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Abstract

The central limit theorem is one of the cornerstones of probability and statistics. It allows
us to determine how the sample mean deviates from the the true mean mean regardless of the
underlying probability distribution. In this paper, we discuss how we can analyse the limiting
behaviour of sequences of random variables via characteristic functions. The Lindeberg-Lévy-
Feller theorem is proven and consequences are provided. We mention applications of the central
limit theorem, including the delta method and Stirling’s formula. Rates of convergence and
dependence of random variables are also discussed.

1 History/Importance

The central limit theorem is considered by some to be the most important theorem in probability
theory and statistics. It allows us to determine long term behaviour of random variables, and
approximate complicated problems. The strong law of large numbers tells us that in the case of iid
random variables, the arithmetic mean converges to the expectation value a.s. The central limit
theorem tell us the asymptotic distribution of the error between sample mean and the expectation
value. It allows us the determine the rate at which strong law of large numbers holds.

Theorem 1.1 (Central limit theorem). Suppose X1, X2, . . . are iid random variables such that
E(Xn) = µ,Var(Xn) = σ2 < ∞. Let Sn =

∑n
i=1Xi, and let N be a normally distributed random

variable, with E(N) = 0,Var(N) = 1. Then,

Sn
n − E

(
Sn
n

)√
Var

(
Sn
n

) =
Sn − nµ√

nσ
=⇒ N

This theorem is important because of its simplicity. It implies that when n is large, Sn
n is

approximately normally distributed with mean µ and variance σ2

n .
The central limit theorem was originally postulated by Abraham deMoivre in 1733 when he

used the normal distribution to approximate the distribution of the number of heads that appear
after tossing a fair coin. It was largely forgotten until 1812 when Laplace expanded on DeMoivre’s
work to use the normal distribution to approximate a binomial random variable. It was finally
proved by Aleksandr Lyapunov in 1901 [?]. George Pólya coined the term “central limit theorem,”
referring to it as central due to its importance in probability theory [?].

In the coming sections, we will introduce characteristic functions, which will be handy tools
when proving the central limit theorem and its generalizations. After proving the theorem, we will
provide applications such as the delta method, and Stirling’s approximation. Finally some further
topics such as dependency of random variables and rate of convergence will be discussed.
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2 Convergence in Distribution

Throughout this paper, assume we are dealing with an underlying probability space (Ω,M), and
N will denote a normally distributed random variable, with E(N) = 0,Var(N) = 1

Definition 2.1. Let X be a random variable. Then PX is the probability distribution of X,
and FX is the distribution function of X.

Definition 2.2. Let P, P1, P2, . . . be probability measures with distribution functions F, F1, F2, . . .
respectively. Pn converges to P weakly or in distribution if and only if for all bounded continuous
real functions f , ∫

Ω
fdPn →

∫
Ω
fdP.

We say Fn converges to F weakly or in distribution if and only if Pn does. Weak convergence
in probability distribution and distribution function is denoted by respectively

Pn ⇒ P, Fn ⇒ F as n→∞

Definition 2.3. Let X,X1, X2, . . . be random variables. We say that Xn converge to X weakly,
or in distribution, if PXn converge weakly to PX . This will be denoted by

Xn ⇒ X as n→∞

I will state some important theorems regarding convergence in distribution that I will take
advantage of throughout this paper. Their proofs will be omitted, as they are standard results.

Theorem 2.4. Let X,X1, X2, . . . be random variables. If Xn
P→ X, then Xn ⇒ X.

Theorem 2.5 (Skorokod’s Representation Theorem). Suppose Pn and P are probability measures
and Pn ⇒ P . Then there exist random variables Xn, X such that Pn = PXn and P = PX , and
Xn(ω)→ X(ω) for all ω ∈ Ω.

Theorem 2.6 (Continuous mapping theorem). Let X,X1, X2, . . . be random variables, g : R→ R
be continuous. If Xn ⇒ X then g(Xn)⇒ g(X).

Theorem 2.7 (Slutskys’ Theorem). Let X,X1, X2, . . . and Y, Y1, Y2, . . . be random variables, a ∈
R. Suppose

Xn ⇒ X and Yn
P→ a as n→∞

Then

(a) Xn + Yn ⇒ X + a as n→∞

(b) XnYn ⇒ X · a as n→∞

3 Characteristic functions

Before we can prove the central limit theorem we first need to build some machinery. To do this, we
will transform our random variable from the space of measure functions to the space of continuous
complex values function via a Fourier transform, show the claim holds in the function space, and
then invert back. In this section, the goal is to develop the properties that will allow us to achieve
our goal. We will develop tools to allow us to show uniqueness and to deal with sequences of
random variables. So we begin by defining the Fourier transform of a measure.
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Distribution Notation Characteristic Function

One Point δa eita

Binomial Bin(n, p) (1− p+ peit)n

Poisson Pois(m) em(eit−1)

Uniform U(a, b) eitb−eita
it(b−a)

Exponential Exp(θ) (1− itθ)−1

Gamma Gam(k, θ) (1− itθ)−k

Normal N(µ, σ2) eitµ−
1
2
t2σ2

Standard Normal N(0, 1) e−
t2

2

Cantor Distribution
∏∞
k=1 cos( t

3k
)

Table 3.1: Example of some common characteristic functions [?]

Definition 3.1. Let X be a random variable, we define the characteristic function of X by
ϕX : R→ C by

ϕX(t) = E(eitX) = E(cos(tX)) + iE(sin(tX))

Remark 3.2. Aside from a negative sign in the exponential or the 2π factor, the characteristic
function is the Fourier transform of the probability measure.

Table 3.1 gives examples of some common characteristic functions. Note that these are standard
distributions one would see in an elementary probability class, so their definitions are omitted.

3.1 Properties of Characteristic Functions

We begin our analysis of characteristic function by giving some elementary properties.

Theorem 3.3. [?] Let X,X1, X2 be random variables and a, b ∈ R. Then,

(a) ϕX(t) exists, and |ϕX(t)| ≤ ϕX(0) = 1

(b) ϕX(−t) = ϕ−X(t) = ϕX(t)

(c) ϕaX+b(t) = eibtϕX(at)

(d) If X1, X2 are independent then, ϕX1+X2 = ϕX1ϕX2

(e) ϕX(t) is uniformly continuous

Proof. (a) |ϕX(t)| ≤ E|eitX | = E(1) = 1 = E(ei0X) = ϕX(0). Hence eitX is integrable and ϕ
exists.

(b) Clear from definition of ϕ.

(c) ϕaX+b(t) = E(eit(aX+b)) = eitbE(ei(at)X) = eitbϕX(at).

(d) Let Yi = cos(tXi), Zi = sin(tXi), i = 1, 2. Then we have {Y1, Z1} and {Y2, Z2} are independent.

ϕX1(t)ϕX2(t) = (E[Y1] + iE[Z1])(E[Y2] + iE[Z2])

= E[Y1]E[Y2]− E[Z1]E[Z2] + i(E[Y1]E[Z2] + E[Z1]E[Y2])

= E[Y1Y2 − Z1Z2] + iE[Y1Z2 + Z1Y2]

= E[cos(tX1 + tX2)] + iE[sin(tX1 + tX2)]

= pX1+X2(t)
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(e)

|ϕX(t+ h)− ϕX(t)| = |E(ei(t+h)X − eitX)|
≤ |eitX |E(|eihX − 1|)
= E(|eihX − 1|).

Since |eihX − 1| → 0 as h → 0, and is dominated by 2, we can apply dominated convergence
theorem to get E(|eihX − 1|) → 0 as h → 0. So for all ε > 0, we can show h to be sufficiently
small so insure that |ϕX(t+ h)− ϕX(t)| < ε.

Properties (a),(e) are what make characteristic functions particularly nice. Characteristic func-
tions allow us to view random variables as bounded, continuous, complex valued functions. The
fact that they always exist with no restrictions on their domain makes them them more appealing
than other similar transformations such as moment generating functions. Property (b) tells us
that a characteristic function is real valued if and only if X is symmetric about 0. In general,
properties (c),(d) give us tools to compute a linear combination of random variables. In particular,
if X1, X2, . . . are independent random variables and ak are real numbers, then

ϕ∑n
k=1 akXk

=
n∏
k=1

ϕXk(akt). (1)

Lemma 3.4. [?] For y ∈ R, n ∈ N, we have∣∣∣∣eiy − n∑
k=0

(iy)k

k!

∣∣∣∣ ≤ min

{
2|y|n

n!
,
|y|n+1

(n+ 1)!

}
. (2)

I will not prove this since it is a standard result from complex analysis and is just a simple
application of Taylor’s theorem. We should pay close attention to the case where n = 2 and y = tX,
where X is a random variable∣∣∣∣eitX − (1 + itX − 1

2
t2X2

) ∣∣∣∣ ≤ min

{
|tX|2, |tX

3|
6

}
.

So after taking expectations we have∣∣∣∣ϕX(t)−
(

1 + itE(X)− 1

2
t2E(X2)

) ∣∣∣∣ ≤ E (min

{
|tX|2, |tX|

3

6

})
. (3)

This particular approximation will be useful when proving the central limit theorem.

At the end of the day, the characteristic functions do not have a meaning on their own; we use
them as tools to deduce properties about X. This is possible since the distribution of X is uniquely
determined by its characteristic function.

Theorem 3.5 (Inversion). If X is a random variable and a < b then

P (a < X < b) +
P (X = a) + P (X = b)

2
= lim

T→∞

1

2π

∫ T

−T

e−itb − e−ita

−it
ϕ(t)dt. (4)

4



Proof. [?] We begin by fixing T . Since we have by Taylor theorem for complex variables∣∣∣∣ ∫ T

−T

e−itb − e−ita

−it
ϕ(t)dt

∣∣∣∣ ≤ ∫ T

−T

∣∣∣e−itb − e−ita−it
ϕ(t)

∣∣∣dt
≤
∫ T

−T
|e−ita|

∣∣∣e−it(b−a) − 1

t

∣∣∣dt
≤
∫ T

−T

|t(b− a)|
t

dt

= 2T (b− a)

≤ ∞.

The second last inequality came from an application of lemma 3.4 where n = 0. Hence we can
apply Fubini’s theorem.

I := lim
T→∞

1

2π

∫ T

−T

e−itb − e−ita

−it
ϕ(t)dt = lim

T→∞

1

2π

∫ T

−T

e−itb − e−ita

−it

∫
Ω
eitXdPdt

= lim
T→∞

1

π

∫ T

−T

∫
Ω

eit(X−a) − eit(X−b)

2it
dPdT

= lim
T→∞

1

π

∫
Ω

∫ T

−T

eit(X−a) − eit(X−b)

2it
dtdP

= lim
T→∞

1

π

∫
Ω

∫ T

0

sin(t(X − a))

t
− sin(t(X − b)

t
dtdP.

Since |f(T )| :=
∣∣ ∫ T

0
sin(x
x dx

∣∣ ≤ ∣∣ ∫ π0 sin(x)
x dx

∣∣ ≤ π, we can apply Lebesgue dominated convergence

theorem. Using
∫∞

0
sin(x)
x dx = π

2 we get,

I =

∫
Ω

lim
T→∞

1

π

∫ T

0

sin(t(X − a))

t
− sin(t(X − b)

t
dtdP

=

∫
Ω
g(X)dP,

where

g(x) =



0 if x < a
1
2 if x = a

1 if a < x < b
1
2 if x = b

0 if x > b

I = P (a < X < b) +
P (X = a) + P (X = b)

2
(5)

Corollary 3.6. If X,Y are random variables such that ϕX = ϕY , then PX = PY and FX = FY .

Proof. We have that PX([a, b]) = PY ([a, b]) by the previous theorem, so the distribution of X,Y
agree on all the intervals. By the uniqueness part of Carathéodory’s extension theorem, we have
PX = PY or FX = FY .
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Example 3.7. Suppose X1, . . . , Xn are identically distributed exponential random variables with
parameter θ, so they have the following distribution

FXn(x) =

{
1− e−

x
θ if x ≥ 0

0 if x < 0

Then after referring to Table 3.1 and using (1) we have

ϕSn =
n∏
k=1

ϕXk =
n∏
k=1

(1− itθ)−1 = (1− itθ)−n

This is the same characteristic function as a gamma distributed random variable with parameters θ
and n. Therefore by the uniqueness of the characteristic function, Sn has the Gam(θ, n) distribution.

3.2 Continuity of Characteristic Functions

Our goal at the end of the day is to determine the distribution of Sn
n as n approaches infinity. So

we need a better way to deal with sequences of random variables. It is natural to ask, “if we have a
sequence of random variables X1, X2, . . . such that their characteristic function converge, then do
their distributions also converge?” The problem is that the limit of characteristic functions may
not be a characteristic function. I will show that the desired result will follow if we have the added
condition that the limit of characteristic functions is continuous at 0.

Theorem 3.8 (Helly’s Selection Theorem). For every sequence of (Fn)n of distribution functions,
there exists a subsequence (Fnk)k and a non-decreasing right continuous F such that limk→∞ Fnk(x) =
F (x) at continuity points of F .

This is a fairly standard result from analysis, and the proof is omitted. It can be shown relatively
easily with an application of the diagonal method.

The F resulting from the selection theorem is not necessarily a distribution function. For
example, take Fn as the distribution functions of δn, the point mass probability measure at n.
Then

Fn(x) =

{
1 if x ≥ n
0 if x < n

.

In this case F (x) = 0 for all x and is clearly not valid distribution function. The issue in this
example is that the probability masses are not “well behaved”, in the sense there is no one bounded
interval that contains majority of the probability for each distribution. For our purposes, we need
a condition that will ensure we get a valid distribution. This leads to our next definition.

Definition 3.9. A sequence of distributions functions {Fn}n is tight if ∀ε > 0 there exist a, b ∈ R
such that Fn(a) < ε, Fn(b) > 1− ε. Equivalently, a sequence of probability measures {Pn}n is tight
if ∀ε > 0 there is a half open interval (a, b] such that P ((a, b]) > 1 − ε. A sequence of random
variables {Xn}n is tight if {PXn}n is tight.

The term tightness refers to the fact that the mass of a family of distributions does not diverge.

Example 3.10. Let {an}n be a sequence of real numbers, and let Xn are random variables with
PXn = δan . Then Xn are tight if and only if {an}n is bounded.
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Theorem 3.11. [?] Let {Pn}n be probability measures, then {Pn}n are tight if and only if for
every subsequence {Pnk}k, there exists a sub-subsequence {Pnk(j)}j and probability measure P , such
that Pnk(j) ⇒ P as j →∞.

Proof. (⇒) Suppose {Pn}n are tight, let Fn be the distribution functions of Pn. We can apply
Helly’s theorem to the subsequence {Fnk}k, so there exist a sub-subsequence {Fnk(j)}j , and right-
continuous non-decreasing F such that limj→∞ Fnk(j)(x) = F (x) at continuity points of F . Let
ε > 0, then there exists a, b such that Fn(a) > ε and Fn(b) > 1−ε for all n. Thus we have F (a) < ε,
and F (b) > 1 − ε, so F is a valid probability. We denote the probability associated with F by P .
Thus we have Pn ⇒ P .

(⇐) If {Pn}n are not tight, then there is some ε > 0 such that for all (a, b], Pn((a, b]) < 1− ε for
some n. Lets pick a subsequence Pnk such that Pnk((−k, k]) ≤ 1−ε. Suppose some sub-subsequence
{Pnk(j)} were to converge weakly to some P , then we can pick a, b such that P ((a, b]) > 1− ε, and
P ({a}) = P ({b}) = 0. Then for a large enough j, (a, b] ⊂ (−k(j), k(j)] so

1− ε ≥ Pnk(j)((−k(j), k(j)]) ≥ Pnk(j)((a, b])→ P ((a, b]) < 1− ε

This is a contradiction, hence we are done.

Corollary 3.12. [?] If {Pn}n is a tight sequence of probability measures, and if each subsequence
that converges weakly at all converges to the probability measure P , then Pn ⇒ P .

Proof. By theorem 3.11, each sub-subsequence {Pnk(j)}jconverges weakly to the P in the hypothesis.
If Pn does not weakly converge to P , then there exists an x such that P ({x}) = 0 but Pn(−∞, x]
does not converge to P (−∞, x]. Then there is an ε > 0 such that |P (−∞, x]−Pnk(−∞, x]| ≥ ε for
any subsequence. Thus no sub-subsequence Pnk(j) can converge to P , this is a contadiction, hence
Pn ⇒ P .

Theorem 3.13 (Continuity Theorem). [?] Let X1, X2, . . . be random variables. If ϕXn(t)→ g(t)
at each t to some g continuous at 0, then there exists a X such that Xn ⇒ X and ϕX = g.

Proof. By Fubini’s theorem,

1

u

∫ u

−u
(1− ϕXn(t))dt =

∫
Ω

[
1

u

∫ u

−u
(1− eitXdt

]
dPXn

= 2

∫
Ω

(
1− sin(ux)

ux

)
dPXn

≥ 2

∫
|X|>2/u

(
1− 1

ux

)
dPXn

≥ 2

∫
|X|≥2/u

(
1− 1

2

)
dPXn

= PXn

[
|X| ≥ 2

u

]
.

First note that the first integral is real. Since g is continuous at 0 and g(0) = 1, for all ε > 0 there
is a u such that 1

u

∫ u
−u(1− g(t))dt < ε/2. Since |1− ϕn(t)| ≤ 2 by dominated convegence theorem,

there is a n0 such that for all n > n0,
1
u

∫ u
−u(1− ϕXn(t))dt < ε. Let α := 2/u, then

PXn [|X| ≥ α] < ε, ∀n > n0. (6)
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We can we increase α so that PXn(|X| > α) < ε for all n, since there are only many n ≤ n0. So
PXn are tight.

Let {PXnk}k be a subsequence such that PXnk ⇒ P as k →∞, for some probability measure P .
By Skorokod’s representation theorem, there exists a random variable X such , Xnk ⇒ X as k →∞
and P = PX . Since eitX is a bounded continuous function, by definition of weak convergence of
probability measures we get∫

Ω
eitXdPXnk →

∫
Ω
eitXdPX , as n→∞.

This is equivalent to limk→∞ ϕXnk (t) = ϕX(t) = g(t). Therefore g is a valid characteristic function
for some random variable Y . Since g = ϕX , by the corollary to the inversion formula we get
PY = PX = P . Therefore any subsequence that converges weakly at all, converge to P . By
corollary 3.12 we get PXn ⇒ P , or equivalently, Xn ⇒ X.

4 Lindeberg-Lévy-Feller CLT

The classic central limit theorem requires the random variables to be identically distributed. How-
ever, the condition of identically distributed can be weakened as long as the random variables are
“nice enough”, which we will going into more detail.

Definition 4.1. Let {rn}n be a sequence of natural numbers, for each n ∈ N, let Xn,1, . . . , Xn,rn

be random variables. Such a collection of random variables is called a triangular array. Given a
triangular array we define Sn =

∑rn
k=1Xn,k.

Note that every sequence of random variables (Xn)n can be viewed as a triangular array, in the
case where rn = n and Xn,k = Xk. Triangular arrays can be useful as they give us a means to
describe how a sequence of random variables could change with n.

Theorem 4.2 (Lindeberg-Levy-Feller). Let {Xn,k}n,k be a triangular array and for each n, let
Xn,1, . . . , Xn,rn be independent. Denote

E(Xn,k) = µn,k,Var(Xn,k) = σ2
n,k,Var(Sn) = s2

n =

rn∑
k=1

σ2
n,k.

(Disregard the degenerate case where all the variances are 0). Further suppose

∀ε > 0 lim
n→∞

Lεn :=
1

s2
n

rn∑
k=1

(|Xk − µk|2I{|Xk−µl|>εsn} → 0, (7)

then we have
1

sn

rn∑
k=1

(Xk − µk)⇒ N (8)

We will refer to (7) as the Lindeberg condition.

Since we are trying to determine the behaviour of how Sn/n deviates from the mean, we can
assume WLOG that µn,k = 0. In the case µn,k 6= 0 one can replace Xn,k with Xn,k − µn,k and the
proof will remain the same.

This more general theorem is much stronger, since it implies the classical central limit theorem.

8



Corollary 4.3 (Central Limit Theorem). If X,X1, X2, . . . are iid random variables with E(X) =
0,Var(X) = σ2 <∞ the Sn√

nσ
⇒ N .

Proof. Let rn = n, and Xn,k = Xk. Then the Lindeberg condition is reduced to the following

Lεn =
1

s2
n

n∑
k=1

E(X2
kI{Xk>εsn}) =

1

σ2
E(X2I{X>ε

√
nσ)→ 0, as n→∞

Here is a quick example of the central limit theorem to demonstrate its power.

Example 4.4. Let X1, X2, . . . be iid Poison random variables with mean µ, then (Xn−nµ)√
n
⇒ N .

This example shows that the normal distribution can be used to approximate even discrete
random variables.

4.1 Proof of CLT

Before we begin our proof, we will need a lemma

Lemma 4.5. Let w1, z1, . . . , wn, zn ∈ C where |wk|, |zk| ≤ 1 ∀k, then∣∣∣∣ n∏
k=1

wk −
n∏
k=1

zk

∣∣∣∣ ≤ n∑
k=1

|wk − zk|. (9)

Proof. The claim is trivially true when n = 1. Suppose its true for n = m then we have∣∣∣∣m+1∏
k=1

wk −
m+1∏
k=1

zk

∣∣∣∣ =

∣∣∣∣(wm+1 − zm+1)
m∏
k=1

wk + zm+1

(
m∏
k=1

wk −
m∏
k=1

zk

)∣∣∣∣
≤ |wm+1 − zm+1|+

∣∣∣∣ m∏
k=1

wk −
m∏
k=1

zk

∣∣∣∣
≤

m+1∑
k=1

|wk − zk|.

By induction we are done.

We can now prove theorem 4.2. The following proof took the ideas presented in [?] and applied
them to the triangular array setting in [?].

Proof. By the continuity theorem, it is enough to show that ϕSn/sn converges to ϕN = e−t
2/2 point

wise. This is the same as showing

|ϕSn/sn(t)− e−t2/2| → 0 as n→∞.

We begin by noting that

ϕSn/sn =

rn∏
k=1

ϕXn,k(t/sn) and e−t
2/2 =

rn∏
k=1

exp

{
σ2
n,kt

2

2s2
n

}
.
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by definition of sn. Hence we need to show that∣∣∣∣∣
rn∏
k=1

ϕXn,k(t/sn)−
rn∏
k=1

exp

{
σ2
n,kt

2

2s2
n

}∣∣∣∣∣→ 0 as n→∞.

However, by an application of the lemma 4.5 and triangle inequality we have∣∣∣∣∣
rn∏
k=1

ϕXn,k(t/sn)−
rn∏
k=1

exp

{
σ2
n,kt

2

2s2
n

}∣∣∣∣∣
≤

rn∑
k=1

∣∣∣∣ϕXn,k(t/sn)− exp

{
−
σ2
n,kt

2

2s2
n

}∣∣∣∣
≤

rn∑
k=1

∣∣∣∣ϕXn,k(t/sn)−

(
1−

σ2
n,kt

2

2s2
n

)∣∣∣∣
+

rn∑
k=1

∣∣∣∣ exp

{
−
σ2
n,kt

2

2s2
n

}
−

(
1−

σ2
n,kt

2

2s2
n

)∣∣∣∣.
So we are done if we can show that

rn∑
k=1

∣∣∣∣ϕXn,k(t/sn)−

(
1−

σ2
n,kt

2

2s2
n

)∣∣∣∣→ 0 as n→∞, (10)

rn∑
k=1

∣∣∣∣ exp

{
−
σ2
n,kt

2

2s2
n

}
−

(
1−

σ2
n,kt

2

2s2
n

)∣∣∣∣→ 0 as n→∞. (11)

Note that the (11) is a special case of the (10), in the case where Xn,k are normally distributed with

mean 0 and variance
σ2
n,k

s2n
. So if we can show the first claim, we can apply the identical reasoning

to get the second one.
Let ε > 0, then we have

rn∑
k=1

∣∣∣∣ϕXn,k(t/sn)−

(
1−

σ2
n,kt

2

2s2
n

)∣∣∣∣
≤

rn∑
k=1

E

(
min

{
t2X2

n,k

s2
,
|t|3|Xn,k|3

6s3
n

})

≤
rn∑
k=1

E

(
|t|3|Xn,k|3

6s3
n

I{|Xn,k|≤εsn}

)
+

rn∑
k=1

E

(
|t|2X2

n,k

s2
n

I{|Xn,k|>εsn}

)

=
|t|3

6s3
n

rn∑
k=1

E
(
|Xn,k|3I{|Xn,k|≤εsn}

)
+ t2Lεn

≤ |t|
3

6s3
n

rn∑
k=1

E
(
εsn|Xn,k|2I{|Xn,k|≤εsn}

)
+ t2Lεn

≤ |t|
3ε

6s2
n

rk∑
k=1

E
(
|Xn,k|2

)
+ t2Lεn

=
|t|3ε

6
+ t2Lεn

10



By the Lindeberg condition we get Lεn → 0, therefore

lim sup
n→∞

n∑
k=1

∣∣∣∣ϕXk(t/sn)−
(

1−
σ2
kt

2

2s2
n

) ∣∣∣∣ ≤ |t|3ε6

since ε is arbitrary, we are done.

4.2 Lyapunov Condition

The Lindeberg although powerful can be difficult to show. There is an alternative condition one
can show to get the same result. The Lyapunov condition offers a sufficient condition that is easier
to verify.

Theorem 4.6 (Lyapunov CLT). Let {Xn,k}n,k be a triangular array. Suppose there is some δ > 0
such that |Xn,k|2+δ are integrable for all n ∈ N, 1 ≤ k ≤ rn. Further suppose that

lim
n→∞

1

s2+δ
n

rn∑
k=1

E(|Xn,k|2+δ) = 0. (12)

Then Sn
sn
⇒ N .

Proof. It is enough to show that the Lindeberg condition holds.

lim
n→∞

Lεn = lim
n→∞

1

s2
n

rn∑
k=1

E
(
|Xn,k|2I{|Xn,k|>εsn}

)
≤ lim

n→∞

1

s2
n

rn∑
k=1

E

(
|Xn,k|2+δ

(εsn)δ
I{|Xn,k|>εsn}

)

≤ lim
n→∞

1

εδs2+δ
n

rn∑
k=1

E
(
|Xn,k|2+δI{|Xn,k|>εsn}

)
≤ lim

n→∞

1

εδs2+δ
n

rn∑
k=1

E
(
|Xn,k|2+δ

)
= 0.

Thus by Lindeberg-Lévy-Feller, Sn
sn
⇒ N .

Example 4.7. Suppose that X1, X2, . . . are independent random variables such that E(Xn) = 0
and are uniformly bounded, as in there exists by some constant K such that |Xn| ≤ K,∀n ∈ N.
Also suppose that s2

n =
∑n

k=1E((Xk)
2)→∞ as n→∞. Then we have Sn/n⇒ N .

Proof. We will show this by applying Lyapunov condition for δ = 1.

1

s3
n

n∑
k=1

E(|Xk|3) ≤ KE(|Xk|2

s3
n

=
K

sn
→ 0 as n→∞.

The Lyapunov condition is not as strong as the Lindeberg condition, or in some cases even the
classical one. There exist random variables where the variance is finite, but higher-order moments
are not. The following example demonstrates this:

11



Example 4.8. Let X1, X2, . . . be iid random variables with density

f(x) =

{
c

|x|3(log |x|)2 if |x| > 2

0 otherwise

where c is a normalizing constant. It is trivial to verify that f is a valid density, with E(Xn) = 0
and E(X2

n) = 2c
∫∞

2
dx

x(log x)2
< ∞, but for all δ > 0, E(|Xn|2+δ) = ∞. So the Lyapunov central

limit theorem is inconclusive. However, Xn satisfies the conditions of the classical central limit
theorem, so Sn

sn
⇒ N .

5 Applications

5.1 Delta-Method

In practice the true strength of the central limit theorem comes in statistics where the sequence of
random variables often represents observed data. It is fair to ask how the limiting behaviour changes
if the data is transformed by some g : R→ R. If g is ”nice enough” we can determine the limiting
behaviour of g

(
Sn
n

)
. Let X1, X2, . . . be iid random variables with E(Xn) = µ,Var(Xn) = σ2. The

delta method allows us to determine the behaviour of g
(
Sn
n

)
as n→∞.

When g is continuous, by strong law of large numbers we get g
(
Sn
n

) a.s.→ g(µ). To determine the

distribution of g
(
Sn
n

)
as n → ∞ we require a bit more structure on g. The following result is a

generalization of the one presented in [?].

Theorem 5.1 (Delta Method). Let X1, X2, . . . be iid random variables with E(Xn) = µ,Var(Xn) =
σ2, g : R → R, N is a random variable with the standard normal distribution. If g has derivative
up to order m, g(m) is continuous at µ and g(i)(µ) = 0 for 1 ≤ i ≤ m− 1, then we have

n
m
2

(
g

(
Sn
n

)
− g(µ)

)
⇒ g(m)σm

m!
Nm (13)

Proof. by Taylor’s theorem, there exist random variables Dn such that
∣∣Dn − Sn

n

∣∣ ≤ ∣∣µ− Sn
n

∣∣ and

g

(
Sn
n

)
− g(µ) =

m−1∑
k=1

g(k)

k!
(µ)

(
Sn
n
− µ

)k
+
g(m)(Dn)

m!

(
Sn
n
− µ

)m
=
g(m)(Dn)

m!

(
Sn
n
− µ

)m
We can rewrite the above equality by

n
m
2

(
g

(
Sn
n

)
− g(µ)

)
=
g(m)(Dn)σm

m!

(
Sn − nµ√

nσ

)m
(14)

By strong law of large numbers we have Sn
n

a.s.→ µ, and since g(m) is continuous at µ, we have

g(m)(Dn)
a.s.→ g(m)(µ). Since Sn−nµ√

nσ
⇒ N and xm is continuous, by continuous mapping theorem

we have
(
Sn−nµ√

nσ

)m
⇒ Nm. Finally, by application of Slutsky’s theorem we get

n
m
2

(
g

(
Sn
n

)
− g(µ)

)
⇒ g(m)(µ)σm

m!
Nm as n→∞ (15)

12



5.2 Stirling’s Formula

Another application of the central limit theorem is that it allows us to approximate numerical
quantities using probabilistic methods. For example, we can prove Stirling’s formula, which ap-
proximates the value of n! for large n.

Theorem 5.2 (Moment Convergence Theorem). Let {Xn}n be a sequence of random variables
such that Xn ⇒ X for some random variable X. If lim supn→∞X

2
n <∞, then

lim
n→∞

E(|Xn|r) = E(|X|r) for 0 ≤ r ≤ 2. (16)

The proof of the moment convergence theorem follows routine measure theory arguments and
is omitted. Suppose you have iid random variables Xn with E(Xn) = 0, E(X2

n) = σ2. Since Xn

satisfy the conditions of the central limit theorem and the moment convergence theorem we get

lim
n→∞

E

(∣∣∣∣ Sn√nσ
∣∣∣∣) = E(|N | =

√
2

π
. (17)

We now prove the Stirling’s Formula.

Theorem 5.3 (Stirling’s Formula).

lim
n→∞

√
2nπnne−n

n!
= 1 (18)

Proof. [?] Let {Xn}n be independent, identically distributed exponentially random variables with
θ = 1. We define Yn := Xn − 1, Sn =

∑n
k=1Xk, it is easily verified that E(Y ) = 0, E(Y 2) = 1. It

then follows that

lim
n→∞

E

(
|Sn − n|√

n

)
=

√
2

π
(19)

From example 3.7, we know that Sn has the Gam(1, n) distribution. In other words, Sn has
distribution function

FSn(x) =

{∫ x
0

1
(n−1)! t

n−1e−tdt if x ≥ 0

0 if x < 0

Therefore

E(|Sn − n|) =
1

(n− 1)!

∫ ∞
0
|t− n|tn−1e−tdt

This is an easy integral to compute, and can be done by elementary calculus methods. The result
is

E(|Sn − n|) =
2nnne−n

n!
(20)

Combining (19) and (20) we get

lim
n→∞

2nnne−n√
nn!

=

√
2

π
,

or equivalently,

lim
n→∞

√
2nπnne−n

n!
= 1 (21)
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6 Further topics

Is it possible to weaken or remove the condition of independence in the central limit theorem?
What is the the rate at which the sample mean of random variables converge to N? In this section
I will provide a brief discussion of these complex topics.

6.1 Dependency

The classical central limit theorem assumes identically distributed random variables with finite
variance. The Lindeberg-Lévy-Feller central limit theorem showed that we can weaken the condition
of identically distributed random variables so long as they satisfy the Lindeberg condition. It is
natural to ask what happens if instead of weakening the identically distributed hypothesis, we
weaken dependence.

Janson showed that you cannot even weaken the condition for pairwise independent random
variables. There exist identically distributed random variables X1, X2, . . . with E(Xn) = 0, 0 <
E(X2

n) = σ2 <∞ such that
Sn√
nσ
⇒ V, as n→∞,

where V is a non-normal, non-degenerate distribution. [?]
One can show that if you have a sequence of random variables X1, X2, . . . that are “almost”

independent then the central limit theorem holds. We will define what “almost” means.

Definition 6.1. Let X1, X2, . . . be random variable. We say {Xn}n is α-mixing if there is a se-
quence of non-negative numbers αn such that αn → 0 as n→∞, and for all A ∈ σ(X1, . . . , Xk), B ∈
σ(Xk+n, Xk+n+1, . . . ), n ≥ 1 we have

|P (A ∩B)− P (A)P (B)| ≤ αn. (22)

If the distribution of the random vector (Xn, Xn+1, . . . , Xn+j) does not depend on n, then the
sequence is called stationary.

Theorem 6.2. [?] Suppose X1, X2, . . . is stationary and α-mixing with αn = O(n−5) and E(Xn) =
0, E(X12

n ) <∞. Then

V ar(Sn)

n
→ σ2 = E(X2

1 ) + 2
∞∑
k=1

E(X1Ek), (23)

where the series converges absolutely. If σ > 0, then Sn√
nσ
⇒ N .

The conditions of αn = O(n−5) and E(X12
n ) < ∞ are much stronger than necessary but are

stated to simplify the proof [?]. Even with these implications, the proof is rather long and subtle.

6.2 Berry-Esséen Theorem

Suppose X1, X2, . . . are iid random variables with E(Xn) = µ,Var(Xn) = σ2. The strong law
of large numbers tells us that Sn

n → µ, and the central limit theorem tells us that Sn−nµ√
nσ
⇒ N

as n → ∞. Therefore, we have that for large n, Sn
n is approximately normally distributed with

E
(
Sn
n

)
= µ and Var

(
Sn
n

)
≈ σ2

n . Thus the central limit theorem provides us with information on
the rate at which the strong law of large numbers holds. Another concern we have is: exactly how
fast is the rate of convergence in distribution for the central limit theorem?

Both Berry and Essées answered this question independently during the World War II when
they came up with the following result.
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Theorem 6.3. [?] [?] Let X1, X2, . . . be iid random variables such that E(Xn) = µ,Var(Xn) =
σ2, E(|X|3) = γ3 <∞. Then

sup
x
|FSn−nµ√

nσ

(x)− FN (x)| ≤ C γ3

σ3
√
n

(24)

C is a numerical constant.

It has been shown that 0.4097 ≤ C ≤ 0.7655. This is remarkable since it tells us that the
distribution functions converge at a rate of O( γ

3
√
n

). The proof of this result is, again, very long,

and is omitted.

7 Conclusion

The classical central limit theorem tells use how the sample mean of iid random variables X1, X2, . . .
deviates from their expected value. In particular, the distribution of the sample mean approaches
a normal distribution. Our primary tool to show this were characteristic functions. Characteris-
tic functions allow us to represent the distributions of random variables as uniformly continuous
bounded complex-valued functions. We also showed that the representation is unique, and respect
sequences given the limit is continuous at the origin.

We then introduced and proved Lindeberg-Lévy-Feller theorem, which generalizes the classical
central limit theorem. It states that you can still get convergence in distribution to the normal
distribution, even when the Xn are not identically distributed, as long as the Lindeberg condition
is satisfied. After than we state the Lyapunov condition, a weaker condition that ensures the
Lindeberg condition is satisfied. Finally we discussed applications, and advanced topics related to
dependence and rate of convergence.
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