a line
connecting x̄ to x and R is monotonic along this line. So we can do a line search in every
direction around x̄ until we find the µ on the line such that −2R(µ) = χ2

(d)(1− α). If we do
this for enough equally spaced lines, it will let us generate an approximation to the boundary
of CEL

α . An identical argument allows us to construct regions for the AEL.
In the case of d = 1, we only need to perform 2 line searches; one to the left and right of

x̄ respectively. We did this for our Poisson data for to get 50% and 95% confidence regions
given by,

CEL
0.5 =[2.771, 3.165] CEL

0.05=[2.400,3.611]

CAEL
0.5 =[2.757, 3.179] CAEL

0.05 =[2.397, 3.663]
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In the case of d = 2, we can generate N equally spaced lines along the unit circles centred
at x̄ and perform a line search on each. We did this for N = 200. We plot the 50% and 95%
confidence regions below.

Figure 3: The red point is the sample mean, and the green contours outline the 50% and
95% coverage regions for the EL. The green contours outline the 50% and 95% coverage
regions for the AEL.

The confidence regions take on the shape of our data, as opposed to the ellipses that arise
from the classical Gaussian approach. Another remark worth making is that the confidence
regions of AEL seems to always be large than the EL in both our data sets.
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8 Code

8.1 Computing EL and AEL

Below is the R code for used to compute R and RAEL in the various ways.

library(mvtnorm)

rm(list=ls())

## Compute L_ord(x,a)

logEL <- function(x,a,ord){

if(x>a){

return(log(x))

}

else{

sum <- log(a)
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for (i in 1:ord){

sum <- sum + (-1)^(i+1)/(a^i*i)*(x-a)^i

}

return(sum)

}

}

dlogEL <- function(x,a,ord){

if(x>a){

return(1/x)

}

else{

sum <- 0

for(i in 1:ord){

sum <- sum + (-1)^(i+1)/a^i*(x-a)^(i-1)

}

return(sum)

}

}

ddlogEL <- function(x,a,ord){

if(x>a){

return(-1/x^2)

}

else{

sum <- 0

for(i in 2:ord){

sum <- sum + (-1)^(i+1)*(i-1)/a^i*(x-a)^(i-2)

}

return(sum)

}

}

## Implementation of damped Newton method

logELRdamp <- function(X, # Data matrix

mu, # Desired mean

max_iter, # Maximum number of iterations

tol, # desired tolerance

ord # ord = 2 -> logELRtrad, logELRnewt -> logELRdamp

){

n <- nrow(X)

d <- ncol(X)
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# Center data, Z[i,]=X[i,]-mu

Z <- t(t(X) - mu)

# Initialize

lambda <- rep(0, d)

lam_z <- rep(1, n) # lam_z[i] = 1+lambda^t(Z[i,]) corresponding to lambda =

rep(0,d)

# Line search parameters

alpha <- 0.3

beta <- 0.8

t <- 1

k <- 0

converged <- F

repeat{

# If too many iterations

if (k >= max_iter) {

weights <- (n * lam_z)^-1

if (any(lam_z<1/n)){

logELRdamp <- -Inf}

else{

logELRdamp <- -sum(sapply(lam_z, logEL, a = 1/n, ord)) }

return(list(logELRdamp = logELRdamp,

weights = weights,

sum = sum(weights),

lambda = lambda,

converged = converged,

iter = k))

}

# Compute gradient, Hessian, Newton step, Newton decremenet

grad <- -colSums(Z*sapply(lam_z, dlogEL,a = 1/n, ord))

hess <- -t(Z) %*% (Z *sapply(lam_z, ddlogEL,a = 1/n, ord))

delta_lam <- -solve(hess, grad)

dec <- sqrt(-t(grad)%*%delta_lam)

if (dec^2<tol){

break

}

# Initialize line search

line_iter <- 0

logELRdamp <- -sum(sapply(lam_z, logEL, a = 1/n, ord))

z_delta_lam <- as.vector(Z %*% delta_lam)

# Line Search

repeat {
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new_lam_z <- lam_z + z_delta_lam

new_logELRdamp <- -sum(sapply(new_lam_z,logEL, a = 1/n, ord))

if (new_logELRdamp > logELRdamp + alpha*t*grad%*%delta_lam & line_iter <

max_iter) {

t <- beta*t

delta_lam <- beta*delta_lam

z_delta_lam <- z_delta_lam

line_iter <- line_iter + 1

}

else {

break

}

}

lambda <- lambda + delta_lam

lam_z <- new_lam_z

k <- k + 1

t <- 1

}

logELRdamp <- -sum(sapply(lam_z, logEL, a = 1/n, ord))

weights <- (n * lam_z)^-1

converged <- T

return(list(logELRdamp = logELRdamp,

weights = weights,

sum = sum(weights),

lambda = lambda,

converged = converged,

iter = k))

}

## Traditional logELR using log_star

logELRtrad <- function(X, # Data matrix

mu, # Desired mean

max_iter, # Maximum number of iterations

tol # desired tolerance

){

z <- logELRdamp(X, mu, max_iter, tol/2, ord = 2)

return(list(logELRtrad = z$logELRdamp,

weights = z$weights,

sum = z$sum,

lambda = z$lambda,

converged = z$converged,

iter = z$iter))

}

## Compute self concordant logELR
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logELRsc <- function(X, # Data matrix

mu, # Desired mean

max_iter, # Maximum number of iterations

tol # desired tolerance

){

z <- logELRdamp(X, mu, max_iter, tol, ord = 4)

return(list(logELRsc = z$logELRdamp,

weights = z$weights,

sum = z$sum,

lambda = z$lambda,

converged = z$converged,

iter = z$iter))

}

# Compute logELR using algorithm proposed in Chen (2008)

logELRchen <- function(X, # Data matrix

mu, # Desired mean

max_iter, # Maximum number of iterations

tol # desired tolerance

){

n <- nrow(X)

d <- ncol(X)

# Center data, Z[i,]=X[i,]-mu

Z <- t(t(X) - mu)

# Initialize

lambda <- rep(0, d)

lam_z <- rep(1, n) # lam_z[i] = 1+lambda^t(Z[i,]) corresponding to lambda =

rep(0,d)

gamma <- 1

k <- 0

converged <- F

repeat{

# If too many iterations

if (k >= max_iter) {

weights <- (n * lam_z)^-1

if (any(lam_z<1/n)){

logELRchen <- -Inf

}

else{

logELRchen <- -sum(log(lam_z)) }

return(list(logELRchen = logELRchen,

weights = weights,

sum = sum(weights),
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lambda = lambda,

converged = converged,

iter = k))

}

# Compute gradient, Hessian, Newton step

grad <- -colSums(Z*1/lam_z)

hess <- -t(Z) %*% (-Z /lam_z^2)

delta_lam <- -gamma * solve(hess, grad)

# Initialize line search

line_iter <- 0

logELRchen <- -sum(log(lam_z))

z_delta_lam <- as.vector(Z %*% delta_lam)

# If step is too small stop

if (sqrt(sum(delta_lam*delta_lam)) < tol) {

break

}

# Line Search

repeat {

if (line_iter >= max_iter) {

stop("Cannot find the next feasible step.")

break

}

new_lam_z <- lam_z + z_delta_lam

new_logELRchen <- -sum(log(new_lam_z))

if (any(new_lam_z <= 0) | new_logELRchen > logELRchen) {

delta_lam <- delta_lam / 2

z_delta_lam <- z_delta_lam / 2

line_iter <- line_iter + 1

}

else {

break

}

}

lambda <- lambda + delta_lam

lam_z <- new_lam_z

k <- k + 1

gamma <- k^-0.5

}

logELRchen <- -sum(log(lam_z))

weights <- (n * lam_z)^-1
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converged <- T

return(list(logELRchen = logELRchen,

weights = weights,

sum = sum(weights),

lambda = lambda,

converged = converged,

iter = k))

}

#### Adjusted emperical likelihood Computation

# Compute logAELR using the algorithm proposed in Chen (2008).

logAELRchen <- function(X, # Data matrix

mu, # Desired mean

max_iter, # Maximum number of iterations

tol # desired tolerance

){

n <- nrow(X)

d <- ncol(X)

a_n <- max(1,log(n)/2)

# Center data, Z[i,]=X[i,]-mu

Z <- t(t(X) - mu)

z_new <- -a_n*colMeans(Z)

Z <- rbind(Z,z_new)

# Uncenter data

X <- t(t(Z)+mu)

z <- logELRchen(X, mu, max_iter, tol)

return(list(logAELRchen = z$logELRchen,

weights = z$weights,

sum = z$sum,

lambda = z$lambda,

converged = z$converged,

iter = z$iter))

}

# Computed logAELR using a damped Newton method

logAELRsc <- function(X, # Data matrix

mu, # Desired mean

max_iter, # Maximum number of iterations

tol # desired tolerance

){

n <- nrow(X)

d <- ncol(X)

a_n <- max(1,log(n)/2)

# Center data, Z[i,]=X[i,]-mu
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Z <- t(t(X) - mu)

z_new <- -a_n*colMeans(Z)

Z <- rbind(Z,z_new)

# Uncenter data

X <- t(t(Z)+mu)

z <- logELRdamp(X, mu, max_iter, tol, ord = 4)

return(list(logAELRdamp = z$logELRdamp,

weights = z$weights,

sum = z$sum,

lambda = z$lambda,

converged = z$converged,

iter = z$iter))

}

8.2 Computing confidence regions

Below is the R code for used to compute the confidence regions for 1 and 2 dimensional data.

## Computes the point x = colmean(X)+ t*dir such that f(x)=alpha,

level_dir <- function(f, # convex function such -2ELR ir -2AELR

X, # Data matrix

alpha, # Desired alpha

tol, # Tolerance

dir # Direction vector

){

b <- colMeans(X)

repeat{

b <- b + dir

f_b <- f(b)

if (f_b > alpha){

break

}

}

a <- b-dir

k <- 0

while(2^-k> tol){

c <- (a+b)/2

f_c <- f(c)

if(f_c>alpha){

b <- c

}

else{

a <- c

}
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k <- k+1

}

return(c)

}

## Compute confidence interval of significance alpha

conv_int <- function(f, # convex function such -2ELR ir -2AELR

X, # Data matrix

alpha, # Desired confidence

tol # Tolerance

){

upper <- level_dir(f,X,qchisq(alpha, df=1), tol, 1)

lower <- level_dir(f,X,qchisq(alpha, df=1), tol, -1)

return(c(lower,upper))

}

## Computes the points on the boundary of the confidence region of significance

alpha

level <- function(f, # convex function such -2ELR ir -2AELR

X, # Data matrix

alpha, # Desired confidence

tol, # Tolerance

num_dir # Number of direction

){

# Create direction vectors

theta <- seq(from = 0, 2*pi, length.out = num_dir)

theta <- c(theta,0)

v <- matrix(NA, nrow = num_dir+1, ncol = 2)

for (i in 1:(num_dir+1)){

v[i,] <- c(cos(theta[i]),sin(theta[i]))

}

levelset <- matrix(NA, nrow = num_dir+1, ncol = 2)

for(i in 1:(num_dir+1)){

levelset[i,] <- level_dir(f,X,qchisq(alpha, df=2), tol, v[i,])

}

return(levelset)

}

## Plots the convex hull of a set of 2 dimensional points

Plot_ConvexHull<-function(X, lcolor){

hpts <- chull(x = X[,1], y = X[,2])

hpts <- c(hpts, hpts[1])

lines(X[hpts,1], X[hpts,2], col = lcolor)
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}

ELR <- function(mu){

return(-2*logELRsc(X,mu,100,1E-8)$logELRsc)

}

AELR <- function(mu){

return(-2*logAELRdamp(X,mu,100,1E-8)$logAELRdamp)

}

8.3 tests

Below is the R code for used to conduct out tests.

## 1- dimension Poission mean 3

set.seed(072892)

X <- as.matrix(rpois(25, 3),ncol=1, nrow=20)

mu <- mean(X)

hist(X,main="Poisson data n=30")

range(X)

# mu = 3

logELRchen(X,c(3),100,1E-8)

logELRtrad(X,c(3),100,1E-8)

logELRsc(X,c(3),100,1E-8)

logAELRchen(X,c(3),100,1E-8)

logAELRsc(X,c(3),100,1E-8)

# mu = 6

logELRchen(X,c(6),100,1E-8)

logELRtrad(X,c(6),100,1E-8)

logELRsc(X,c(6),100,1E-8)

logAELRchen(X,c(6),100,1E-8)

logAELRsc(X,c(6),100,1E-8)

# mu = 1.0001

logELRchen(X,c(1.0001),100,1E-8)

logELRtrad(X,c(1.0001),100,1E-8)

logELRsc(X,c(1.0001),100,1E-8)

logAELRchen(X,c(1.0001),100,1E-8)

logAELRsc(X,c(1.0001),100,1E-8)

conv_int(ELR,X,0.95 ,1E-8)
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conv_int(AELR,X,0.95 ,1E-8)

conv_int(ELR,X,0.5 ,1E-8)

conv_int(AELR,X,0.5 ,1E-8)

## 2-dimensional gaussian

set.seed(072892)

X <- rmvnorm(30, mean= c(0,0), sigma = diag(c(2,10)))

plot(X, pch=20, main = "Multivariate Gaussian, n=30")

mu <- colMeans(X)

mu

Plot_ConvexHull(X, lcolor = "black")

points(colMeans(X)[1],colMeans(X)[2],col= "red", pch=17)

points(0,0,col= "green", pch=17)

points(1,2,col= "green", pch=17)

points(-2.5,3.1,col= "green", pch=17)

# mu = c(0,0)

logELRchen(X,c(0,0),100,1E-8)

logELRtrad(X,c(0,0),100,1E-8)

logELRsc(X,c(0,0),100,1E-8)

logAELRchen(X,c(0,0),100,1E-8)

logAELRsc(X,c(0,0),100,1E-8)

# mu = c(1,2)

logELRchen(X,c(1,2),100,1E-8)

logELRtrad(X,c(1,2),100,1E-8)

logELRsc(X,c(1,2),100,1E-8)

logAELRchen(X,c(1,2),100,1E-8)

logAELRsc(X,c(1,2),100,1E-8)

# mu = c(-2.5,3.1)

logELRchen(X,c(-2.5,3.1),100,1E-8)

logELRtrad(X,c(-2.5,3.1),100,1E-8)

logELRsc(X,c(-2.5,3.1),100,1E-8)

logAELRchen(X,c(-2.5,3.1),100,1E-8)

logAELRsc(X,c(-2.5,3.1),100,1E-8)

z <- level(ELR,X,0.5 ,1E-8,200)

lines(z,type = "l",col= "green")

z <- level(ELR,X,0.95,1E-8,200)

lines(z,type = "l",col= "green")
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z <- level(AELR,X,0.5,1E-8,200)

lines(z,type = "l",col= "blue")

z <- level(AELR,X,0.95,1E-8,200)

lines(z,type = "l",col= "blue")
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