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Abstract

In this essay we explored two original problems related to diffusions with singular drifts.

In Chapter 1, we construct diffusions X on [0,∞) using speed and scale analysis, that

satisfy the stochastic differential equation (SDE),

Xt = X0 +

∫ t

0
Xp
sdBs + bt,

for 0 < p ≤ 1
2 , b ≥ 0, when X > 0, but exhibit sticky boundary behaviour at 0. I.e., X

spends a positive amount time at zero, but never a full interval. We then find the SDE

characterization of the sticky diffusions and show that in the case where p = 1
2 , the SDE

fails to uniquely encode the boundary behaviour of the process.

In Chapter 2, we then proceed to the realm of spatial diffusions and construct a non-

trivial continuous measure-valued process X that solves the stochastic partial differential

equation (SPDE),
∂X

∂t
=

∆X

2
+
√
XẆ + Ȧ,

where W is a space-time white noise and A is a continuous measure-valued immigration

such that At is only active in the regions where Xt does not occupy mass.
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Preface

Over the course of my masters, I have worked on a variety of problems in stochastic analysis

and diffusions. In this essay we will work through two of them; each self-contained in their

own chapter.

In Chapter 1, we study a class of 1 dimensional diffusions on X on [0,∞) which

satisfy the stochastic differential equation (SDE),

Xt = X0 +

∫ t

0
Xp
sdBs + bt,

when X > 0, for p ≤ 1
2 , b ≥ 0, and exhibit sticky boundary behaviour at 0. By sticky

boundary behaviour, we mean that the process spends a positive time at 0 but never a full

interval. We will construct the diffusions using scale and speed analysis and determine

when their SDE representation uniquely encodes the sticky boundary behaviour.

In Chapter 2, we turn our attention to spatial diffusions. Motivated by popula-

tion genetics, we construct a population on R, undergoing random motion and critical

reproduction, under the influence of immigration at unoccupied sites. In particular, we

construct a measure-valued diffusion X satisfying the stochastic partial differential equa-

tion (SPDE),
∂X

∂t
=

∆X

2
+
√
XẆ + Ȧ.

Where W is a space-time white noise and A is a continuous measure-valued process which

is only supported at the location where X occupies no population. This will be formalized

later.
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Chapter 1

SDE characterization of diffusions

with sticky boundaries

In Theorem 8 of (Burdzy et al., 2010), Burdzy, Mueller, and Perkins showed that when

p < 1
2 , b > 0, non-negative solutions to the stochastic differential equation (SDE),

Xt = X0 +

∫ t

0
Xp
udBu + bt, (1.1)

exhibit Feller’s sticky boundary behaviour at 0. I.e,∫ t

0
1(Xs = 0)ds > 0.

Our goal in this chapter is to strengthen their result and classify all diffusion on

X on [0,∞) that satisfy (1.1) when when X > 0 and exhibit Feller’s sticky boundary

behaviour at 0. We will do this by following the method of Ito and McKean outlined in

(Knight, 1981, § 6,7).

We will first examine the case where p < 1
2 . We note that we separating the drift

bt into time spent by the process away from 0, and the spend at 0 to rewrite (1.1) as,

Xt = X0 +

∫ t

0
Xp
udBu + b

∫ t

0
1(Xs > 0)ds+ b

∫ t

0
1(Xs = 0)ds. (1.2)

Section 1.1, will show that the stickiness of X is controlled by the coefficient of the

1(X = 0) term in the drift in (1.2). We will use speed and scale analysis to argue that

the SDE fully characterize the sticky boundary of our process.
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In the case of p = 1
2 , after scaling by a constant (1.1) is equivalent to the equation,

Xt = X0 +

∫ t

0
2
√
XudBu + αt, (1.3)

which is the SDE of a Bess2(α) process. We will construct a family of sticky Bess2(α)

processes and find their corresponding SDE. We will then argue that in this case the SDE

representation is not robust enough to uniquely encode the boundary behaviour.

1.1 Characterization of sticky behaviour for 0 < p < 1
2

Let Xt be a non-negative solution to the SDE,

Xt = X0 +

∫ t

0
Xp
sdBs + b

∫ t

0
1(Xs > 0)ds+ ρ

∫ t

0
1(Xs = 0)ds, (1.4)

where 0 < p < 1
2 , and b ≥ 0, ρ > 0. Note that in the special case where b = ρ, we get

(1.1). Our aim for this section is to prove the following:

1) X exhibits sticky boundary behaviour at 0 governed by ρ.

2) The SDE encodes the boundary behaviour as described by the scale function and speed

measure.

We will show 1) by analysing the scale function, and speed measure for X, and 2) by show

that any diffusion on [0,∞) with the same scale function and speed measure as X, must

satisfy (1.4).

We now proceed with the first step of the program.

1.1.1 Existence of sticky boundary behaviour

Proposition 1.1.1. If X is a solution to (1.4), then it is the diffusion on [0,∞) with the

scale function,

s(x) =

∫ x

0
exp

{
−2b|y|1−2p

1− 2p

}
dy, (1.5)
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and, speed measure m on [0, s(∞)) defined by,

m(dx) =
dx

s′(s−1(x))2s−1(x)2p
+

1

ρ
δ0(dx). (1.6)

Moreover if T0 = inf{t|Xt = 0}, then for all ε > 0,∫ T0+ε

T0

1(Xs = 0)ds > 0. (1.7)

Remark 1.1.2. Note that the scale function can be found by solving the ode in terms

of the drift and volatility as described in (Rogers and Williams, 2000, §V.28). Also since

b > 0 and 0 < p < 1
2 , we have s is increasing with s(∞) < ∞ and has an inverse

s−1 : [0, s(∞))→ [0,∞).

The proof below is a modification of the proof of Theorem 8 in (Burdzy et al.,

2010).

Proof. We begin by analysing the scale function,

s′(x) = exp

{
−2b|x|1−2p

1− 2p

}
.

So when x > 0 we have the s′′ is given by,

s′′(x) = exp

{
−2b|x|1−2p

1− 2p

}
(−2bx−2p) = −2bs′(x)x−2p.

Define LXt (x) as the local time process of X, and let Yt = s(Xt). So we have by Ito-

Tanaka’s formula,

Yt = s(Xt)

= Y0 +

∫ t

0
s′(Xs)X

p
sdBs + b

∫ t

0
s′(Xs)1(Xs > 0)ds

+ ρ

∫ t

0
s′(Xs)1(Xs = 0)ds+

1

2

∫
LXt (x)ds′(x).
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Now let’s simplify the local time term. Since s′ is continuous, we have ds′ has no atoms.

1

2

∫
LXt (x)ds′(x) =

1

2

∫
1(x > 0)LXt (x)ds′(x)

=
1

2

∫
1(x > 0)LXt (x)s′′(x)dx

=
1

2

∫
1(x > 0)LXt (x)(−2bs′(x)x−2p)dx

= −b
∫ t

0
1(Xs > 0)s′(Xs)X

−2p
s X2p

s ds

= −b
∫ t

0
1(Xs > 0)s′(Xs)ds.

Thus we have

Yt = Y0 +

∫ t

0
s′(Xs)X

p
sdBs + ρ

∫ t

0
s′(Xs)1(Xs = 0)ds.

Let us define

U ≡ 〈Y 〉∞ =

∫ ∞
0

s′(Xs)
2X2p

s ds.

Define the random time change α : [0, U)→ [0,∞) as the solution to the equation∫ α(t)

0
s′(Xs)

2X2p
s ds = t. (1.8)

It is clear that since the integrand is non-negative we have that α is increasing and positive.

Since X is non zero on any interval, α is continuous. Define Rt = Yα(t), we will now show

that R is a reflecting Brownian motion starting at Y0 for t < U , and can be extended to

in the natural way for t ≥ U . We have for t < U ,

Rt = Y0 +

∫ α(t)

0
s′(Xs)X

p
sdBs + ρ

∫ α(t)

0
1(Xs = 0)ds

= Y0 + βt +At.

Where βt = Y0 +
∫ α(t)

0 Xp
sdBs, and At = ρ

∫ α(t)
0 1(Xs = 0)ds. Note that for t < U we have

by (1.8),

〈β〉t =

∫ α(t)

0
s′(Xs)

2X2p
s ds = t.
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So β is a stopped Brownian motion starting at Y0, and A is a continuous non-decreasing

and supported by {t : Xα(t) = 0} or equivalently {t < U : Rt = 0}. Thus by the Skorokod

problem (Rogers and Williams, 2000, §V.6), R is a reflecting Brownian motion and for

t < U ,

ρ

∫ α(t)

0
1(Xs = 0)ds = At = LRt (0). (1.9)

Note that (1.9) implies (1.7). Thus it remains to find the speed measure of X. Since∫ t

0
s′(Xs)

2X2p
s ds = α−1(t),

by the fundamental theorem of calculus,

(α−1)′(t) = s′(Xt)
2X2p

t . (1.10)

We now note that by (1.9) and (1.10),

t =

∫ t

0
1(Xs > 0)ds+

∫ t

0
1(Xs = 0)ds

=

∫ t

0

1(Xs > 0)

s′(Xs)2X2p
s

d(α−1(s)) +
1

ρ
LRα−1(t)(0).

If we let s = α(u), we get

t =

∫ α−1(t)

0

1(Xα(u) > 0)

s′(Xα(u))2X2p
α(u)

du+
1

ρ
LRα−1(t)(0)

=

∫ α−1(t)

0

1(R(u) > 0)

s′(s−1(Ru))2s−1(Ru)2p
du+

1

ρ
LRα−1(t)(0)

=

∫ s(∞)

0
LRα−1(t)(x)

[
1(x > 0)dx

s′(s−1(x))2s−1(x)2p
+

1

ρ
δ0(dx)

]
.

Therefore the speed measure of X is

m(dx) =
1(x > 0)dx

s′(s−1(x))2s−1(x)2p
+

1

ρ
δ0(dx),

on [0, s(∞)) as required. So we can conclude that

Xt = s−1(Rα−1(t)),

5



is the diffusion on [0,∞) with scale function s and speed measure m, where

t =

∫ s(∞)

0
LRα−1(t)(x)m(dx).

Therefore we have shown that solutions to the SDE (1.4) exhibit sticky boundary

behaviour at 0. The goal now is to show that the converse to Proposition 1.1.1 holds as

well.

1.1.2 Differentiability of random time change

In order to show the converse of Proposition 1.1.1, we will be forced to work with various

random time changes by τ(t), which is determined as the solution to the equation,

t =

∫ τ(t)

0
f(Bs)ds+

1

ρ
Lt,

where B is a standard Brownian motion with local time L, and sufficiently f positive and

“nice”.

The goal of this section is to show that τ is a.s. differentiable and to compute it’s

derivative.

Lemma 1.1.3. Let L be the local time of Brownian motion, then,

lim inf
h→0

Lh
h

=∞,

Proof. Let’s show that P(L2−n < φ(2−n) i.o.) = 0, for φ(h) = h1/2(log(1/h))−1−ε, where

ε > 0. So indeed, using the fact that Lt has the same law as sups≤tBs, and the reflection

principle we have,
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P(L2−n < φ(2−n)) = P(|B2−n | < φ(2−n))

= P(
√

2−n|B1| <
√

2−n(log(2n)−1−ε)

= P
(
|B1| <

(log 2)−1−ε

n1+ε

)

= 2

∫ (log 2)−1−ε

n1+ε

0

1√
2π
e−

z2

2 dz

≤ 2
(log 2)−1−ε

n1+ε
.

Which is summable. Thus by Borel-Cantelli, P(L2−n < φ(2−n)i.o.) = 0 and

lim inf
h→0

Lh
φ(h)

= lim inf
n→∞

L2−n

φ(2−n)
≥ 1.

Where the first equality is using the fact that L and φ are continuous, along with an

interpolation argument. Now we note that

lim inf
h→0

Lh
h

= lim inf
h→0

Lh
φ(h)

φ(h)

h
≥ lim

h→0

φ(h)

h
=∞.

Proposition 1.1.4. Let f be a non-negative integrable function such that for all η > 0,

fη ≡ inf
η<|x|<η−1

f(x) > 0.

Define τ(t) to be the continuous inverse of,

A(t) =

∫ t

0
f(Bs)ds+

1

ρ
Lt,

Where Lt is the local time of Brownian motion. Then the following holds:

(a) τ(t) is a.s. absolutely continuous with respect to the Lebesgue measure.

(b) If f is continuous when x > 0, then the Radon-Nikodym derivative equals

τ ′(t) =
1

f ′(Bτt)
1(B(τt) > 0).

7



Proof.

(a) Since f is non-negative, and τ is the inverse of A, we have τ is increasing and satisfies,

t =

∫ τ(t)

0
f(Bs)ds+

1

ρ
Lτt . (1.11)

We will show that τ(t) is absolutely continuous with respect to Lebesgue measure on

[0, T ] for all T > 0. Let ε > 0 and suppose [si, ti] ⊂ [0, T ] satisfying

∑
i

|ti − si| < δ.

Now note that,

∑
i

|τ(ti)− τ(si)|

=
∑
i

∫ τ(ti)

τ(si)
du

=
∑
i

∫ τ(ti)

τ(si)
1(|Bu| ≤ η)du+

∑
i

∫ τ(ti)

τ(si)
1(η < |Bu| < η−1)du

+
∑
i

∫ τ(ti)

τ(si)
1(|Bu| ≥ η−1)du

≤
∫ τ(T )

0
1(|Bu| ≤ η)du+

∑
i

∫ τ(ti)

τ(si)
1(η < |Bu| < η−1)du

+

∫ τ(T )

0
1(|Bu| ≥ η−1)du

≡I1 + I2 + I3

Since Bt is continuous on [0, T ], we have that there exists η(ω) small enough such that

Bt(ω) ≤ η(ω)−1. Therefore I3 = 0. Because Brownian motion occupies zero time at

zero, we can pick η small enough such that I1 <
ε
2 . So it remains to bound I2. Let

δ <
fηε
2 , then we have

8



I2 =
∑
i

∫ τ(ti)

τ(si)
1(η < |Bu| < η−1)du

≤
∑
i

∫ τ(ti)

τ(si)

f(Bu)

fη
1(η < |Bu| < η−1)du

≤ 1

fη

∑
i

∫ τ(ti)

τ(si)
f(Bu)du

=
1

fη

∑
i

(ti − Lτ(ti))− (si − Lτ(si)) , by (1.11)

≤ 1

fη

∑
i

ti − si

≤ 1

fη
δ

<
ε

2

Thus we have shown τ is absolutely continuous with respect to Lebesgue measure. By

Radon-Nikodym theorem, there exists a τ ′(t) such that

τ(t) =

∫ t

0
τ ′(u)du.

(b) By rearranging (1.11), we see that for h > 0,

1 =

∫ τt+h
τt

f(Bs)ds

h
+

1

ρ

Lτt+h − Lτt
h

.

Suppose that Bτt = 0, so the second term is non-zero. Since f ≥ 0 we have the

inequality

1 ≥ 1

ρ

Lτt+h − Lτt
h

.

By rearranging terms we have,

ρ ≥
Lτt+h − Lτt

h

=
Lτt+h − Lτt
τt+h − τt

τt+h − τt
h

=
Lτh
τh
◦ θτt

τt+h − τt
h

. (1.12)

9



Where θt is the left shift by t. The last equality was applying the shift to the Markov

process
Lτt
τt

by the stopping time τt. The strong Markov property tells us the first

term of (1.12) has the same law as
Lτh
τh

. So by lemma 1.1.3, the liminf is infinity,

which implies the limit is also infinity as h goes to zero. So for all N there is a δ > 0

such that h < δ implies,
Lτh
τh
◦ θτt > N.

Therefore we have,

ρ

N
≥ τt+h − τt

h
.

Letting N go to infinity gives us that the right derivative of τ(t) both exists and equals

0. Since τ is absolutely continuous with respect to Lebesgue measure, we have the

left limit also exists and equals the right. So when Bτt = 0, we have τ ′(t) = 0.

Now Suppose that Bτt > 0, then Lτt+h − Lτt = 0 for h small enough. So we have

1 =

∫ τt+h
τt

f(Bs)ds

h
=

∫ τt+h
τt

f(Bs)ds

τt+h − τt
τt+h − τt

h
.

Therefore by rearranging the terms we get,

lim
h→0

τt+h − τt
h

= lim
h→0

τt+h − τt∫ τt+h
τt

f(Bs)ds
=

1

f(Bτt)
.

The last equality was by the fundamental theorem of calculus. Thus we have shown

that

τ ′(t) =
1

Bτt
1(Bτt > 0).

1.1.3 Equivalence of SDE to speed/scale

Equipped with Proposition 1.1.4, we are ready to prove the converse to Proposition 1.1.1.

Proposition 1.1.5. Suppose X is a diffusion on [0,∞) with s, and speed measure m

defined on [0, s(∞)) given by (1.5), and (1.6) respectively. Then X is a solution to (1.4).

10



Proof. Let R be a reflected Brownian motion with initial law s(X0) with local time LR.

We have by the definition of scale function and speed measure that

Xt = s−1(Rτt),

where τt is the continuous inverse of

A(t) =

∫ s(∞)

0
LRt (x)m(dx)

=

∫ s(∞)

0

LRt (x)1(x > 0)

s′(s−1(x))2s−1(x)2p
dx+

1

ρ
LRt (0)

=

∫ t

0

1(Ru > 0)

s′(s−1(Ru))2s−1(Ru)2p
du+

1

ρ
LRt (0). (1.13)

Since s(x) = x+ o(x), and s′(x) = 1 + o(x), we have s−1(x) = x+ o(x) and

1(x > 0)

s′(s−1(x))2s−1(x)2p
≈ 1(x > 0)

x2p
,

Which satisfies the criteria of Proposition 1.1.4, thus

τ ′(t) = s′(Xt)
2X2p

t 1(Xt > 0). (1.14)

Now to get an SDE representation of X we apply Ito-Tanaka’s formula.

X(t) = s−1(Rτt)

= s−1(R0) +

∫ τt

0
(s−1)′(Ru)dRu +

1

2

∫
LRτt(x)d(s−1)′(x)

= s−1(s(X0)) +

∫ τt

0

1

s′(s−1(Ru))
d(βu + LRu (0)) +

1

2

∫ τt

0
(s−1)′′(Ru)du

= X0 +

∫ τt

0

1

s′(s−1(Ru))
dβu +

∫ τt

0

1

s′(s−1(Ru))
dLRu (0) +

1

2

∫ τt

0
(s−1)′′(Ru)du

≡ X0 +Mt + I1
t + I2

t . (1.15)

Where βt is a Brownian motion. We will have to take care of each of the three terms

11



individually. Let’s begin with analysing the quadratic variation of M :

[M ]t =

∫ τt

0

1

s′(s−1(Ru))2du

=

∫ t

0

1

s′(s−1(Rτv))
2
τ ′(v)dv

=

∫ t

0

1

s′(Xv)2
s′(Xv)

2X2p
v 1(Xv > 0)dv

=

∫ t

0
X2p
v 1(Xv > 0)dv

=

∫ t

0
X2p
v dv.

The third line was because of (1.14). Define

B̃ =

∫ t

0

1(Xu > 0)

Xp
u

dMu +

∫ t

0
1(Xu = 0)dβ̃u,

where β̃ is an independent Brownian motion and note

〈B̃〉t =

∫ t

0

1(Xu > 0)

X2p
u

X2p
u du+

∫ t

0
1(Xu = 0)du = t.

So by Lévy’s characterization of Brownian motion, there exists a Brownian motion B̃,

such that

Mt =

∫ t

0
Xp
vdB̃v. (1.16)

We can finally deal with the finite variation terms.

I1
t =

∫ τt

0

1

s′(s−1(Ru))
dLRu (0)

=

∫ τt

0

1

s′(s(0))
dLRu (0)

=

∫ τt

0
dLRu (0)

= LRτt(0).
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We now note that by rearranging (1.13) we get,

I1
t = ρ

(
t−

∫ τt

0

1(Ru > 0)

s′(s−1(Ru))2s−1(Ru)2p
du

)
= ρ

(
t−

∫ t

0

1(Rτv > 0)

s′(s−1(Rτv))
2s−1(Rτv)

2p
τ ′(v)dv

)
= ρ

(
t−
∫ t

0

1(Xv > 0)

s′(Xv)2X2p
v

s′(Xv)
2X2p

v dv

)

= ρ

(
t−

∫ t

0
1(Xv > 0)dv

)
= ρ

∫ t

0
1(Xv = 0)dv. (1.17)

Before we simplify I2, let’s first compute (s−1)′′(x), and we use the fact that when x > 0,

we have s′′(x) = −2bs′(x)x−2p. So for x > 0,

(s−1)′′(x) =

(
1

s′(s−1(x))

)′
= − [s′(s−1(x))]′

s′(s−1(x))2

= − s
′′(s−1(x))

s′(s−1(x))3

=
2bs′(s−1(x))(s−1(x))−2p

s′(s−1(x))3

=
2b

s′(s−1(x))2s−1(x)2p
.

As (s−1)′ is continuous at x, we have

I2
t =

1

2

∫ τt

0

2b

s′(s−1(Ru))2s−1(Ru)2p
du

=
1

2

∫ t

0

2b

s′(s−1(Rτv))
2s−1(Rτv)

2p
τ ′(v)dv

= b

∫ t

0

1

s′(Xv)2X2p
v

1(Xv > 0)s′(Xv)
2X2p

v dv

= b

∫ t

0
1(Xv > 0)dv. (1.18)

By substituting (1.16), (1.17),(1.18) into (1.15), we have shown that

Xt = X0 +

∫ t

0
Xp
vdB̃v + ρ

∫ t

0
1(Xv = 0)dv + b

∫ t

0
1(Xv > 0)dv,

13



as required.

This implies that for the case where p < 1
2 , (1.4) encodes the same information as

the scale function and speed measure.

1.2 Non-uniqueness of SDE for sticky Bess2(α) process

In the case where p = 1
2 , we have (1.1) is equivalent to the SDE for the Bess2(α) process

given by,

Xt = X0 +

∫ t

0
2
√
XudBu + αt,

for α > 0. The analysis of the Bess2(α) process in (Rogers and Williams, 2000, §V.48)

shows that 0 is recurrent if and only if 0 < α < 2, but it does not exhibit any sticky

boundary behaviour, i.e., for all t > 0,∫ t

0
1(Xu = 0)du = 0.

Following the method of Ito and KcKean as described in (Knight, 1981, § 6,7), we can

construct a Bess2(α) process with sticky boundary behaviour at 0, by applying the same

construction as in the case of p < 1
2 .

It was shown in (Rogers and Williams, 2000, §V.48) that the Bess2(α) process has

scale function s(x) = x
2−α
2 , and speed measure m̃ defined on [0,∞) given by

m̃(dx) =
1

(2− α)2
x

2α−2
2−α 1(x > 0)dx.

So if X is the Bess2(α) process with sticky boundary behaviour at 0, then the X also has

the scale function s and speed measure m given by

m(dx) = m̃(dx) +
1

ρ
δ0(dx),

where ρ > 0 controls how “sticky” 0 is. We will now find an SDE representation of X,

the sticky Bess2(α) process.
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Proposition 1.2.1. The process X on [0,∞) with the scale function and speed measure

on [0,∞), given by

s(x) = x
2−α
2 ,

and,

m(dx) =
1

(2− α)2
x

2α−2
2−α 1(x > 0)dx+

1

ρ
δ0(dx),

respectively, satisfies the SDE:

Xt = X0 +

∫ t

0
2
√
XudBu + α

∫ t

0
1(Xu > 0)du. (1.19)

Proof. Let B be a Brownian motion with initial law s(X0) = X
2−α
2

0 , and Lt(x) be the

local time of the reflected Brownian motion |B|. Let’s define

A(t) =

∫ ∞
0

Lt(x)m(dx)

=

∫ ∞
0

Lt(x)

(
1

(2− α)2
x

2α−2
2−α 1(x > 0)dx+

1

ρ
δ0(dx)

)
=

∫ t

0

1

(2− α)2
|Bu|

2α−2
2−α 1(|Bu| > 0)du+

1

ρ
Lt(0).

Let τt denote the right continuous inverse of A, ie, τt satisfies,

t =

∫ τt

0

1

(2− α)2
|Bu|

2α−2
2−α 1(|Bu| > 0)du+

1

ρ
Lτt(0).

Let Yt = |Bτt | be the scaled sticky Bess2(α) process. So we have

X = s−1(Yt) = |Bτt |
2

2−α (1.20)

is the unscaled Bess2(α). Since |x|p is convex and has an integrable second derivative

when p > 1, and 2
2−α > 1, we can apply Tanaka’s formula for |x|

2
2−α to (1.20).

Xt = |Bτt |
2

2−α

= (X
2−α
2

0 )
2

2−α +

∫ τt

0

2

2− α
sgn(Bu)|Bu|

α
2−αdBu +

1

2

∫ τt

0

2

2− α
α

2− α
|Bu|

2α−2
2−α du

≡ X0 +Mt + It. (1.21)
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Now let us simplify each term individually, but first we will need τ ′(t). By the Proposition

1.1.4,

τ ′(t) = (2− α)2|Bτt |
2−2α
2−α 1(|Bτt | > 0)

= (2− α)2Y
2−2α
2−α
t 1(Yt > 0)

= (2− α)2(X
2−α
2

t )
2−2α
2−α 1(Xt > 0)

= (2− α)2X1−α
t 1(Xt > 0). (1.22)

To determine the quadratic variation of M , we will make the substitution u = τ(v) and

using (1.22)

〈M〉t =

∫ τt

0

4

(2− α)2
|Bu|

2α
2−αdu

=

∫ t

0

4

(2− α)2
|Bτv |

2α
2−α τ ′(v)dv

=

∫ t

0

4

(2− α)2
(X

2−α
2

v )
2α
2−α (2− α)2X1−α

v 1(Xv > 0)dv

=

∫ t

0
4Xv1(Xv > 0)dv.

Define

βt =

∫ t

0

1(Xv > 0)

2
√
Xv

dMv +

∫ t

0
1(Xv = 0)dWv,

where W is an independent Brownian motion. β has quadratic variation,

〈β〉t =

∫ t

0

1(Xv > 0)

4Xv
4Xvdv +

∫ t

0
1(Xv = 0)dv = t.

Therefore β is a Brownian motion and

Mt =

∫ t

0
1(Xv > 0)2

√
Xvdβv =

∫ t

0
2
√
Xvdβv. (1.23)
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Finally we simplify It, using the substitution u = τv and using (1.22).

It =
1

2

∫ τt

0

2α

(2− α)2
|Bu|

2α−2
2−α du

=

∫ t

0

α

(2− α)2
|Bτv |

2α−2
2−α τ ′(v)dv

=

∫ t

0

α

(2− α)2
(X

2−α
2

v )
2α−2
2−α (2− α)2X1−α

v 1(Xv > 0)dv

= α

∫ t

0
1(Xv > 0)dv. (1.24)

Finally by substituting (1.23), and (1.24) into (1.21) we conclude, that X satisfies the

SDE,

Xt = X0 +

∫ t

0
2
√
Xvdβv + α

∫ t

0
1(Xv > 0)dv.

For each ρ > 0, let Xρ be the diffusion on [0,∞) with scale function s(x) = x
2−α
2 ,

and speed measure,

mρ(dx) =
1

(2− α)2
x

2α−2
2−α 1(x > 0)dx+

1

ρ
δ0(dx).

Proposition 1.2.1 tells us that each Xρ satisfies (1.19). Therefore we have proven the

following.

Corollary 1.2.2. The solutions to the SDE (1.19) are not unique in law.

This analysis for the Bess2(α) process shows that SDE’s are not in general best

tool to analyse the boundary behaviour of diffusion.

1.3 Summary

In Chapter 1, we first began by analysing the the SDE,

Xt = X0 +

∫ t

0
Xp
sdBs + b

∫ t

0
1(Xs > 0)ds+ ρ

∫ t

0
1(Xs = 0)ds. (1.25)
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for 0 < p < 1
2 , and b, ρ > 0. This was motivated (Burdzy et al., 2010) where they studied

the same SDE when ρ = b, where they discovered interesting sticky boundary behaviour.

In Section 1.1, we showed that non-negative solution X to (1.26) exhibits sticky

boundary behaviour governed by ρ. We did this in Proposition 1.1.1 by analysing the scale

function and speed measure of X. We went a step further and showed in Proposition 1.1.5

that any diffusion on [0,∞) with the same scale function and speed measure as X must

also be a solution to (1.26).

Afterwards we moved our attention to the case where p = 1
2 , to the Bess2(α) for

0 < α < 2. In Section 1.2, we followed the construction of Ito and McKean to construct

a family of diffusions Xρ on [0,∞) that behaved like Bess2(α) with sticky boundary

behaviour at 0 governed by ρ. In Proposition 1.2.1, we found that each Xρ was a solution

to the SDE,

Xt = X0 +

∫ t

0
2
√
XsdBs + α

∫ t

0
1(Xs > 0)ds. (1.26)

This showed that the SDE’s in general are not robust enough to encode the boundary

behaviour of diffusions, and demonstrates the utility of speed and scale analysis.
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Chapter 2

Super Brownian motion with

immigration at unoccupied sites

Let us examine (1.4) in the case where b = 0. This results in the SDE,

Xt =

∫ t

0
Xp
sds+ ρ

∫ t

0
1(Xs = 0)dx. (2.1)

Note that X is a non-trivial diffusion on [0,∞) with a continuous immigration only active

when the process is zero. Using (2.1) as a motivation, we will explore this idea for spatial

processes.

A one-dimensional super-Brownian motion (SBM), X is used in population genetics

to model a population on a line undergoing random motion and critical reproduction.

Formally, Xt is a random finite measure on R changing continuously in t, and represents

how the total population is dispersed at time t. (Perkins, 2002, §III.1,4) showed that at

each time t, the population Xt has compact support, and X has satisfies the stochastic

partial differential equation (SPDE),

∂X

∂t
=

∆X

2
+
√
XẆ.

where W is space-time white noise. (Perkins, 2002, §III.1) also showed that for all t, the

population Xt is a.s. compactly supported. We are interested in seeing what happens to

the population represented by SBM when we allow a continuous immigration only at the
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locations where the population does not occupy space. Our goal in this chapter will be to

construct such a process and classify it.

We will define the spatial process Xε as the sum of independent SBM populations

Xi of initial mass ε generated at some random point xi generated by a distribution ψ(x)dx

at time ti via a Poisson process with temporal rate 1
εdt. We will only allow Xi to contribute

to Xε when the previously contributing populations do not occupy space at xi. Note as

ε gets smaller, each SBM cluster Xi will potentially add ε mass to Xε but there will be

proportionally 1
ε clusters contributing. This suggests that as ε → 0, our process should

converge to some non-trivial X.

The plan of attack will be as follows; after making our construction of Xε more

formal, we will then show that {Xε} are tight as ε → 0. This will give us the existence

of a continuous measure-valued process X. We will then show that X is non-trivial and

satisfies a SPDE of the form,

∂X

∂t
=

∆X

2
+
√
XẆ + Ȧ.

Where A is a continuous measure-valued immigration that is only active when the process

X occupies no space. Without further ado, let us begin our construction.

2.1 Notation

Let Ξ be a (Ft)-Poisson point process (PPP) on R+×Rd with rate Λ(dt, dx) = λdtψ(x)dx,

where λ > 0, and ψ is a bounded density on Rd. Given A ⊂ R+ × Rd, we denote

Ξ(A) ∼ Poi(Λ(A)) to be the number of points generated by Ξ in A. Furthermore, define

Ξ̂ ≡ Ξ− Λ,

to be the compensated (Ft)-PPP for Ξ. It will be useful to refer to all the points generated

by Ξ up to time t. We will denote this by the following process,

Ξt ≡ Ξ([0, t]× Rd).
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We similarly define Λt and Ξ̂t. By (Ikeda and Watanabe, 2014, §III.3), Ξ̂t is a (Ft)-

martingale in t with the previsible square function 〈Ξ̂〉t = Λt and quadratic variation

[Ξ̂]t = Ξt, i.e. the number of jumps of Ξ̂ until time t.

Suppose f : R+ × Rd × Ω → R is square integrable and (Ft)-predicable and ft(x)

is Borel-measurable. We denote the integral of f with respect to Ξ by,

At(f) ≡
∫ t

0

∫
fs(x)Ξ(ds, dx) =

∑
(ti,xi)∼Ξ

1(ti ≤ t)fti(xi).

If At(f) <∞ a.s., then the compensated integral,

Ât(f) ≡
∫ t

0

∫
fs(x)Ξ̂(ds, dx) =

∫ t

0

∫
fs(x)Ξ(ds, dx)−

∫ t

0

∫
fs(x)Λ(ds, dx),

is the stochastic integral of f with respect to Ξ̂. By (Ikeda and Watanabe, 2014, §III.3),

we know that Ât is a (Ft)-martingale with the previsible square function,

〈Â(f)〉t =

∫ t

0

∫
fs(x)2Λ(ds, dx),

and quadratic variation,

[Â(f)]t = At(f) =

∫ t

0

∫
fs(x)2Ξ(ds, dx).

Finally, it will be useful to define common spaces that will be used throughout this

paper. We define,

C∞b ≡ {f : R→ R|f is bounded and smooth},

C∞c ≡ {f : R→ R|f is smooth with compact support},

C0 ≡
{
f : R→ R|f is continuous, lim

|x|→∞
f(x) = 0

}
,

MF ≡ {µ|µ is a finite measure on R} .

Given a metric space (S, d), define C(S) and D(S) as,

C(S) ≡ {f : R+ → S|f is continuous},

D(S) ≡ {f : R+ → S|f is cádlág}.
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We equip C(S) with the topology of uniform convergence on compact sets, and D(S) with

the Skorokhod J1 topology. In this paper we be interested in the case where S is either

R, C0, or MF .

2.2 Construction and SPDE characterization of Xε

For ε > 0, let Ξε be a PPP on R+ × R with rate Λε(dt, dx) = ε−1dtψ(x)dx, where ψ is

a bounded, compactly supported density on R. Further suppose that φ : R → R+ is a

Lipschitz function supported on [−1, 1] satisfying ‖φ‖1 = 1, and ‖φ‖∞ ≤ 1. We define φxε

by

φxε (y) =
√
εφ

(
y − x√

ε

)
.

Remark 2.2.1. Note that the compactness of ψ is not necessary and is only used to

simplify some of the analysis in the proof of Theorem 2.5.1. The theorem is still true for

ψ bounded but requires more effort.

Let (ti, xi) be the points generated by Ξε, and {Xi} be independent SBM’s with

initial law φxiε (z)dz in chronological order. By Theorem III.4.2 in (Perkins, 2002, §III.4)

have for each Xi, there exists process ui with sample paths in C(C0) such that for all

Xi
t(dx) = uit(x)dx. Suppose κ1 = 1. We define κi inductively by,

κi = 1

∑
tj<ti

κju
j
ti−tj (xi) = 0

 . (2.2)

So κi = 1 if and only if, for all j < i, κj = 1 implies SBM Xj
ti

does not occupy space at

xi. We define MF -valued processes Xε and X̄ε by,

Xε
t ≡

∑
ti≤t

κiX
i
t−ti , (2.3)

and,

X̄ε
t ≡

∑
si≤t

Xi
t−ti , (2.4)
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respectively. Note that Xε and X̄ε are processes with sample paths in D(MF ). Since

Xi
t(dx) = uit(x)dx, we immediately have Xε

t (dx) = uεt (x)dx for the C0-valued process uε

defined by

uεt ≡
∑
ti≤t

κiu
i
t−ti .. (2.5)

Note that uε has sample paths in D(C0) and if

ut−(x) ≡ lim
s→t−

us(x),

then (2.2), and (2.5) give us,

κi = 1(uti−(xi) = 0). (2.6)

It will also be useful to define the natural filtration Fεt and F̄εt by,

Fεt = σ(Xε
s , X̄

ε
s ,Ξ

ε
s|s ≤ t).

respectively.

Again, by Theorem III.4 in (Perkins, 2002, §III.4) there are independent (Fεt )-white

noises W i on R+×,R, such that for all φ ∈ C∞b , Xi satisfies the SPDE,

Xi
t(φ) =

∫ t

0
Xi
s

(
∆φ

2

)
ds+

∫ t

0

∫
φ(x)

√
uis(x)W i(ds, dx) + 〈φ, φxiε 〉

≡ Lit(φ) +M i
t (φ) +Ait(φ). (2.7)

Where M i(φ) is a continuous (Fεt )-martingale with 〈M i(φ)〉t =
∫ t

0 X
i
s(φ

2)ds.

By substituting (2.7) into (2.3) and (2.4), we get the following SPDE characteri-

zation of Xε and X̄ε.

Theorem 2.2.2. For all φ ∈ C∞b ,

(a) There is a continuous (Fεt )-martingale M ε(φ) with 〈M ε(φ)〉t =
∫ t

0 X
ε
s (φ2)ds, such that

Xε satisfies the SPDE,

Xε
t (φ) =

∫ t

0
Xε
s

(
∆φ

2

)
ds+M ε

t (φ) +

∫ t

0

∫
〈φ, φxε 〉1(uεs−(x) = 0)Ξε(ds, dx) (2.8)

≡ Lεt (φ) +M ε
t (φ) +Aεt (φ). (2.9)
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(b) There is a continuous (Fεt )-martingale M̄ ε(φ) with 〈M̄ ε(φ)〉t =
∫ t

0 X̄
ε
s (φ2)ds, such that

X̄ε satisfies the SPDE,

X̄ε
t (φ) =

∫ t

0
X̄ε
s

(
∆φ

2

)
ds+ M̄ ε

t (φ) +

∫ t

0

∫
〈φ, φxε 〉Ξε(ds, dx) (2.10)

≡ L̄εt (φ) + M̄ ε
t (φ) + Āεt (φ). (2.11)

Proof. (a) Suppose (ti, xi) are the points generated by Ξε. We begin by substituting (2.7)

into (2.3).

Xε
t (φ) =

∑
ti≤t

κiX
i
t−ti

=
∑
ti≤t

κi

(∫ t−ti

0
Xi
s

(
∆φ

2

)
ds+M i

t−ti(φ) + 〈φ, φxiε 〉
)

=
∑
ti≤t

(∫ t−ti

0
κiX

i
s

(
∆φ

2

)
ds+ κiM

i
t−ti(φ) + κi〈φ, φxiε 〉

)
≡ Lεt (φ) +M ε

t (φ) +Aεt (φ). (2.12)

It remains to show that Lε(φ), M ε(φ), and Aε(φ), satisfy (2.8). We will deal each

sum individually. To simplify Lε(φ) we exchange the sum and integral.

Lεt (φ) =
∑
ti≤t

∫ t−ti

0
κiX

i
s

(
∆φ

2

)
ds

=
∑
ti≤t

∫ t

0
1(ti ≤ s)κiXi

s−ti

(
∆φ

2

)
ds

=

∫ t

0

∑
ti≤t

1(ti ≤ s)κiXi
s−ti

(
∆φ

2

)
ds

=

∫ t

0

∑
ti≤s

κiX
i
s−ti

(
∆φ

2

)
ds

=

∫ t

0
Xε
s

(
∆φ

2

)
ds. (2.13)
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Also note that by (2.6),

Aεt (φ) =
∑
ti≤t

κi〈φ, φxε 〉

=
∑
ti≤t

1(uεti−(xi) = 0)〈φ, φxiε 〉

=

∫ t

0

∫
1(uεs−(x) = 0)〈φ, φxε 〉Ξε(ds, dx). (2.14)

It remains to show that M ε
t (φ) =

∑
ti≤t κiM

i
t−ti(φ) satisfies the properties of the

theorem:

(i) M ε(φ) is continuous,

(ii) M ε(φ) is a martingale,

(iii) 〈M ε(φ)〉t =
∫ t

0 X
ε
s (φ2)ds.

We will deal with each one at a time.

(i) Note that M i(φ) are continuous (Fεt )-martingales starting from 0, and since

M ε(φ) is a sum of M i(φ), we have M ε(φ) must also be continuous.

(ii) Since M i(φ) is a (Fεt )-martingale, for t ≥ ti, M
i
t−ti(φ) is Fεt−ti-measurable, and

hence Fεt -measurable since Fεt−ti ⊂ F
ε
t . Also since Ξεt is Fεt -measurable, we can

conclude M ε
t (φ) =

∑
ti≤t κiM

i
t−ti(φ) is Fεt -measurable.

To show the martingale property, note that we can decompose M ε
t (φ) as,

M ε
t (φ) =

∑
ti≤t

κiM
i
t−ti(φ)

=
∑
ti≤t

κi

∫ t−ti

0

∫
φ(x)

√
uis(x)W i(ds, dx)

=
∑
ti≤t

κi

∫ t

ti

∫
φ(x)

√
uiv−ti(x)W i(dv, dx). (2.15)
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For s ≤ t, we separating (2.15) further into the time before s and after s.

M ε
t (φ) =

∑
ti≤s

κi

∫ s

ti

∫
φ(x)

√
uiv−ti(x)W i(dv, dx)

+
∑
ti≤s

κi

∫ t

s

∫
φ(x)

√
uiv−ti(x)W i(dv, dx)

+
∑
s<ti≤t

κi

∫ t

ti

∫
φ(x)

√
uiv−ti(x)W i(dv, dx)

=M ε
s (φ) +

∑
ti≤s

κi

∫ t

s

∫
φ(x)

√
uiv−ti(x)W i(dv, dx) +

∑
s<ti≤t

κiM
i
t−ti(φ).

(2.16)

We now take conditional expectation of the second and third terms in (2.16)

with respect to Fεs . Note that when ti ≤ s, κi is Fεs -measurable and for

all n ∈ N, 1(Ξεs = n) is Fεs -measurable. This coupled with the fact that∫ t
s

∫
φ(x)

√
uiv−ti(x)W i(dv, dx) is a (Fεt )-local martingale for s ≥ t, gives us

E

∑
ti≤s

κi

∫ t

s

∫
φ(x)

√
uiv−ti(x)W i(dv, dx)

∣∣∣Fεs


= E

∑
i≤n

1(Ξεs = n)κi

∫ t

s

∫
φ(x)

√
uiv−ti(x)W i(dv, dx)

∣∣∣Fεs


=
∑
i≤n

1(Ξεs = n)κiE
(∫ t

s

∫
φ(x)

√
uiv−ti(x)W i(dv, dx)

∣∣∣Fεs)
= 0. (2.17)

To deal with
∑

s<ti≤t κiM
i
t−ti(φ), note that Ξεt − Ξεs is independent of Fεs , and

since s < ti ≤ t, we have M i
t−ti(φ) =

∫ t
ti

∫
φ(x)

√
uiv−ti(x)W i(dv, dx) and κi are

independent of Fεs . So the third term of (2.16) is independent of Fεs , and thus,

E

 ∑
s<ti≤t

κiM
i
t−ti(φ)

∣∣∣Fεs
 = E

 ∑
s<ti≤t

κiM
i
t−ti(φ)

 . (2.18)

Note that M i(φ) is independent of κi, so by conditioning on κi we get

E
(
κiM

i
t−ti(φ)

)
= E

(
κi)E(M i

t−ti(φ)
)

= 0. (2.19)
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Since
∑

s<ti≤t κiM
i
t−ti(φ) is the sum of Ξεt − Ξεs independent random variables

with mean 0, Wald’s equation gives us,

E

 ∑
s<ti≤t

κiM
i
t−ti(φ)

 = E (Ξεt − Ξεs)E
(
κiM

i
t−ti(φ)

)
=
t− s
ε
· 0 = 0. (2.20)

Combining (2.16), (2.17), (2.18), and (2.20), we get,

E(M ε
t (φ)|Fεs ) = M ε

s (φ).

Thus M ε(φ) is a (Fεt )-martingale.

(iii) We define N ε
t (φ) ≡ M ε

t (φ)2 −
∫ t

0 X
ε
u(φ2)du. In order to show 〈M ε(φ)〉t =∫ t

0 X
ε
u(φ2)du, we need N ε(φ) to be a (Fεt )-martingale. Since M ε

t (φ) is a Fεt -

measurable, so is N ε
t (φ). Before we prove the martingale property, it will be

useful to define N i(φ) to be the square (Fεt )-martingale for M i(φ). By defini-

tion of 〈M i(φ)〉,

N i
t (φ) ≡M i

t (φ)2 − 〈M i(φ)〉t = M i
t (φ)2 −

∫ t

0
Xi
u(φ2)du.

Note that for t ≥ ti,

〈M i(φ)〉t−ti =

∫ t−ti

0
Xi
u(φ2)du =

∫ t

0
1(ti ≤ u)Xi

u−ti(φ
2)du. (2.21)

We simplify
∫ t

0 X
ε
u(φ2)du by using (2.21),∫ t

0
Xε
u(φ)du =

∫ t

0

∑
ti≤u

κiX
i
u−ti(φ

2)du

=

∫ t

0

∑
ti≤t

κi1(ti ≤ u)Xi
u−ti(φ

2)du

=
∑
ti≤t

κi

∫ t

0
1(ti ≤ u)Xi

u−ti(φ
2)du

=
∑
ti≤t

κi〈M i(φ)〉t−ti . (2.22)
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We can now use (2.22) to simplify N ε(φ)t.

N ε
t (φ) = M ε

t (φ)2 −
∫ t

0
Xε
u(φ2)du

=

∑
ti≤t

κiM
i
t−ti(φ)

2

−
∑
ti≤t

κi〈M i(φ)〉t−ti

=
∑
ti≤t

κi
(
M i
t−ti(φ)2 − 〈M i(φ)〉t−ti

)
+ 2

∑
tj<ti≤t

κjκiM
j
t−tj (φ)M i

t−ti(φ)

=
∑
ti≤t

κiN
i
t−ti(φ) + 2

∑
tj<ti≤t

κjκiM
j
t−tj (φ)M i

t−ti(φ). (2.23)

For s < t, we further decompose (2.23) into the clusters born before and after

time s.

N ε
t (φ) =

∑
ti≤s

κiN
i
t−ti(φ) + 2

∑
tj<ti≤s

κjκiM
j
t−tj (φ)M i

t−ti(φ)

+
∑
s<ti≤t

κiN
i
t−ti(φ) + 2

∑
tj<ti,s<ti

κjκiM
j
t−tj (φ)M i

t−ti(φ). (2.24)

Similar to the proof of (ii), when ti ≤ s, κi is Fεs -measurable and for all n ∈ N,

1(Ξεs = n) is Fεs -measurable. Also, N i
t−ti and M j

t−tj (φ)M i
t−ti(φ) are a (Fεt )-

martingales for t ≥ ti, since M j(φ) is independent of M i(φ). So the conditional

expectation of the first term in (2.24) becomes,

E

∑
ti≤s

κiN
i
t−ti(φ)

∣∣∣Fεs
 =

∑
n≥0

κi1(Ξεs = n)
∑
i≤n

E(N i
t−ti(φ)|Fεs )

=
∑
n≥0

κi1(Ξεs = n)
∑
i≤n

Nis−ti(φ)

=
∑
ti≤s

κiN
i
s−ti(φ). (2.25)

Similarly the conditional expectation of the second term becomes,

E

2
∑

tj<ti≤s
κiκjM

j
t−tj (φ)M i

t−ti(φ)
∣∣∣Fεs
 = 2

∑
tj<ti≤s

κiκjM
j
s−tj (φ)M i

s−ti(φ).

(2.26)

28



For the other two terms of (2.24), again, as in (ii), note that Ξεt − Ξεs is inde-

pendent of Fεs , and since s < ti ≤ t, N ε
t−ti and M i

t−tj are independent of Fεs , we

have

E

 ∑
s<ti≤t

κiN
i
t−ti(φ) + 2

∑
tj<ti,s<ti

κiκjM
j
t−tj (φ)M i

t−ti(φ)
∣∣∣Fεs


= E

 ∑
s<ti≤t

κiN
i
t−ti(φ) + 2

∑
tj<ti,s<ti

κiκjM
j
t−tj (φ)M i

t−ti(φ)

 (2.27)

= 0. (2.28)

In the last line we used the fact that each term in the random sums in (2.27)

has mean 0 along with Wald’s equation, as previously done in (2.19). Therefore

combining (2.24), (2.25), (2.26), and (2.28), we have shown

E(N ε
t (φ)|Fεs ) =

∑
ti≤s

κiN
i
s−ti(φ) + 2

∑
ti<tj≤s

κiκjM
i
s−ti(φ)M j

s−tj (φ) = N ε
s (φ).

Thus N ε(φ) is a (Fεt )-martingale and 〈M ε(φ)〉t =
∫ t

0 Xu(φ2)du.

(b) The proof is identical to (a) but with κi = 1 for all i.

We end this section by noting the trivial but very useful observation.

Proposition 2.2.3. For all non-negative measurable φ,

(a) Xε(φ) ≤ X̄ε(φ).

(b) Aε(φ) ≤ Āε(φ).

Proof. (a) This is immediate from (2.3), and (2.4).

(b) This is immediate from the definition of Aε and Āε.
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2.3 Tightness

Suppose εn → 0 as n → ∞. The goal for this section is to establish the existence of

continuous processes X, and A as weak limits points of {Xεn} and {Aεn}. We will do this

by showing the two families of processes are C-relatively compact in D(MF ).

Definition 2.3.1. Let (S, d) be a Polish space. A collection of processes {Xα}α∈I with

paths in D(S) is C-relatively compact in D(S) iff it is relatively compact in D(S) and

all weak limit points are continuous a.s.

Definition 2.3.2. D0 ⊂ C∞b (R) is separating iff for all µ1, µ2 ∈MF , with µ1(φ) = µ2(φ)

for all φ ∈ D0, then µ1 = µ2.

Theorem 2.3.3 (Jakubowski). (Perkins, 2002, §II.4) Let D0 ⊂ C∞b be separating. A

sequence of processes Xn in D(MF ) is C-relatively compact in D(MF ) iff

(i) ∀φ ∈ D0, the sequence {Xn(φ)}n is C-relatively compact in D(R).

(ii) The compact containment condition holds, i.e, ∀η, T > 0 there is a compact set

Kη,T ⊂ R such that

sup
n

P

(
sup
t≤T

Xn
t (Kη,T ) > η

)
≤ η.

Theorem 2.3.4. Let εn → 0, as n→∞, then

(a) Xεn is C-relatively compact in D(MF ).

(b) Aεn is C-relatively compact in D(MF ).

Remark 2.3.5. An immediate consequence of Theorem 2.3.4 is that there exists a com-

mon subsequence εn → 0, and continuous MF -valued processes X and A such that

(Xεn , Aεn) converges weakly to (X,A).

To prove Theorem 2.3.4, we will invoke Jakubowski’s theorem using the separating

class D0 = C∞c , smooths functions with compact support. We will prove both condition’s

(i) and (ii) of Theorem 2.3.3 in the next 2 subsections.
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2.3.1 Proof of Theorem 2.3.4: C-relative compactness of {Xεn(φ)}, and

{Aεn(φ)}

Our goal in this section is to show that for all φ ∈ C∞c , {Xε(φ)} and {Aε(φ)} are C-

relative compactness in D(R). Our main weapons to tackle this problem will the following

theorems:

Theorem 2.3.6. Let {Y n} be a a family of stochastic processes with sample paths in

C(R). Suppose for all T > 0, there exists α, β,K > 0 such that for all 0 < s, t < T and n,

E (|Y n
t − Y n

s |α) ≤ K|t− s|1+β.

Then {Y n} is C-relatively compact in C(R).

Proof. This is a well known result, and can be deduced from Corollary 3.8.10 and 3.10.3

in (Ethier and Kurtz, 2009).

Theorem 2.3.7 (Slutsky’s). Let (S, d) be a metric space, and (Xn, X) be random elements

of S × S. If Yn → Y and d(Xn, Yn)→ 0 weakly, then Xn → Y weakly.

Proof. This is Theorem 3.1 in (Billingsley, 2013, §1).

Recall that by (2.9) in Theorem 2.2.2,

Xε
t (φ) = Lεt (φ) +M ε

t (φ) +Aεt (φ).

We begin by simplifying Aεt (φ).

Aεt (φ)

=

∫ t

0

∫
〈φ, φxε 〉1(uεs−(x) = 0)Ξε(ds, dx)

=

∫ t

0

∫
〈φ, φxε 〉1(uεs−(x) = 0)Λε(ds, dx) +

∫ t

0

∫
〈φ, φxε 〉1(uεs−(x) = 0)Ξ̂ε(ds, dx)

=

∫ t

0

∫
〈φ, φxε 〉

1

ε
ψ(x)1(uεs−(x) = 0)dxds+

∫ t

0

∫
〈φ, φxε 〉1(uεs−(x) = 0)Ξ̂ε(ds, dx)

≡ Iεt (φ) + Âεt (φ). (2.29)
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Where Iε(φ) is continuous process R-valued process, and Âε(φ) is a (Fεt )-martingale with

jumps. Therefore Xε
t can be decomposed as

Xε
t (φ) = Lεt (φ) +M ε

t (φ) + Iεt (φ) + Âεt (φ). (2.30)

To show the C-relative compactness of {Xε(φ)}, we will handle each term of (2.30) in-

dividually. Since Lε(φ), Aε(φ), and Iε(φ) all have sample paths in C(R), Theorem 2.3.6

tells us that we want to find estimate on the moments of the increments. Even though

Âε(φ) contains jumps, we will show that it converges to 0 in probability as ε → 0 thus

allowing us to use Slutsky’s theorem. We proceed to this in the next few lemmas.

Before we can bound the increments of Lε(φ), M ε(φ), and Iε(φ), the following

estimate on the total mass of X̄ε will be useful.

Lemma 2.3.8. For all T > 0, and p = 2n, n ≥ 0, there are constants C(p, T ) such that

for all 0 ≤ t ≤ T ,

(a) E(X̄ε
t (1)) = t,

(b) E
(
X̄ε
t (1)p

)
≤ C(p, T )tp + δp,T (ε),

Where δp,T (ε)→ 0 as ε→ 0.

Proof. (a) By letting φ = 1 in (2.10), we get the that X̄ε(1) solves the SDE

X̄ε
t (1) = M̄ ε

t (1) + Āεt (1)

= M̄ ε
t (1) +

∫ t

0

∫
〈1, φxε 〉Ξε(ds, dx)

= M̄ ε
t (1) +

∫ t

0

∫
εΞ̂ε(ds, dx) +

∫ t

0

∫
εΛε(ds, dx)

= M̄ ε
t (1) + εΞ̂εt +

∫ t

0

∫
ε

1

ε
ψ(x)dxds

= M̄ ε
t (1) + εΞ̂εt + t. (2.31)

Since M̄ ε and Ξ̂ε are (Fεt )-martingales, by taking expectations in (2.31) immediately

gives us,

E
(
X̄t(1)

)
= t.
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(b) Let T > 0. We now proceed by induction on n for p = 2n. In the case where p = 1

was shown in part (a). Suppose that there is a C(p, T ), δp,T (ε) → 0 for ε → 0 such

that,

E
(
X̄t(1)p

)
≤ C(p, T )tp + δp,T (ε). (2.32)

Lets now estimate the 2p-th moment. By applying Jensen’s inequality for sums to

(2.31) we get,

E
(
X̄ε
t (1)2p

)
= E

(
(M̄ ε

t (1) + εΞ̂εt + t)2p
)

≤ 32p−1E
(
M̄ ε
t (1)2p + ε2p(Ξ̂εt )

2p + t2p
)

= 32p−1
[
E
(
M̄ ε
t (1)2p

)
+ ε2pE

(
(Ξ̂εt )

2p
)

+ t2p
]

= 32p−1Cp

[
E
(
[M̄ ε(1)]pt

)
+ ε2pE

(
[Ξ̂ε]pt + 1

)
+ t2p

]
= 32p−1Cp

[
E
((∫ t

0
X̄ε
s (1)ds

)p)
+ ε2pE ((Ξεt )

p) + ε2p + t2p
]
. (2.33)

The second last line is true for some Cp > 0 by the continuous version Burkholder-

Davis-Gundy inequality for previsible jump martingales as stated in (Perkins, 2002,

§II.4), and by noting Ξ̂ε has jumps of size 1. The last line is true because [M̄ ε(1)]t =

〈M̄ ε(1)〉t =
∫ t

0 X̄
ε
s (1)ds and 〈Ξ̂ε〉t = Ξεt . We will handle the two expectation terms in

(2.33) individually.

We bound the integral term using Jensen’s inequality for xp and our induction hy-

pothesis (2.32),

E
((∫ t

0
X̄ε
s (1)ds

)p)
≤ tp−1E

(∫ t

0
X̄ε
s (1)pds

)
= tp−1

∫ t

0
E
(
X̄ε
s (1)p

)
ds

= tp−1

∫ t

0
C(p, T )sp + δp,T (ε)ds

=
C(p, T )

p+ 1
t2p + tpδp,T (ε)

≤ C(p, T )

p+ 1
t2p + T pδp,T (ε). (2.34)
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For the Ξε term in (2.33), we note that Ξεt ∼ Poi
(
t
ε

)
. It is an elementary fact that

the m-th moment of a Poisson random variable with mean λ is a polynomial in λ of

degree m with zero constant term. Which implies E ((Ξεt )
p) is a polynomial in t

ε of

degree p and thus,

lim
ε→0

ε2pE ((Ξεt )
p) = 0. (2.35)

Therefore combining (2.33), (2.34), and (2.35), we can conclude,

E
(
X̄ε
t (1)2p

)
≤ 32p−1Cp

[
C(p, T )

p+ 1
t2p + T pδp,T (ε) + ε2pE ((Ξεt )

p) + ε2p + t2p
]

= 32p−1Cp

(
C(p, T )

p+ 1
+ 1

)
t2p + 32p−1Cp

(
T pδp,T (ε) + ε2pE ((Ξεt )

p) + ε2p
)

≡ C(2p, T )t2p + δ2p,T (ε).

Where δ2p,T (ε)→ 0 as ε→ 0.

We will now use Lemma 2.3.8 to estimate the increment moments of Lεn(φ),

M εn(φ) and Iεn(φ).

Lemma 2.3.9. Let εn → 0 as n → ∞, T > 0, φ ∈ C∞c , and p = 2m for m ≥ 0. There

exists KL(p, T, φ),KM (p, T, φ) such that for all 0 < s < t ≤ T ,

(a) E (|Lεnt (φ)− Lεns (φ)|p) ≤ KL(p, T, φ)|t− s|p

(b) E
(
|M εn

t (φ)−M εn
s (φ)|2p

)
≤ KM (p, T, φ)|t− s|p

(c) E (|Iεnt (φ)− Iεns (φ)|p) ≤ ‖φ‖p∞|t− s|p
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Proof. (a) We use the definition of Lε(φ) and applying Jensen’s inequality for |x|p to get,

E (|Lεnt (φ)− Lεns (φ)|p)

= E
(∣∣∣∣∫ t

s
Xεn
u

(
∆φ

2

)
du

∣∣∣∣p)
≤
∥∥∥∥∆φ

2

∥∥∥∥p
∞
E
((∫ t

s
X̄εn
u (1)du

)p)
≤
∥∥∥∥∆φ

2

∥∥∥∥p
∞
|t− s|p−1E

(∫ t

s
X̄εn
u (1)pdu

)
=

∥∥∥∥∆φ

2

∥∥∥∥p
∞
|t− s|p−1

∫ t

s
E
(
X̄εn
u (1)p

)
du.

We can esimate the integrand using Lemma 2.3.8.

E (|Lεnt (φ)− Lεns (φ)|p)

≤
∥∥∥∥∆φ

2

∥∥∥∥p
∞
|t− s|p−1

∫ t

s
C(p, T )up + δp,T (εn)du

=

∥∥∥∥∆φ

2

∥∥∥∥p
∞
|t− s|p−1

(
C(p, T )

p+ 1
|t− s|p+1 + δp,T (εn)|t− s|

)
≤
∥∥∥∥∆φ

2

∥∥∥∥p
∞

(
C(p, T )

p+ 1
T p + δp,T (εn)

)
|t− s|p

≤
∥∥∥∥∆φ

2

∥∥∥∥p
∞

(
C(p, T )

p+ 1
T p +Dp,T

)
|t− s|p.

Since δp,T (εn) → 0 as n → ∞, δp,T (εn) is bounded by some Dp,T uniformly in n.

Therefore we have a constant KL(p, T, φ) such that for all n,

E (|Lεnt (φ)− Lεns (φ)|p) ≤ KL(p, T, φ)|t− s|p.

(b) Note that by the definition of M ε(φ) in (2.8), N ε
t (φ) ≡M ε

t (φ)−M ε
s (φ) is a continuous

(Fεt )-martingale in t for t ≥ s with square function,

〈N ε(φ)〉t =

∫ t

s
Xε
u(φ2)du.

Let’s bound the p-th moments by applying Jensen’s inequality for |x|2p, and the
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Burkholder-Davis-Gundy inequality.

E
(
|M εn

t (φ)−M εn
s (φ)|2p

)
= E

(
|N εn

t (φ)|2p
)

≤ CpE (〈N εn(φ)〉pt )

= CpE
((∫ t

s
Xεn
u (φ2)du

)p)
≤ Cp‖φ‖2p∞E

((∫ t

s
X̄εn
u (1)du

)p)
≤ Cp‖φ‖2p∞|t− s|p−1E

(∫ t

s
X̄εn
u (1)pdu

)
= Cp‖φ‖2p∞|t− s|p−1

∫ t

s
E
(
X̄εn
u (1)p

)
du.

Again, we apply Lemma 2.3.8 to get,

E
(
|M εn

t (φ)−M εn
s (φ)|2p

)
≤ Cp‖φ‖2p∞|t− s|p−1

∫ t

s
C (p, T )up + δp,T (εn)du

≤ Cp‖φ‖2p∞|t− s|p−1

(
C (p, T )

p+ 1
|t− s|p+1 +Dp,T |t− s|

)
= Cp‖φ‖2p∞

(
C (p, T )

p+ 1
T p +Dp,T

)
|t− s|p.

Just as in part (a), we assumed δp,T (εn) is bounded by Dp,T . Therefore there is a

KM (p, T, φ) such that for all n,

E
(
|M εn

t (φ)−M εn
s (φ)|2p

)
≤ KM (p, T, φ)|t− s|p.

(c) We proceed directly by applying Hölder’s inequality,

E (|Iεnt (φ)− Iεns (φ)|p) = E
(∣∣∣∣∫ t

s

∫
〈φ, φxεn〉

1

εn
ψ(x)1(uεns−(x) = 0)dxds

∣∣∣∣p)
≤
∣∣∣∣∫ t

s

∫
‖φ‖∞‖φxεn‖1

1

εn
ψ(x)dxds

∣∣∣∣p
= ‖φ‖p∞|t− s|p.
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Lemma 2.3.10. For all T > 0, φ ∈ C∞b . Âεt (φ) converges to 0 uniformly on [0, T ] in L2

as ε→ 0.

Proof. Since Âεn(φ) is a (Fεnt )-martingale, Doob’s strong L2 inequality tells us,

E

(
sup
t≤T

Âεt (φ)2

)
≤ 4E

(
ÂεT (φ)2

)
= 4E

(∫ T

0

∫
〈φ, φxε 〉21(uεs−(x) = 0)Ξε(ds, dx)

)
= 4

∫ T

0

∫
〈φ, φxε 〉21(uεs−(x) = 0)Λε(ds, dx)

≤ 4

∫ T

0

∫
‖φ‖2∞‖φxε‖21

1

ε
ψ(x)dxds

= 4T‖φ‖2∞ε

→ 0,

as ε→ 0. Therefore Aεn(φ) converges to 0 uniformly on [0, T ] in L2.

With Lemma 2.3.9 and 2.3.10 in hand, we are now ready to show {Xεn(φ)} and

{Aεn(φ)} are C-relatively compact in D(R).

Proposition 2.3.11. Suppose εn → 0, for all φ ∈ C∞c (R), then

(a) {Xεn(φ)} is C-relatively compact in D(R),

(b) {Aεn(φ)} is C-relatively compact in D(R).

Proof. (a) Let φ ∈ Cb, and T > 0. Since Xεn(φ) satisfies (2.30),

Xεn
t (φ) = Lεnt (φ) +M εn

t (φ) + Iεnt (φ) + Âεnt (φ)

≡ Y εn
t (φ) + Âεnt (φ).

Where Y εn(φ) is a stochastic process with sample paths in C(R), and Âεn(φ) is a

(Fεnt )-martingale with jumps. We will first show that Y εn(φ) is C-relatively compact.
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For 0 < s < t ≤ T , we proceed by bounding E|Y εn
t − Y εn

s |2p, by applying Jensen’s

inequality to |x|2p and Lemma 2.3.9.

E|Y εn
t − Y εn

s |2p

= E |(Lεnt (φ)− Lεns (φ)) + (M εn
t (φ)−M εn

s (φ)) + (Iεnt (φ)− Iεns (φ))|2p

≤ 32p−1
(
E |Lεnt (φ)− Lεns (φ)|2p + E |M εn

t (φ)−M εn
s (φ)|2p + E |Iεnt (φ)− Iεns (φ)|2p

)
≤ 32p−1

(
KL(2p, T, φ)|t− s|2p +KM (p, T, φ)|t− s|p + ‖φ‖2p∞|t− s|2p

)
≤ 32p−1

(
KL(2p, T, φ)T p +KM (p, T, φ) + ‖φ‖2p∞T p

)
|t− s|p

≡ KY (p, T, φ)|t− s|p,

for some KY (p, T, φ).

Therefore we have by Theorem 2.3.6, Y εn(φ) is C-relatively compact in C(R). Suppose

Y εn(φ) converges to some continuous weak limit point Y (φ), by possibly passing

through a subsequence. If dT represents the metric that induces the Skorohod J1

topology on D([0, T ]), then

dT (Xεn(φ), Y εn(φ)) ≤ sup
t≤T
|Xεn

t (φ)− Y εn
t (φ)| = sup

t≤T
Âεn(φ)

By Lemma 2.3.10 we have supt≤T Â
εn(φ) converges to 0 in L2 and hence weakly.

Therefore Slutsky’s theorem tells us Xεn(φ) → Y (φ) weakly on [0, T ]. Thus Xεn is

C-relatively compact in D(R).

(b) Theorem 2.3.6 and Lemma 2.3.9(c) tell us that Iεn(φ) is C-relatively compact in C(R).

It follows that Aεn is C-relatively compact in D(R), by identical reasoning as the last

paragraph in the proof of (a) by replacing Y εn with Iεn and Xε with Aεn .

2.3.2 Proof of theorem 2.3.4: Compact containment condition

Now that we have shown part (i) of Jakubowski’s theorem, it remains to show that {Xε}

and {Aεn} satisfy the compact containment condition. Before we begin, it will be useful
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to find an estimate on E
(
X̄ε([−R,R]c)

)
for R large. For the remainder of this section, we

fix φR to be a a smooth approximation to 1([−R,R]c) such that

1(R+ 1 < |x|) ≤ φR(x) ≤ 1(R < |x|).

Lemma 2.3.12. For all η, T > 0 there exists a compact Kη,T large enough such that for

all t ≤ T

E
(
X̄ε
t (Kc

η,T )
)
< η,

uniformly in ε.

Proof. Since X̄ε is a solution to (2.10), we have a Green’s function representation of (2.10)

(which can be deduced from (Perkins, 2002, §II.5)),

X̄ε
t (φR) =

∫ t

0

∫
Pt−sφRĀ

ε(ds, dx) +

∫ t

0

∫
Pt−sφR(x)M̄(ds, dx), (2.36)

Where Pt is the Brownian semigroup. So we have

E
(
X̄ε
t ([−R− 1, R+ 1]c)

)
≤ E

(
X̄ε
t (φR)

)
= E

(∫ t

0

∫
Pt−sφRĀ

ε(ds, dx)

)
= E

(∫ t

0

∫
〈Pt−sφR, φxε 〉Ξε(ds, dx)

)
=

∫ t

0

∫
〈Pt−sφR, φxε 〉Λε(ds, dx)

=

∫ t

0

∫
〈Pt−sφR, φxε 〉

1

ε
ψ(x)dxds. (2.37)
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We now need to control Pt−sφR. If |x| ≤ R
2 ,

PtφR(x) =

∫
1√
2πt

e−
|x−y|2

2t φR(y)dy

≤
∫
|y|≥R

1√
2πt

e−
|x−y|2

2t dy

=

∫
|
√
tz+x|≥R

1√
2π
e−

z2

2 dz

≤
∫
√
t|z|+|x|≥R

1√
2π
e−

z2

2 dz

=

∫
|z|≥R−|x|√

t

1√
2π
e−

z2

2 dz

≤
∫
|z|≥ R

2
√
T

1√
2π
e−

z2

2 dz.

Where we made the substitution z = y−x√
t

. By picking R large enough then we have for

|x| ≤ R
2 ,

PtφR(x) ≤ η

2T
. (2.38)

Also since ψ is integrable, we can pick R large enough such that∫
|x|≥R

2
−1
ψ(x)dx ≤ η

2T
. (2.39)

We now return to (2.37),∫ t

0

∫
〈Pt−sφR, φxε 〉

1

ε
ψ(x)dxds

=

∫ t

0

∫
|x|≥R

2
−1
〈Pt−sφR, φxε 〉

1

ε
ψ(x)dxds+

∫ t

0

∫
|x|<R

2
−1
〈Pt−sφR, φxε 〉

1

ε
ψ(x)dxds

≡ I1 + I2. (2.40)
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We will handle both I1 and I2 separately.

I1 =

∫ t

0

∫
|x|≥R

2
−1
〈Pt−sφR, φxε 〉

1

ε
ψ(x)dxds

≤
∫ t

0

∫
|x|≥R

2
−1
‖Pt−sφR‖∞‖φxε‖1

1

ε
ψ(x)dxds

≤
∫ t

0

∫
|x|≥R

2
−1
‖φR‖∞ε

1

ε
ψ(x)dxdt

=

∫ t

0

∫
|x|≥R

2
−1
ψ(x)dxds

≤ t η
2T

≤ η

2
. (2.41)

The first inequality was by Hölder, and the second was because P is a contractive semi-

group. The third inequality was by (2.39). Before we move onto I2, we should note that

for all bounded function f on R,

1

ε
〈f, φxε 〉 =

∫ x+
√
ε

x−
√
ε
f(y)

φxε (y)

ε
dy

≤

(
sup

[x−
√
ε,x+

√
ε]

f

)∫
φxε (y)

ε
dy

= sup
[x−
√
ε,x+

√
ε]

f

≤ sup
[x−1,x+1]

f. (2.42)

The last inequality was because we can assume ε ≤ 1. Therefore by combining (2.38), and
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(2.42) we get,

I2 =

∫ t

0

∫
|x|<R

2
−1
〈Pt−sφR, φxε 〉

1

ε
ψ(x)dxdt

≤
∫ t

0

∫
|x|<R

2
−1

(
sup

[x−1,x+1]
Pt−sφR

)
ψ(x)dxds

≤
∫ t

0

∫
|x|<R

2
−1

η

2T
ψ(x)dxds

≤ t η
2T

≤ η

2
. (2.43)

Finally, combining (2.37), (2.40), (2.41), and (2.43), we get the existence of a Kη,T ≡

[R− 1, R+ 1] such that, for all t ≤ T ,

E
(
X̄ε
t (Kc

η,T )
)
≤ η.

Before proceeding to the compact containment condition for {Xε}, we will need

the following estimates on the mass of Lε, M ε, and Aε.

Lemma 2.3.13. Suppose η, T,R > 0. If

sup
t≤T

E
(
X̄ε
t ([−R,R]c)

)
< η,

then we have the following:

(a) E

(
sup
t≤T

Lεt (φR)

)
≤
∥∥∥∥∆φR

2

∥∥∥∥
∞
Tη,

(b) E

(
sup
t≤T

M ε
t (φR)

)
≤ 2
√
Tη,

(c) E

(
sup
t≤T

Aεt (φR)

)
≤ T

∫
|x|>R−1

ψ(x)dx.
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Proof. (a) We proceed by directly using the definition of Lε.

E

(
sup
t≤T

Lεt (φR)

)
= E

(
sup
t≤T

∫ t

0
Xε
u

(
∆φR

2

)
du

)

≤
∥∥∥∥∆φR

2

∥∥∥∥
∞
E
(∫ T

0
X̄ε
u ([−R,R]c) du

)
=

∥∥∥∥∆φR
2

∥∥∥∥
∞

∫ T

0
E
(
X̄ε
u ([−R,R]c)

)
du

≤
∥∥∥∥∆φR

2

∥∥∥∥
∞
Tη.

(b) By Hölder’s inequality and Doob’s strong L2 inequality we get,

E

(
sup
t≤T

M ε
t (φR)

)
≤ E

(
sup
t≤T

M ε
t (φR)2

) 1
2

≤ 2E
(
M ε
T (φR)2

) 1
2

= 2E (〈M ε(φR)〉T )
1
2

= 2E
(∫ T

0
Xε
s (φ2

R)ds

) 1
2

= 2

(∫ T

0
E
(
Xε
s (φ2

R)
)
ds

) 1
2

≤ 2

(∫ T

0
E
(
X̄ε
s ([−R,R]c)

)
ds

) 1
2

≤ 2
√
Tη.
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(c) Finally,

E

(
sup
t≤T

Aεt (φR)

)
≤ E

(
sup
t≤T

Āεt (φR)

)

= E

(
sup
t≤T

∫ t

0

∫
〈φR, φxε 〉Ξε(ds, dx)

)

≤ E
(∫ T

0

∫
〈φR, φxε 〉Ξε(ds, dx)

)
=

∫ T

0

∫
〈φR, φxε 〉Λε(ds, dx)

=

∫ T

0

∫
〈φR, φxε 〉

1

ε
ψ(x)dxds

= T

∫
〈φR, φxε 〉

1

ε
ψ(x)dx.

Since we are taking limits as ε → 0, we can assume ε < 1. Therefore by (2.42) we

have,

1

ε
〈φR, φxε 〉 ≤ sup

|y|≤|x|+
√
ε

φR(y) ≤ sup
|y|≤|x|+1

1(R < |x|) = 1(R− 1 < |x|).

So we have shown,

E

(
sup
t≤T

Aεt (φR)

)
≤ T

∫
|x|≥R−1

ψ(x)dx.

We now prove that {Xε} and {Aε} satisfy the compact containment condition.

Proposition 2.3.14. {Xε} and {Aε} satisfies the compact containment condition. I.e,

For all η, T > 0, there is a compact Kη,T such that,

(a) sup
ε

P

(
sup
t≤T

Xε
t (Kc

η,T ) > η

)
< η,

(b) sup
ε

P

(
sup
t≤T

Aεt (K
c
η,T ) > η

)
< η.
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Proof. (a) Let η, T > 0. By Lemma 2.3.12 we can find R large enough, depending only

on η∗ and T such that,

sup
t≤T

E
(
X̄ε
t ([−R,R]c)

)
< η∗.

Where η∗ > 0 will be decided later. By using 1(R + 1 < |x|) ≤ φR(x) and Lemma

2.3.13, we have

P

(
sup
t≤T

Xε([−R− 1, R+ 1]c) > η

)

≤ P

(
sup
t≤T

Xε(φR) > η

)

≤
E
(
supt≤T X

ε(φR)
)

η

≤ 1

η

[
E

(
sup
t≤T

Lεt (φR)

)
+ E

(
sup
t≤T

M ε
t (φR)

)
+ E

(
sup
t≤T

Aεt (φR)

)]

≤ 1

η

(∥∥∥∥∆φK
2

∥∥∥∥
∞
Tη∗ + 2

√
Tη∗ + T

∫
|x|>R−1

ψ(x)dx

)
. (2.44)

Since ψ is integrable, we can pick R large enough so that∫
|x|>R−1

ψ(x)dx < η∗. (2.45)

Therefore by letting η∗ be small enough, such that (2.44) is less than η. Therefore we

have found a compact set Kη,T ≡ [−R− 1, R+ 1], such that,

P

(
sup
t≤T

Xε(Kc
η,T ) > η

)
< η, (2.46)

independent of ε.

(b) Let R and Kη,T be as above. By using 1(|x| > R+ 1) ≤ φR(x) and Lemma 2.3.13, we
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have

P

(
sup
t≤T

Aε(Kc
η,T ) > η

)
≤ P

(
sup
t≤T

Aε(φR) > η

)

≤
E
(
supt≤T A

ε(φR)
)

η

≤ T

η

∫
|x|>R−1

ψ(x)dx (2.47)

< η,

independent of ε. The last inequality was because (2.47) was smaller than (2.44)

which is less than η.

Thus we have finally proven Theorem 2.3.4.

2.4 SPDE characterization of limit points

We now have by Theorem 2.3.4 the existence of a sequence εn → 0 as n → ∞ and

continuous MF -valued processes X,A such that (Xεn , Aεn) converge weakly to (X,A),

possibly by taking subsequences. Let Ft be the filtration generated by the processes X

and A, ie.,

Ft = σ (Xs, As|s ≤ t) .

We want to show that for all φ ∈ C∞b , X admits an SPDE representation of the form,

Xt(φ) = Lt(φ) +Mt(φ) +At(φ).

Where

Lt(φ) ≡
∫ t

0
Xs

(
∆φ

2

)
ds,

andM(φ) is a continuous (Ft)-martingale with quadratic variation 〈M(φ)〉t =
∫ t

0 Xs(φ
2)ds.

By rearranging the terms in (2.9), we have for all φ ∈ C∞b ,

M εn
t (φ) = Xεn

t (φ)− Lεnt (φ)−Aεnt (φ), (2.48)
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is a (Fεnt )-martingale with quadratic variation 〈M εn〉t =
∫ t

0 X
εn
s (φ2)ds. The plan of attack

to argue we get our desired M(φ) by taking limits of M εn as n→∞. Before we proceed,

it will be convenient to work with almost sure convergence as opposed to weak.

Theorem 2.4.1 (Skorohod Representation Theorem). (Billingsley, 2013, p. 70) Let (S, d)

be a Polish space, and suppose Xn, X, be S-valued random variables (on possibly different

probability spaces) such that Xn converges weakly to X. There exists a probability space

(Ω̃, F̃ , P̃) and random variables X̃n, X̃ with the same law as Xn, X and P̃-a.s,

X̃n(ω)
(S,d)−−−→
n→∞

X̃(ω).

For the remainder of this paper we will assume that without loss of generality that

we are working on a common probability space where (Xεn , Aεn) converges a.s. to (X,A)

in D(MF )×D(MF ).

Note that for all φ ∈ C∞b , X → X(φ) in a continuous map from D(MF ) → D(R)

and X →
∫ ·

0 Xs

(
∆φ
2

)
ds is a continuous map from D(MF ) → C(R). This implies for all

φ ∈ C∞b , a.s.

lim
n→∞

Xεn
t (φ) = Xt(φ),

lim
n→∞

Aεnt (φ) = At(φ),

and,

lim
n→∞

Lεnt (φ) = lim
n→∞

∫ t

0
Xεn
s

(
∆φ

2

)
ds =

∫ t

0
Xs

(
∆φ

2

)
ds = Lt(φ).

Therefore a.s.,

lim
n→∞

M εn
t (φ) = lim

n→∞
Xεn
t (φ)− Lεnt (φ)−Aεnt (φ)

= Xt(φ)− Lt(φ)−At(φ)

≡Mt(φ) (2.49)

If N εn(φ) ≡ M εn(φ)2 − 〈M εn(φ)〉 is the square (Fεnt )-martingale for M εn(φ). Similar to

above, for all φ ∈ C∞b , X →
∫ t

0 Xs(φ
2)ds is a continuous map from D(MF ) → C(R),
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which implies a.s.

lim
n→∞

N εn
t (φ) = lim

n→∞
M εn
t (φ)2 − 〈M εn(φ)〉t

= lim
n→∞

M εn
t (φ)2 −

∫ t

0
Xεn
s (φ2)ds

= Mt(φ)2 −
∫ t

0
Xs(φ

2)ds

≡ Nt(φ). (2.50)

Since X, L and A are continuous, we have that M(φ) and N(φ) are also continuous. It

remains to show that M(φ) and N(φ) are (Ft)-martingales. Note that for all T > 0,

Burkholder-Davis-Gundy inequality and Jensen’s inequality for x2 gives us,

E

(
sup
t≤T

M εn
t (φ)4

)
≤ CE

(
〈M εn(φ)〉2T

)
= CE

(∫ T

0
Xεn
s (φ2)ds

)2

= CTE
∫ T

0
Xεn
s (φ2)2ds

≤ CT‖φ‖4∞E
∫ T

0
X̄εn
s (1)2ds

= CT‖φ‖4∞
∫ T

0
E
(
X̄εn
s (1)2

)
ds (2.51)

We can estimate the integral in (2.51) by applying Lemma 2.3.8,

E

(
sup
t≤T

M εn
t (φ)4

)
≤ CT‖φ‖4∞

∫ T

0
C(2, T )s2 + δ2,T (εn)ds

= CT‖φ‖4∞
(
C(2, T )T 3

3
+ Tδ2,T (εn)

)
≤ C‖φ‖4∞

(
C(2, T )T 4

3
+ TD2,T

)
<∞

The last line used the fact that δ2,T (εn) → 0 as n → ∞, and is thus uniformly bounded

in n by some D2,T .
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Hence we have shown that M εn
t (φ) and N εn

t (φ) are L4 and L2 bounded respectively

uniformly in n and 0 ≤ t ≤ T . Therefore {supt≤T M
εn
t (φ)} and {supt≤T N

εn
t (φ)} are

uniformly integrable, which along with (2.49) and (2.50) imply M εn(φ) → M(φ) and

N εn(φ)→ N(φ) in L1.

L1 convergence and the fact that M εn(φ) and N εn(φ) are (Fεnt )-martingales, imply

for all Ψ : M2m
F → R be bounded and continuous and s1, . . . sm, s ≤ t,

0 = lim
n→∞

E
(
(M εn

t (φ)−M εn
s (φ))Ψ(Xεn

s1 , . . . X
εn
sm , A

εn
s1 , . . . , A

εn
sm)
)

= E
(

lim
n→∞

(M εn
t (φ)−M εn

s (φ))Ψ(Xεn
s1 , . . . X

εn
sm , A

εn
s1 , . . . , A

εn
sm)
)

= E ((Mt(φ)−Ms(φ))Ψ(Xs1 , . . . Xsm , As1 , . . . , Asm)) . (2.52)

Similarly,

0 = lim
n→∞

E
(
(N εn

t (φ)−N εn
s (φ))Ψ(Xεn

s1 , . . . X
εn
sm , A

εn
s1 , . . . , A

εn
sm)
)

= E
(

lim
n→∞

(N εn
t (φ)−N εn

s (φ))Ψ(Xεn
s1 , . . . X

εn
sm , A

εn
s1 , . . . , A

εn
sm)
)

= E ((Nt(φ)−Ns(φ))Ψ(Xs1 , . . . Xsm , As1 , . . . , Asm)) . (2.53)

Therefore we can conclude by (2.52), and (2.53) that M(φ) and N(φ) are (Ft)-martingales.

Since Nt(φ) = Mt(φ)2 −
∫ t

0 Xs(φ
2)ds is a (Ft)-martingale, we have by the uniqueness of

quadratic variation, 〈M(φ)〉t =
∫ t

0 Xs(φ
2)ds. We have proven the following.

Theorem 2.4.2. If (X,A) is a weak limit point of (Xεn , Aεn) as εn → 0, then for all

φ ∈ C∞b (R), X satisfies the SPDE,

Xt(φ) = Lt(φ) +Mt(φ) +At(φ). (2.54)

Where M(φ) is a continuous (Ft)-martingale with quadratic variation,

〈M(φ)〉t =

∫ t

0
Xs(φ

2)ds.

2.5 Density of X

We now have the existence of a sequence εn → 0 as n → ∞, and continuous MF -valued

processes X, that satisfies the SPDE (2.54), such that Xεn converges weakly to X.
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Recall we have a process uεn with sample paths in D(C0) defined by (2.5), satisfying

Xεn
t (dx) = uεnt (x)dx. We will now show that there is a process u such with sample paths

in C(C0) and satisfies Xt(dx) = ut(x)dx. We will show that u can be determined as weak

limit point of uεn , by the following theorem.

Theorem 2.5.1. If εn → 0 is defined as above, then {uεn} is C-relatively compact in

D(C0).

An immediate consequence of Theorem 2.5.1 is we get the existence of our process

continuous C0-valued process u.

Corollary 2.5.2. If uεn converges weakly to u, then a.s. Xt(dx) = u(t, x)dx. In particular

this implies that the limit points are a.s. unique.

Proof. By Theorem 2.5.1 and Skorohod representation theorem, we can assume without

loss of generality that uεn converges to u a.s as C0-valued processes, possibly by taking a

subsequence. This implies on all compact sets, uεn to u uniformly. Then for all φ ∈ C∞c ,∫
φ(x)u(t, x)dx =

∫
lim
n→∞

φ(x)uεn(t, x)dx

= lim
n→∞

∫
φ(x)uεn(t, x)dx

= lim
n→∞

Xεn
t (φ)

= Xt(φ).

The exchange of limits was justified because uεn converges to u uniformly on the support

of φ. The last line used the fact that Xεn
t convergences weakly to X. Thus Xt is absolutely

continuous with respect to Lebesgue measure and Xt(dx) = u(t, x)dx.

We now have the existence of sequence εn → 0 as n → ∞, and continuous MF -

valued process X, A, and C0-valued process u such that

(Xεn , Aεn , uεn)→ (X,A, u),
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weakly, possibly by taking subsequence. By Skorohod’s representation theorem, we can

assume without loss of generality that all the random variables are defined on a common

probability space and the convergence is a.s. Finally by taking subsequences, we can

further assume that ∑
n

εn <∞. (2.55)

It remains to justify Theorem 2.5.1 is true. We will do this in the following section.

2.5.1 Proof of Theorem 2.5.1: C-relative compactness of {uε}

The proof of Theorem 2.5.1 is quite technical so we will just give an outline. Recall that,

φxε (y) =
√
εφ

(
y − x√

ε

)
.

Where φ : R→ R+ is a Lipschitz functions supported on [−1, 1] satisfying ‖φ‖1 = 1, and

‖φ‖∞ ≤ 1. For now instead of working on C0 we will work on C(R) the set of continuous

functions from R to R, equipped with the compact-open topology.

Our main tool to show {uε} is C-relatively compact in D(C0) will be the following

modification of Theorem 2.3.6.

Theorem 2.5.3. Suppose {Y n} is a family of stochastic processes with sample paths in

C(C(R)) and p > 1 and a, b > 2 such that for all T > 0, and there is a C(T ) > 0 satisfying

E
(
|Y ε
t (x)− Y ε

t′ (x
′)|p
)
≤ C(T )

(
|t− t′|a + |x− x′|b

)
,

for 0 ≤ t, t′ ≤ T and |x|, |x′| ≤ T . Then {Y n} is C-relatively compact in C(C(R)).

Recall if ui is density of SBM Xi with initial law φxiε (z)dz, then Theorem III.4.2

in (Perkins, 2002, §III.4) showed that the Green’s function representation for ui is,

uit(x) =

∫ t

0

∫
Pt−s(y − x)M i(ds, dy) + Ptφ

xi
ε (x). (2.56)
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By substituting (2.56) into (2.5), we get the following Green’s function representation of

uε.

uεt (x) =

∫ t

0

∫
Pt−s(y − x)M ε(ds, dy) +

∫ t

0

∫
Pt−sφ

y
ε(x)1(uεs−(y) = 0)Ξε(ds, dy)

≡ N ε
t (x) +Hε

t (x) (2.57)

We further decompose Hε
t (x) using the compensated PPP to get,

Hε
t (x) =

∫ t

0

∫
Pt−sφ

y
ε(x)1(uεs−(y) = 0)Λε(ds, dy) +

∫ t

0

∫
Pt−sφ

y
ε(x)1(uεs−(y) = 0)Ξ̂ε(ds, dy)

≡ hεt (x) + Ĥε
t (x). (2.58)

So we have,

uεt (x) = N ε
t (x) + hεt (x) + Ĥε

t (x), (2.59)

where Ĥε(x) is a jump martingale. We will deal with each term individually. The analysis

in Theorem III.4.2 in (Perkins, 2002, § III.4), shows that {N ε} is C-relatively compact in

C(C(R)). To deal with hε we note the following estimate.

Lemma 2.5.4. Let T > 0. Then there is a C(T ) such that for all 0 ≤ t′ < t ≤ T and

|x|, |x′| ≤ T ,

|hεt (x)− hεt′(x′)| ≤ C(T )
(√

t− t′ + |x− x′|
)
.

Proof. This is a lengthy computation.

Lemma 2.5.4 in combination with Theorem 2.5.3 gives us hε is also C-relatively

compact in C(C(R)). It remains to deal with Ĥε. Burkholder’s inequality for jump

processes eventually yields the following two estimates.

Lemma 2.5.5. Let p > 1 and T > 0. There is a C(T ) > 0 such that for all 0 ≤ t ≤ T

and |x|, |x′| ≤ T ,

E
(
|Ĥε

t (x)− Ĥε
t (x′)|p

)
≤ C(T )ε

p
4 |x− x′|

p
2 .

Lemma 2.5.6. Let p > 1 and T > 0. There is a C(T ) > 0 such that for all 0 ≤ t′ < t ≤ T

and |x| ≤ T ,

E
(
|Ĥε

t (x)− Ĥε
t′(x)|p

)
≤ C(T )

(
|t− t′|

p
4 + ε

p
2

)
.
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The discontinuity in t of Hε prevents us from directly applying Theorem 2.5.3. To

fix this issue we will approximate Hε with the continuous process H̃ε defined as follows.

For all t ∈ {iεq|i ∈ N} ≡ Gε,q for q > 1,

H̃ε
t (x) = Hε

t (x). (2.60)

For t 6∈ Gε,q we linearly interpolate in t. Now Lemma 2.5.4, 2.5.5, and 2.5.6 imply that

for all t, t′ ∈ Gε,q, such that 0 ≤ t′ < t ≤ T we have a C(T ),

E
(
|H̃ε

t (x)− H̃ε
t′(x
′)|p
)
≤ C(T )

(
|x− x′|

p
2 + |t− t′|

p
2 + ε

p
2

)
= C(T )

(
|x− x′|

p
2 + |t− t′|

p
2 + (εq)

p
2q

)
≤ C(T )

(
|x− x′|

p
2 + |t− t′|

p
2 + |t− t′|

p
2q

)
≤ C ′(T )

(
|x− x′|

p
2 + |t− t′|

p
2q

)
. (2.61)

The last line used the fact that q > 1. By linear interpolation we have (2.61) holds for all

0 ≤ t′ ≤ t ≤ T . Therefore Theorem 2.5.3 applied and we have H̃ε is C-relatively compact

in C(C(R)). To show that Hε is C-relatively compact, by Slutsky’s theorem it suffices to

show that Hε − H̃ε converges to 0 weakly. Let x ∈ R, 0 ≤ t ≤ T , and suppose that ψ is

compactly supported.

|Hε
t (x)− H̃ε

t (x)|

≤ C sup
iεq≤T,t∈[iεq ,(i+1)εq ]

|Hε
t (x)−Hε

iεq(x)|

≤ C sup
iεq≤T,t∈[iεq ,(i+1)εq ]

∫ iεq

0

∫
|Pt−sφyε(x)− Piεq−sφyε(x)|Ξε(ds, dx)

+ C sup
iεq≤T,t∈[iεq ,(i+1)εq ]

∫ t

iεq

∫
Pt−sφ

y
ε(x)Ξε(ds, dx) (2.62)

Now one can show that the difference in the first integrand of (2.62) is bounded by ε
q
2 and

the using the fact that P is a contractive and ‖φyε‖∞ ≤
√
ε, we get the second integrand

53



is bounded by
√
ε. So (2.62) becomes,

sup
x∈R,t≤T

|Hε
t (x)− H̃ε

t (x)| ≤ C

(
ε
q
2 Ξε([0, T ]× R) +

√
ε sup
iεq≤T

Ξε([iεq, (i+ 1)εq]× R)

)
(2.63)

We can show that (2.63) goes to 0 is probability uniformly on [0, T ]× R. Hence we have

proven that {uε} is C-relatively compact in D(C(R)). By using the compactness of ψ

along with the modulus of continuity of SBM derived in (Perkins, 2002, §III.1), we can

bootstrap to get that {uε} is C-relatively compact in D(C0).

2.6 Domination of Immigration

Recall that the SBM populations Xi born at time ti with initial law φxiε (x)dx only con-

tribute to Xε if the previously contributing populations do not occupy any space at xi.

Therefore Aε only contribute to the population when,

1(uεti−(xi) = 0).

Our goal will be to show the same holds in the case of A. In this section we will justify

A only contributes to the population X whenever X only at the locations X occupies no

mass. In other words we will show that the MF -valued process A satisfies,

At(dx)� 1(ut(x) = 0)dx.

We do this in the following theorem.

Theorem 2.6.1. For all non-negative φ ∈ C∞b ,

At(φ) ≤
∫ t

0

∫
φ(x)ψ(x)1(us(x) = 0)dxds. (2.64)

Before we prove Theorem 2.6.1, we will need the following lemma.

Lemma 2.6.2. Let f be a continuous function, then

lim
ε→0

〈f, φxε 〉
ε

= f(x).
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Proof. Using the fact that ε = ‖φxε‖1, we have

1

ε

∫
φxε (y)dy = 1.

Let Sxε ≡ supp(φxε ) = [x−
√
ε, x+

√
ε]. We we now compute the limit.∣∣∣∣〈f, φxε 〉ε

− f(x)

∣∣∣∣ =

∣∣∣∣∫ f(y)
φxε (y)

ε
dy − f(x)

∣∣∣∣
=

∣∣∣∣∫ (f(y)− f(x))
φxε (y)

ε
dy

∣∣∣∣
≤
∫
|f(y)− f(x)|φ

x
ε (y)

ε
dy

≤

(
sup
Sxε

f − inf
Sxε
f

)∫
φxε (y)

ε
dy

=

(
sup
Sxε

f − inf
Sxε
f

)
.

Since f is continuous we have that as ε→ 0,

lim
ε→0

sup
Sxε

f = lim
ε→0

inf
Sxε
f,

and thus

lim
ε→0

〈f, φxε 〉
ε

= f(x).

With the lemma in hand, we are now ready to prove Theorem 2.6.1.

Proof of Theorem 2.6.1. We know from (2.29) that

Aεn(φ) = Iεn(φ) + Âεn(φ). (2.65)
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So we have for all T > 0, by Doob’s strong L2 inequality,

∑
n

E

(
sup
t≤T

Âεnt (φ)2)

)
≤ 4

∑
n

E
(
ÂεnT (φ)2

)
=
∑
n

E
(∫ T

0

∫
〈φ, φxεn〉1(uεns (x) = 0)Ξ̂εn(ds, dx)

)2

=
∑
n

∫ T

0

∫
〈φ, φxεn〉

21(uεns (x) = 0)Λεn(ds, dx)

≤
∑
n

∫ T

0

∫
‖φ‖2∞ε2

n

1

εn
ψ(x)dxds

= ‖φ‖2∞T
∑
n

εn

< ∞. (2.66)

The last line was because of (2.55). By applying Fubini’s theorem, we can exchange the

sum and expectation in (2.66) to get,

E

(∑
n

sup
t≤T

Âεnt (φ)2

)
<∞.

This implies that
∑

n supt≤T Â
εn
t (φ)2 is finite a.s. and thus, a.s.

lim
n→∞

sup
t≤T

Âεnt (φ) = 0. (2.67)

By (2.65) and (2.67) a.s.,

At(φ) = lim
n→∞

Aεn(φ) = lim
n→∞

Iεn(φ).
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We will now simplify the right hand side, and use Fatou’s lemma.

A(φ) = lim
n→∞

Iεn(φ)

= lim
n→∞

∫ t

0

∫
〈φ, φxεn〉1(uεns−(x) = 0)Λεn(ds, dx)

= lim
n→∞

∫ t

0

∫
〈φ, φxεn〉

1

εn
ψ(x)1(uεns−(x) = 0)dxds

≤
∫ t

0

∫
lim sup
n→∞

〈φ, φxεn〉
1

εn
ψ(x)1(uεns−(x) = 0)dxds (2.68)

≤
∫ t

0

∫
lim
n→∞

(
〈φ, φxεn〉

1

εn

)
ψ(x) lim sup

n→∞
1(uεns−(x) = 0)dxds

=

∫ t

0

∫
φ(x)ψ(x) lim sup

n→∞
1(uεns−(x) = 0)dxds. (2.69)

We have (2.68) is true by the reverse Fatou lemma applied to the measure 1(s ≤ t)ψ(x)dxds,

and the last line was by Lemma 2.6.2. It remains to deal with the lim sup term. Since

uεn converges to u a.s. as C0-valued processes, we have uεn convergences to u uniformly

on compact sets and hence point-wise. This coupled with the fact that u is continuous,

we have a.s. uεns−(x) → us(x) as n → ∞. Since the indicator of a closed set is upper

semi-continuous, and u is continuous,

lim sup
n→∞

1(uεns−(x) = 0) ≤ 1(us(x) = 0).

Therefore (2.69) becomes,

A(φ) ≤
∫ t

0

∫
φ(x)ψ(x)1(us(x) = 0)dxds.

So we have that A is a continuous increasing process which only increases on the

zero set of X. There we have shown that X is SBM with immigration A only active where

the population X does not occupy space.
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2.7 Non-triviality of X

Up until this point we have shown the existence of a continuous MF -valued process X

that satisfies the SPDE, for φ ∈ C∞b ,

Xt(φ) = Lt(φ) +Mt(φ) +At(φ). (2.70)

WhereM(φ) is a continuous (Ft)-martingale with quadratic variation 〈M(φ)〉t =
∫ t

0 Xs(φ
2)ds,

and

A(ds, dx) ≤ ψ(x)1(X(s, x) = 0)dsdx.

Even though we have shown the existence of X, as stated, X = 0 is a potential solution

to (2.70). The remainder of this section will be devoted to ruling out this possibility and

showing that X is indeed non-trivial.

By definition, Xε is the sum of independent SBM clusters with initial mass ε, it

will be useful to know how long these clusters live for.

Proposition 2.7.1 (Distribution of lifetime). Let τ denote the lifetime of a SBM X with

initial mass ε. Then τ has a density given by,

P(τ ≤ t) =

∫ t

0

2ε

s2
e−

2ε
s ds.

Proof. A proof of this result is given in (Perkins, 2002, p. 171) by analysing the Laplace

functional of Super Brownian motion.

If (ti, xi) ∼ Ξε is the time and position of a SBM cluster Xi with initial law

φxiε (z)dz, then we have τi, the lifetime of cluster Xi is independent of (ti, xi). Therefore

we can extend Ξε to a new PPP Ξ̃ε on [0,∞)×R× (0,∞) representing the time, position

and lifetime of the the cluster with rate,

Λ̃ε(dt, dx, dτ) =
1

ε
dtψ(x)dx

2ε

τ2
e−

2ε
τ dτ

=
2

τ2
e−

2ε
τ ψ(x)dtdxdτ.
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We will now thin Ξ̃ε into the clusters that live longer than time 1 and clusters that die

before time 1. This gives rise to two new independent PPP’s, Ξ̃1,ε and Ξ̃2,ε with rates Λ̃1,ε

and Λ̃2,ε respectively given by,

Λ̃1,ε(dt, dx, dτ) =
2

τ2
e−

2ε
τ ψ(x)1(τ > 1)dtdxdτ,

Λ̃2,ε(dt, dx, dτ) =
2

τ2
e−

2ε
τ ψ(x)1(τ ≤ 1)dtdxdτ.

We now suppose ε > 0 is fixed, and (ti, xi, τi) ∼ Ξ̃1,ε and (sj , yj , σj) ∼ Ξ̃2,ε. Let

{U i} be independent SBM with initial law φxiε (z)dz originating at (ti, xi) conditioned to

live greater than 1 unit time. Similarly, let {V j} be independent SBM with initial law

φ
yj
ε (z)dz originating at (sj , yj) conditioned to die by time 1. We will assume without loss

of generality that clusters are generated in chronological order, i.e ti < ti+1 and sj ≤ sj+1.

Note that all the terms defined depend on ε, however the ε was suppressed for notational

convenience.

The plan of attack is as follows. Let (t1, x1) denote the time and position of the

first SBM cluster U1 generated by Ξ̃1,ε.

1. We will show for all α > 0 small enough, that there is a pα > 0 independent of ε

such that, t1 ≤ α and U1 will contribute to Xε with probability atleast pα. This

will imply that for all t > 0

Xε
t (1) ≥ 1(t ≥ t1)U1

t−t1(1), (2.71)

with probability atleast pα.

2. We will then show that for all t > 0 there is a qt > 0 independent of ε, such that

that U1
t (1) > 1 with probability at least qt.

3. We will use steps 1 and 2 along with weak convergence to show that

P(X2(1) > 1) > 0.
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2.7.1 Contribution of long living populations to Xε

Our goal in this section will be to complete step 1 of the program laid out above. We

will show that U1 will both be generated before time α and will contribute to Xε with

probability at least pα > 0 independent of ε. First let us analyse the time that U1 is

generated.

Lemma 2.7.2. (a) t1 is (Fεt )-stopping time.

(b) t1 is exponentially distributed with rate

λε ≡
1− e−2ε

ε
.

(c) For all α > 0 and ε small enough,

P(t1 ≤ α) ≥ 1− e−α.

Proof. (a) Recall Ξ̃1,ε
t ∼ Poi(Λ̃1,ε

t ) is the total number of points generated by Ξ̃1,ε up to

and including time t. So

{t1 ≤ t} = {Ξ̃1,ε
t > 0} ∈ Fεt .

(b) Let us compute the distribution of t1.

P(t1 ≤ t) = P(Ξ̃1,ε
t > 0)

= 1− P(Ξ̃1,ε
t = 0)

= 1− exp
(
−Λ̃1,ε

t

)
= 1− exp

(
−
∫ t

0

∫ ∞
−∞

∫ ∞
0

2

τ2
e−

2ε
τ ψ(x)1(τ > 1)dsdxdτ

)
= 1− exp

(
−t
∫ ∞

1

2

τ2
e−

2ε
τ dτ

)
= 1− exp

(
−t1− e

−2ε

ε

)
= 1− exp (−tλε) . (2.72)

This proves part (b).
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(c) Since λε → 2 as ε→ 0, we have for ε small enough, λε ≥ 1. Thus by (b),

P(t1 ≤ α) = 1− e−αλε ≥ 1− e−α > 0.

For all 0 ≤ sj ≤ t1 ≤ α, we want the corresponding clusters V j to have no mass

at (t1, x1). In order for this to happen we need to get some control on the support of V j .

The following theorem on the modulus of continuity, gives us an estimate on the support

of a SBM.

Theorem 2.7.3 (Modulus of continuity). (Perkins, 2002, §III.1) Let X be a SBM with

initial law X0, then for all 0 < p < 1
2

(a) There is a δ(ω) > 0 such that for 0 < t < δ

supp(Xt) ⊂ {x : ∃z ∈ supp(X0), |x− z| ≤ tp, }.

(b) There is some ρ and K such that for all α > 0,

P(δ ≤ α) ≤ KX0(1)αρ.

Let δj denote the time where the modulus of continuity is satisfied for SBM cluster

V j as described in Theorem 2.7.3. Let Aεα denote the event that for all sj ≤ α, the

corresponding V j have a modulus of continuity δj ≥ α. Equivalently,

Aεα =
⋂
sj≤α
{δj ≥ α}.

We will now find an estimate on Aεα occurring.

Lemma 2.7.4. There is an K, ρ > 0 such that

P(Aεα) > e−Kα
ρ+1
.
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Proof. Since δj only depends on the initial mass, and V j are independent clusters with

mass ε, we have δj are iid random variables. We then define p ≡ P(δj ≥ α), and as before,

let Ξ̃2,ε
α ∼ Poi(Λ̃2,ε

α ) denote the the number of points generated by Ξ̃2,ε until time α. To

simplify notation, let λ ≡ Λ̃2,ε
α be the average number of points generated by Ξ̃2,ε by time

α. We now compute P(Aεα).

P(Aεα) = P

 ⋂
sj≤α

δj ≥ α


=
∞∑
k=0

P

 ⋂
sj≤α

δj ≥ α
∣∣∣Ξ̃2,ε
α = k

P(Ξ̃2,ε
α = k)

=
∞∑
k=0

k∏
j

P(δj ≥ α)P(Ξ̃2,ε
α = k)

=
∞∑
k=0

pke−λ
λk

k!

= e−λepλ

= e−λ(1−p). (2.73)

We now compute λ,

λ = Λ̃2,ε
α =

∫ α

0

∫ ∞
−∞

∫ 1

0

2

τ2
e−

2ε
τ ψ(x)dτdxdt =

α

ε
e−2ε. (2.74)

Also by Theorem 2.7.3,

1− p = 1− P(δj ≥ α) = P(δ < α) ≤ Kεαρ (2.75)

Combining (2.73) with (2.74) and (2.75), we get

P (Aεα) = exp (−λ(1− p))

≥ exp
(
−α
ε
e−εKεαρ

)
= exp

(
−Kαρ+1e−ε

)
≥ exp

(
−Kαρ+1

)
.
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We now condition on the event Bε
α = {t1 ≤ α}∩Aεα, ie, the event where U1 is born

by time α and all the V j born before time α satisfy δj ≥ α. Since {t1 ≤ α} only depends

on the Ξ̃1,ε and Aεα only depends on V j , which are both independent from each other, we

have {t1 ≤ α} and Aεα are independent events. Therefore by Lemma 2.7.2 and 2.7.4, we

have for all ε sufficiently small,

P(Bε
α) = P(t1 ≤ α)P(Aεα) ≥ (1− e−α)e−Kα

ρ+1 ≡ γα > 0. (2.76)

Before we proceed, it will be useful to define the space-time graph of a V j .

Definition 2.7.5. Let X be a MF -valued process, let G(X) be the space-time graph of

X defined by,

G(X) = {(x, t)|x ∈ supp(Xt)}.

Let Gj denote the space-time graph of the shifted process 1(sj ≤ t)V j
t−sj , which

just ends up being the G(V j) shifted up by sj .

Gj ≡ G
(

1(sj ≤ ·)V j
·−sj

)
= G(V j) + (sj , 0).

If Cε is the event that U1 will contribute to Xε. Then this will occur if (t1, x1) 6∈ Gj for

all j. Therefore

Cε ⊃
⋂
j

{(t1, x1) 6∈ Gj}. (2.77)

We now estimate the probability of U1 contributing the sum given Bε
α has occurred.

Proposition 2.7.6. For all α > 0 we have for all ε sufficiently small,

P (Cε|Bε
α) ≥ exp(−32‖ψ‖∞α

1
4 ) > 0. (2.78)

Proof. We begin by noting that by translation, we can assume without loss of generality

that (t1, x1) = (0, 0). Suppose that a cluster is created at (sj , yj) with lifetime τj and

−α ≤ sj ≤ 0. We want to estimate the probability that (sj , yj) 6∈ Gj . Since we are only
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interested in −α ≤ sj ≤ 0, we restrict our space-time graphs to [−α, 0]×R. The modulus

of continuity tell us that for p = 1
4 <

1
2 , we have on Bε

α,

Gj |[−α,0]×R ⊂

(s, y)
∣∣∣ sj ≤ s ≤ 0, ∃z ∈ [yj −

√
ε, yj +

√
ε],

|y − z| ≤ |s− sj |
1
4

 (2.79)

Also (2.77) implies.

P(Cε|Bε
α) ≥ P(∀j, (0, 0) 6∈ Gj |Bε

α)

= 1− P(∃j, (0, 0) ∈ Gj |Bε
α). (2.80)

We will now use (2.79) to find an upper bound on P(∃j, (0, 0) ∈ Gj |Bε
α). We have

two cases:

Case 1: |yj | >
√
ε.

In this case (sj , 0) 6∈ Gj , since V j
0 = φ

yj
ε (z)dz is support on [yj −

√
ε, yj +

√
ε] and

doesn’t contain 0. Note that for s > sj ≥ −α, (2.79) tells us (s, y) ∈ Gj , if for some

z ∈ [yj −
√
ε, yj +

√
ε],

|y − z| ≤ |s− sj |
1
4 ⇐⇒ s ≥ sj + |y − z|4 . (2.81)

This implies if (0, 0) ∈ Gj , then

0 ≥ sj + |0− z|4 ≥ sj +
(
|yj | −

√
ε
)4 ≥ sj ≥ −α. (2.82)

By rearranging (2.82), we get sj and yj must satisfy

− α ≤ sj ≤ −
(
|yj | −

√
ε
)4
, (2.83)

and,
√
ε < |yj | ≤ α

1
4 +
√
ε, (2.84)

respectively. Also for (0, 0) ∈ Gj to be true, the cluster needs to live long enough to hit

the origin, so

|sj | ≤ τj . (2.85)
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Let A be the set of (sj , yj , τj) such that (2.83), (2.85), and (2.84) hold. So if

Ξ̃2,ε(A) > 0 then (0, 0) ∈ Gj for some j.

Case 2: |yj | ≤
√
ε.

In this case the V j
0 = φ

yj
ε (z)dz which occupies mass at 0. Having (0, 0) ∈ Sj implies

that V j lives at least |sj |, which implies there is cluster such that τ ≥ |tj |. If B is the set

of (sj , yj , τj) such that τj > |sj |, −α ≤ sj ≤ 0, and |yj | ≤
√
ε, then Ξ̃2,ε(B) > 0 implies

(0, 0) ∈ Gj for some j.

Combining case 1 and 2, we have shown that

{∃j, (0, 0) ∈ Gj} ⊂ {Ξ̃2,ε(A) > 0} ∪ {Ξ̃2,ε(B) > 0} = {Ξ̃2,ε(A ∪B) > 0}.

Since A ∩B = ∅, {Ξ̃2,ε(A) > 0} and {Ξ̃2,ε(B) > 0} are independent events. This implies,

P(∃j, (0, 0) ∈ Sj |Bε
α) ≤ P(Ξ̃2,ε(A ∪B) > 0|Bε

α)

= P(Ξ̃2,ε(A ∪B) > 0)

= 1− P(Ξ̃2,ε(A ∪B) = 0)

= 1− exp(−Λ̃2,ε(A ∪B))

= 1− exp(−Λ̃2,ε(A)− Λ̃2,ε(B)). (2.86)

The first inequality used Bε
α depends on δj and t1, both of which are independent of Ξ̃2,ε.
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Whe last line used the fact that A and B are disjoint. So now lets compute Λ̃ε2(A), Λ̃ε2(B).

Λ̃ε2(A) =

∫
√
ε<|y|≤α

1
4 +
√
ε

∫ −(|y|−
√
ε)

4

−α

∫ 1

|s|

2

τ2
e−

2ε
τ ψ(y)dτdsdy

≤ 2‖ψ‖∞
∫
√
ε<|y|≤α

1
4 +
√
ε

∫ −(|y|−
√
ε)

4

−α

∫ ∞
|s|

1

τ2
dτdsdy

= 2‖ψ‖∞
∫
√
ε<|y|≤α

1
4 +
√
ε

∫ −(|y|−
√
ε)

4

−α

1

|s|
dsdy

= 2‖ψ‖∞
∫
√
ε<|y|≤α

1
4 +
√
ε

log

∣∣∣∣∣ α

(|y| −
√
ε)

4

∣∣∣∣∣ dy
= 4‖ψ‖∞

∫ α
1
4 +
√
ε

√
ε

log

∣∣∣∣∣ α

(y −
√
ε)

4

∣∣∣∣∣ dy
= 16‖ψ‖∞

∫ α
1
4 +
√
ε

√
ε

log

∣∣∣∣∣ α
1
4

y −
√
ε

∣∣∣∣∣ dy
= 16‖ψ‖∞α

1
4

∫ 1

0
log

∣∣∣∣1u
∣∣∣∣ du

= 16‖ψ‖∞α
1
4 . (2.87)

In the second last line we used the substitution,

u =
y −
√
ε

α
1
4

.
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Now let’s compute Λ̃ε2(B).

Λ̃ε2(B) =

∫ √ε
−
√
ε

∫ 0

−α

∫ 1

|s|

2

τ2
e−

2ε
τ ψ(y)dτdsdy

≤ ‖ψ‖∞
∫ √ε
−
√
ε

∫ 0

−α

∫ ∞
|s|

2

τ2
e−

2ε
τ dτdsdy

= ‖ψ‖∞
∫ √ε
−
√
ε

∫ 0

−α

1− e−
2ε
|s|

ε
dsdy

= 2‖ψ‖∞
∫ α

0

1− e−
2ε
s

√
ε

ds

=
2‖ψ‖∞√

ε

[∫ ε

0
1− e−

2ε
s ds+

∫ α

ε
1− e−

2ε
s ds

]
≤ 2‖ψ‖∞√

ε

[∫ ε

0
1dt+

∫ α

ε

2ε

s
ds

]
=

2‖ψ‖∞√
ε

[
ε− 2ε log

( ε
α

)]
= 2‖ψ‖∞

[√
ε− 2

√
ε log

( ε
α

)]
. (2.88)

Which goes to 0 as ε→ 0. So we can pick ε small enough so that the last line is less than

16‖ψ‖∞α
1
4 . Combining (2.86), (2.87), and (2.88), we end up with,

P(∃j, (0, 0) ∈ Sj |Bε
α) ≤ 1− exp(−32‖ψ‖∞α

1
4 ). (2.89)

Therefore (2.80), and (2.89) imply,

P (Cε|Bε
α) ≥ exp(−32‖ψ‖∞α

1
4 ).

Let Cεα ≡ Cε ∩ Bε
α, be the event where U1 is born before time α, contributes to

Xε, and all V j born before time alpha satisfy the modulus of continuity for atleast time

α after birth.

Remark 2.7.7. Note that Cεα depends on t1 up until time α, Ξ̃2,ε upto time α, the V j

born by time α for a time α after their birth. Therefore Cεα ∈ Fε2α.

We end this section by estimating Cεα, we will need the following lemma.
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Corollary 2.7.8. For all α > 0, there is a pα > 0 such that for all ε small enough,

P (Cεα) ≥ pα > 0,

independent of ε.

Proof. By (2.76) and Proposition 2.7.6,

P (Cεα) = P(Cε ∩Bε
α)

= P(Cε|Bε
α)P(Bε

α)

≥ exp(−32‖ψ‖∞α
1
4 )γα

≡ pα

> 0.

2.7.2 Proof of Non-triviality of X

Recall if Cεα occurs, then U1 contributes to Xε and t1 ≤ α. By Corollary 2.7.8, we know

that, there is a pα > 0 independent of ε such that P(Cεα) ≥ pα. If Cεα has occurred, we

have for all t ≥ 0,

Xε
t (1) ≥ 1(t ≥ t1)U1

t−t1(1). (2.90)

The goal for this section is to show that X is non-trivial by showing that P(X2(1) >

1) with positive probability. We will do this by estimating P(Xεn
2 (1) > 1) and using the

definition of weak convergence. Before we do this, we will need to examine U1 a bit closer.

Recall that U1 is a SBM with initial law φx1ε (z)dz conditioned to live longer then
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1. If U is an independent SBM with initial law φx1ε (z)dz with lifetime τ , then for t ≥ 1,

P(U1
t (1) > 1) = P(Ut(1) > 1|τ > 1)

=
P(Ut(1) > 1, τ > 1)

P(τ > 1)

=
P(Ut(1) > 1)

P(τ > 1)

=
P(Ut(1) > 1)

1− e−2ε
. (2.91)

The second last line used the fact that t ≥ 1. In order to compute the numerator of (2.91),

we will first need to determine the distribution of Ut(1). We will do this by using moment

generating functions.

Lemma 2.7.9. Suppose Y1, Y2, . . . are iid random variables, and N is an independent ran-

dom variable taking on non-negative integer values with MGF’s MY and MN respectively.

Then Z =
∑N

i=1 Yi has the moment generating functions

MZ(s) = MN (logMY (s)).

Proof. Note that E[exp(sZ)|N = n] = Mn
Y (s) = exp(n logMY (s)). Therefore by taking

conditional expectation,

MZ(s) = E[exp(sZ)]

=

∞∑
n=0

E[exp(sZ)|N = n]P(N = n)

=

∞∑
n=0

exp(n logMY (s))P(N = n)

= MN (logMY (s)).

We will now find the distribution of Ut(1).
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Lemma 2.7.10. For all t > 0, we have

Ut(1)
d
=

N(t)∑
i=1

Yi(t).

Where Yi(t) are iid exponential random variables with rate 2
t , and N(t) is an independent

Poisson random variable with mean 2ε
t .

Proof. We will do this by showing that both Ut(1) and Z(t) ≡
∑N(t)

i=1 Yi(t) have the same

MGF. By analysing the Laplace functional for U , it was shown in [Cite St. Fleur and

Knight], that the MGF of Ut(1) is,

MUt(1)(s) = exp

(
2εs

2− ts

)
. (2.92)

The MGF of Yi and N are,

MY (t)(s) =
2
t

2
t − s

=
2

2− ts
, (2.93)

MN(t)(s) = exp

(
2ε

t
(es − 1)

)
. (2.94)

Therefore by Lemma 2.7.9 we have,

MZ(t)(s) = MN(t)(logMY (t)(s))

= exp

(
2ε

t
(MY (t)(s)− 1)

)
= exp

(
2ε

t

(
2

2− ts
− 1

))
= exp

(
2εs

2− ts

)
= MUt(1)(s).

Since Z(t) and Ut(1) have the same MGF, they have the same distribution.

Finally we compute the probability that U1
t (1) > 1.

Proposition 2.7.11. For t ≥ 1,

P(U1
t (1) > 1) ≥ e−

4
t

t
.
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Proof. Continuing our computation from (2.91), we have by Lemma 2.7.10, if N(t) is a

Poisson random variable with mean 2ε
t and Yi(t) are iid exponentially distributed random

variables with rate 2
t , then,

P(U1
t (1) > 1) =

P(Ut(1) > 1)

1− e−2ε

≥ P(Ut(1) > 1)

2ε

=
P
(∑N(t)

i=1 Yi(t) > 1
)

2ε

≥
P
(∑N(t)

i=1 Yi(t) > 1, N(t) = 1
)

2ε

=
P
(∑N(t)

i=1 Yi(t) > 1|N(t) = 1
)
P(N(t) = 1)

2ε

=
P (Y1(t) > 1)P(N(t) = 1)

2ε

=
e−

2
t

2ε
t e
− 2ε

t

2ε

=
1

t
e−

4ε
t

Since we are interested in ε small, we assume ε ≤ 1. Therefore,

P(U1
t (1) > 1) ≥ e−

4
t

t
.

Finally, this estimate in enough to conclude that X is not trivial.

Theorem 2.7.12. The process X defined as the solution to the SPDE (2.70), is not

identically zero.

Proof. To show non-triviality of X, we will show that

P(X2(1) > 1) > 0. (2.95)

Let ε > 0 be fixed, and α < 1
2 . We will estimate P(Xε

2(1) > 1) by conditioning on Fεt1+1,

and using (2.90).
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P(Xε
2(1) > 1) ≥ P(Xε

2(1) > 1, Cεα)

≥ P(U1
2−t1(1) > 1, Cεα)

= E(P(U1
2−t1(1) > 1, Cεα|Fεt1+1))

= E(1(Cεα)P(U1
2−t1(1) > 1|Fεt1+1)) (2.96)

The last line is true by remark 2.7.7, since Cεα ∈ Fε2α ⊂ Fεt1+1. Lemma 2.7.2 tells us that

t1 + 1 is a (Fεt )-stopping time. So by the strong Markov property,

1(Cεα)P(U1
2−t1(1) > 1|Fεt1+1) = 1(Cεα)PU1

1 (1)(U
1
1−t1(1) > 1) (2.97)

and noting that Cεα has occurred. Since the total mass of a SBM is a Feller branching

diffusion process (Perkins, 2002, §II.5), applying the stochastic monotonicity in initial

conditions for the Feller branching diffusion to (2.97) gives us,

1(Cεα)P(U1
2−t1(1) > 1|Fεt1+1) ≥ 1(Cεα)1(U1

1 (1) > 1)PU1
1 (1)(U

1
1−t1(1) > 1)

≥ 1(Cεα)1(U1
1 (1) > 1)P1(U1

1−t1(1) > 1)

≥ 1(Cεα)1(U1
1 (1) > 1) inf

1
2
≤t≤1

P1(U1
t (1) > 1). (2.98)

The last line was because t1 ≤ α < 1
2 . In (Knight, 1981, p. 100), it was shown that the

Markov transition kernel for a Feller branching diffusion is,

pU1(1)(t, x, y) =

√
xy

t
exp

(
−2(x+ y)

t

)
I1

(
4

√
xy

t

)
,

with respect to the measure m(dy) = 2y−1dy. Where I1 is the modified Bessel function

of the first kind. So

P1(U1
t (1) > 1) =

∫ ∞
1

pU1(1)(t, 1, y)dm(y) > 0. (2.99)

Since pU1(1) is continuous is t, (2.99) shows P1(U1
t (1) > 1) is also continuous in t for

1
2 ≤ t ≤ 1. Thus by extreme value theorem,

q ≡ inf
1
2
≤t≤1

P1(U1
t (1) > 1) > 0. (2.100)
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(2.96), (2.98), and (2.100) together imply,

P(Xε
2(1) > 1) ≥ qP(Cα, U

1
1 (1) > 1). (2.101)

Note that Cεα depends on Ξ̃2,ε, V j , and (t1, x1). Whereas, U1 is independent of Ξ̃2,ε, V j ,

and the total mass U1
1 (1) is independent of (t1, x1). So U1

1 (1) > 1 and Cεα are independent

events and (2.101) becomes,

P(Xε
2(1) > 1) ≥ qP(Cα)P(U1

1 (1) > 1) ≥ qpαe−4. (2.102)

The last inequality was by Corollary 2.7.8, and Proposition 2.7.11 for t = 1.

Finally, let εn → 0 be a sequence such that Xεn(1) converges weakly to X as n→

∞. This implies that Xεn
2 (1) converges to X2(1) weakly as random variables. Therefore

P(X2(1) > 1) = lim
n→∞

P(Xεn
2 (1) > 1) ≥ qpαe−4 > 0.

2.8 Summary

A lot has happened in Chapter 2, we will review what we have accomplished. We began in

Section 2.2, where we defined the MF -valued process Xε as the sum of independent SBM

clusters generated by a PPP Ξε, that contribute to Xε only when born at unoccupied

sites. We showed in Theorem 2.2.2, that Xε solved the following SPDE,

Xε
t (φ) =

∫ t

0
Xε
s

(
∆φ

2

)
ds+M ε

t (φ) +Aεt (φ).

Where φ ∈ C∞b , M ε(φ) is a continuous (Fεt )-martingale with quadratic variation
∫ t

0 X
ε
s (φ2)ds,

and

Aεt (φ) =

∫ t

0

∫
〈φ, φxε 〉1(uεs(x) = 0)Ξε(ds, dx),

adds mass of size ε at unoccupied sites governed by Ξε.

We proceeded to Section 2.3 where we show that the family {Xεn} and {Aεn} were

C-relatively compact in D(MF ) for εn → 0. This was a long process to but we succeeded
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in proving Theorem 2.3.4. We did this by showing that for all φ ∈ C∞c , {Xεn(φ)}, and

{Aεn(φ)} were C-relatively compact in D(R) and {Xεn}, and {Aεn} satisfied the compact

containment condition in Proposition 2.3.11 and Propostion 2.3.14 respectively. This

allowed us to apply Jakubowski’s theorem to get the existence of continuous MF -valued

processes X and A as weak limit points of Xεn and Aεn . In Section 2.4 we made X more

concrete by showing that it solves the SPDE,

Xt(φ) =

∫ t

0
Xs

(
∆φ

2

)
ds+Mt(φ) +At(φ). (2.103)

Where φ ∈ C∞b , and M(φ) is a continuous (Ft)-martingale with quadratic variation

〈M(φ)〉 =
∫ t

0 Xs(φ
2)ds.

The construction of Xε led to the existence of a process with sample paths in

D(C0) such that

Xε
t (dx) = uεt (x)dx

for all t. In Section 2.5, we showed uεn are C-relatively compact in D(C0) via Theorem

2.5.1 and then Corollary 2.5.2 deduced that each weak limit point u a continuous C0-valued

process such that

Xt(dx) = ut(x)dx.

In Section 2.6, we used the fact that u is a weakly limit point of uε in combination with

Skorohod’s theorem to show that for all t,

At � 1(ut(x) = 0)dx,

as stated in Theorem 2.6.1. This shows that the immigration term A is only activated at

sites of zero occupancy by the population X.

It remained to justify that our process X was not the trivial process. The sole

purpose of Section 2.7 to rule out this possibility and was done in a few steps. We first

showed that with some positive probability independent of ε, there is a SBM cluster U1

of initial mass ε born by time α, and that contributes to Xε. We then show again,

with positive probability independent of ε, U1 grows to at least to size 1 by time 1. An
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application of the strong Markov property, and weak convergence allowed us to deduce

that

P(X2(1) > 1) > 0,

and as shown in Theorem 2.7.12.

In conclusion, we constructed a non-trivial process X that solves the SPDE (2.103),

and has a continuous immigration A, that only contributes when the population X has

zero occupancy.
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