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Abstract

The usual approach to computing empirical likelihood for the mean
uses Newton’s method after eliminating a Lagrange multiplier and replac-
ing the function — log(z) by a quadratic Taylor approximation to the left
of 1/n. This paper replaces the quadratic approximation by a quartic.
The result is a self-concordant function for which Newton’s method with
backtracking has theoretical convergence guarantees.

1 Introduction

This paper presents an improved computational strategy for the empirical like-
lihood. The new algorithm is a damped Newton iteration applied to a convex
and self-concordant function. Self-concordance controls the rate at which the
second derivative of a function changes. It is a checkable sufficient condition to
ensure that damped Newton iterations converge to the global solution and it
also provides a computable criterion (the Newton decrement) by which to judge
convergence.

The standard approach to empirical likelihood calculation replaces a con-
strained optimization over n parameters by an unconstrained dual optimization
over d parameters. Here n is the number of observations and the number d of
parameters is usually much smaller than n.

Recently Yang and Small (2012) presented five algorithms for computing the
empirical log likelihood. They were motivated by some failures of a code writ-
ten by the present author. That code computes the empirical likelihood when
it exists and was designed to fail gracefully when the empirical log likelihood
is —oo, yielding a negative quantity with absolute value in the hundreds. Yang
and Small (2012) found some anomalous behavior in the solutions at points
where the empirical likelihood is almost undefined. They traced the cause to
a Levenberg-Marquardt style stepping from the Newton direction towards the
gradient direction. Their improvement replaced that search by a damped New-
ton style line search. Their code includes Davidon-Fletcher-Powell and BFGS
optimizations. In addition to being less ad hoc than Levenberg-Marquardt line
search methods are guaranteed to converge to the global optimum under certain



conditions. Typically they require either a suitable starting point or a uniform
bound on the condition of the Hessian matrix of the function to be optimized
See Rheinboldt (1998) or Polyak (1987).

In this paper, a damped Newton method is retained but the dual function is
changed in order to make it self-concordant. Self-concordance alone is a strong
enough condition to ensure that the damped Newton algorithm converges to the
global optimum (Boyd and Vandeberghe, 2004). It removes the need to check
whether the Hessian matrix has bounded condition or the starting point is close
enough to the solution.

Chen et al. (2012) show that a step reducing Newton method converges to a
point where the gradient of the log likelihood has a suitably small norm. They
use results from Polyak (1987) after showing that their log empirical likelihood
has first and second derivatives satisfying certain bounds. Self concordance gives
similar gaurantees and allows one to use the Newton decrement to bound the
sub-optimality of an estimate.

An outline of this paper is as follows. Section 2 describes empirical likelihood.
Section 3 describes the dual problem underlying most algorithms for computing
empirical likelihood. Section 4 reviews basic properties of self-concordant func-
tions and proves the main result: a quartic extension of the negative empirical
log likelihood is self-concordant. It also shows one of the challenging data sets
from Yang and Small (2012). Section 5 shows that we can even replace the
entire negative log likelihood by a Taylor approximating quartic function and
retain self-concordance. The quartic log empirical likelihood function is known
to be Bartlett correctable (Corcoran, 1998).

2 Empirical likelihood

The empirical likelihood is a nonparametric likelihood ratio technique suitable
for generating confidence regions and tests. It is based on an analogue of Wilks’
theorem but does not require the data to be sampled from any known parametric
family of distributions.

Given IID data X;,..., X, € R? the profile empirical likelihood function
for the mean is

R(p) = max{Hnwi |0 < wl,Zwi = 1,Zwin- = ,u}. (1)

Asymptotically —2log R(po) N x?r) holds where pg = E(X;) and r is the rank
of var(X;) (usually d).

Extensions to parameters other than the mean are based on estimating equa-
tions. For a parameter 0 defined by estimating equations E(m(X,0)) = 0 the
usual plug-in estimator is 6 defined by (1/n) 27, m(X;,8) = 0. The empirical



likelihood for 6 is

R(O) = max{Hnwi |0 < wl,Zwl = 1,Zwim(Xi,0) = 0}, (2)

Empirical likelihood tests have very competitive power (Kitamura, 2003),
even when there is a parametric likelihood that one could have used (Lazar and
Mykland, 1998). For d > 1, a confidence region is defined by a region (not just
two endpoints) and empirical likelihood automatically determines the shape of
this region in a way that Hall (1990) shows is correct to high order. Finally,
when there is side information of the form E(h(X,6)) = 0 for some function
h(-,-) one can exploit this fact to obtain sharper confidence regions and tests
(Owen, 1991; Qin and Lawless, 1994). For these and other facts about empirical
likelihood see Owen (2001).

3 Empirical likelihood optimization

Here we describe the optimization problem required to compute the empirical
likelihood for a mean. This account summarizes details from Owen (2001).
Suppose that p is an interior point of the convex hull of Xi,...,X,, € R? In
case Xq,...,X, lie in an affine subspace of dimension less than d, we take this
to mean that p is in the relative interior of the convex hull. Then we call p an
interior point.

To optimize the empirical likelihood (1) we maximize log(R(x)). For this
we construct the Lagrangian

G= ilog(nwi) —nAT iwi(Xi -+ 6(i w; — 1)
i=1 i=1 i=1

where —n) € R? and § € R are Lagrangian multipliers. Setting dG/0w; to zero
yields

0= L —n\"(X; — p) + 6. (3)

w;
Multiplying (3) by w; and summing over ¢, we find that 6 = —n when u is an
interior point. We may then eliminate that multiplier, and obtain
1 1
w; = ——
T nlHAT(X; - p)
where A\ satisfies

n

Xi—p
2" 4)

i=1



The left side of equation (4) is the gradient with respect to A of —f, given
by

fo) =— Xn: log(1 4+ A"Z;)

i=1
for Z; = X; — p. The function f is convex on {A\ € R? | 1+ ATZ; >0, i =
1,...,n}. This set is convex and non-empty (it contains the origin). The min-

imizer of f over A recovers the maximizing weights w; of the empirical log
likelihood.

When g is an interior point, then there is a solution to Y, ; w; X; = p with
w; > 0 and Z?Zl w; = 1. The optimal weight vector must also have w; > 0 or
else it would have R = 0. Because the solution has all w; > 0 and ), w; = 1,
we conclude that max; w; < 1 at the solution. Accordingly 1+ ATZ; > 1/n
holds at the solution.

The optimization strategy in Owen (2001) uses the function

| log(x), z>1/n
log, () = {1og(1/n) —3/2+2nx — (nx)?/2, = <1/n. )

This log, function is a second degree Taylor approximation to the logarithm at
the point 1/n. Using this construction

fe(N) =— Zn:log*(l + )\TZi)

i=1

is convex on all of A € R? but has the same minimum as f when p is an interior
point. Thus we may minimize f, without first checking whether p is an interior
point.

In the event that u is not an interior point, the function f, is still convex on
all of R%, but is unbounded below. Then algorithms based on Newton’s method
diverge. Empirically, ||A]] = oo, along with ||V fi(A)|| = 0. One can then stop
the algorithm when an upper limit on the number of steps is reached or when
a lower limit on the norm of the gradient vector is reached, or whichever comes

first, and declare R(u) = —oo. Inspecting the solutions in such cases we find
i, w; < 1. Usually the sum of the weights is near zero. If u is on a face of
the convex hull of Xi,...,X,,, then the number of non-negligible w; is (in the

author’s experience) typically the dimension of that face (e.g., 1 for a vertex, 2
for an edge, and so on).

4 Self concordance

A convex function g(z) on x € R is self-concordant if it has three derivatives and
lg"" ()| < 2¢"(x)?/%. A function g(z) on & € R? is self-concordant if g(xo +tx;)
is a self-concordant function of ¢ for all zg,x; € R?. Furthermore there is a
computable quantity (the Newton decrement) that when small enough, yields



a guaranteed lower bound for the minimum of the objective function. These
results are due to Nesterov and Nemirovskii (1994). The description here is
based on Boyd and Vandeberghe (2004, Chapter 9).

For optimization problems it is enough to have

lg"(z)] < Cg"(x)*/? (6)

hold for some C' < oo. Then (C?/4)g(z) is self-concordant using the original
constant C' = 2 and of course (C?/4)g has the same minimizer as g.

Here we switch to the notation commonly used in optimization problems,
replacing A by x. The negative empirical log likelihood takes the form

flx)=— Zlog(l + Zlx)

i=1

over ¢ € R? where Z; € R? are given by the estimating equations. Usually
Z; = Z;i(0p) for a null value of a parameter §. The function —log(z) is self-
concordant on (0,00). Therefore —log(1 + Zx) is self-concordant on = € R?
such that 1+ ZJx > 0. Self-concordance is preserved under summation, and so
f(z) is self-concordant on its domain D = {z € R? | min; 1 + ZJx > 0} C R9.
In this section we extend f(z) to a function that is self-concordant on all of R%.
When 0 is an interior point of Z1,..., Z, the extension has the same minimizer
as f.

Note that the function —log, from Section 3 is not self-concordant. It is
self-concordant on (—o0,1/n) and it is also self-concordant on (1/n,00). It fails
to be self-concordant on R because — log’’(z) does not exist at = 1/n.

4.1 Self-concordant approximate negative logarithm

In Section 3 we considered the function log, which was a Taylor approximation
to the logarithm at the point 1/n keeping terms up to the quadratic. Here we
work with Taylor approximations to —log at the point € keeping polynomial
terms up to degree k.

For € > 0 and an integer k > 0, let

—log x, T >e€
hp(x —¢), x<eg,

Li(x) = L(x;¢€) = {

where

t

k
hily) = h(yse) = = Y log () 7. (8)
t=0 :

The function Lj has k continuous derivatives.
The function Ly is quadratic and convex, but does not have a third derivative
at x = ¢, so it cannot be self-concordant. The function L3 is not convex, so it is



not self-concordant either. We show here that L, is convex and self-concordant
with C' = 2. The Taylor approximation h4 is also self-concordant on R, but with
C = 98/25 = 3.92 (as in equation (6)). That is (C?/4)hy is self-concordant in
the usual sense as is 4h4.

We will need the derivatives of hy. For r € {0,1,...,k},

k—r t
r r Y
n () = =3 1oa™ ()
t=0 ’

For t > 0, —log'¥ () = (=1)te~*(t — 1)! and —log® (¢) = —log(e). For r > 0,

E

-Tr

(=1

t+r€7tfryt (t+ 7;'* 1)!

w7 (y)

k—r
PN = R I AT
=0T (7))
For k =4,
_ Y Y2 - Yy2 Y2
Ry(y) =e 2(1—22+3(E) ) =€ 2((17 7) + (*) ), and
" _ =3 _ g
Y (y) = € ( 2+66).
Theorem 1. For any € > 0, the function L4(z) given by equation (7) with

k =4 is self-concordant on R.

Proof. For x > € we have |L}'(z)| < L]/(2)*? for k > 3 because the logarithm
is self-concordant. For self-concordance of Ly, we also need |hY’ (y)| < 20} (y)3/?
to hold for all y < 0. Self-concordance of h4(-) is equivalent to self-concordance
of hy(e x -). For z < 0, define

| (ze)| 2—-62

) = i Gop = DR

where D(z2) = (z — 1)? + 22. The derivative

(2) = —6D(2)%/% — (2 - 62)(3/2)D(2)/?(62 — 2)
P D(2)?
_ —6(2—1)2 — 6224+ 6(32 — 1)?
D(Z)5/2
—62(4—7z2)

- D (9)

is non-negative for z < 0. Therefore p(z) < p(0) = 2 on (—o0,0] and so Ly is
self-concordant. O



Theorem 1 shows that L, is self-concordant on (—oo, €] because hy is self-
concordant on (—oo,0]. This allows us to replace the negative logarithm whose
domain is (0,00) by the piece-wise defined self-concordant function L4 whose
domain is R. Interestingly, we can do more. The fourth degree Taylor approx-
imation to —log at the point € can be scaled to self-concordance on all of R.
The constant C' necessary to the right of € is somewhat larger than the C = 2
that is needed to the left of e:

Theorem 2. For any e > 0 the function hy(y) given by (8) with k = 4 satisfies

98
< 22
- 25
Proof. For y > 0, we proceed as in the proof of Theorem 1, with p(z) =
(2 —62)D(2)73/2 for < 1/3 and p(z) = (62 — 2)D(2)73/2 for z > 1/3. On
the interval [0,1/3], p/(2) is given by equation (9) and it is not positive there.
Therefore the maximum of p on [0,1/3] is p(0) = 2.

On the interval z > 1/3,

Ry ()] R (y)*/? = 3.921 (y)*/2.

_ 62(4 —7z)

¥ &) =D (10)

which vanishes at z = 4/7 and is negative thereafter. It follows that the largest
value of p(z) for z € R is

4y 6x4/7—2 98
) =22 S 392 O
”(7) DaEE 25 00

4.2 Backtracking and the Newton decrement

An unguarded Newton’s method for minimizing f(x) proceeds via updates x +
x+ Az for Ax = —(V2f(x)) "V f(x) where V and V? denote the gradient and
Hessian respectively. This method converges under mild conditions if started
near enough the solution, but in practice it is hard to know whether a given
starting point is near enough.

A backtracking line search replaces the update Ax by a shorter vector if f
does not decrease sufficiently. Given a € (0,0.5) and 8 € (0,1) the algorithm
starts with ¢ = 1 and replaces ¢ by t until f(x +tAx) < f(x) +atVf(z)TAz.
See Boyd and Vandeberghe (2004, Algorithm 9.2, p. 464) for backtracking
and Boyd and Vandeberghe (2004, Algorithm 9.5, p. 487) for Newton’s method
incorporating backtracking.

Newton iterations with back-tracking are provably effective on self-concordant
functions. The self concordance property yields a bound on the number of New-
ton steps required to minimize a function. That bound depends on the gap
between the initial and minimal value of the objective function, so it is not very
useful. But self concordance does supply a usable stopping criterion, based on
the Newton decrement. The Newton decrement is

v=v(x) = (Vf(x) (V’f(z) ' Vf(z))

1/2



If f is a strictly convex self-concordant function, and v(2) < 0.68, then inf, f(x) >
f(z) — v(2)? (Boyd and Vandeberghe, 2004, Equation (9.50)). Thus stopping
when v(z) < € < 0.68 ensures that the objective function is within €2 of the
minimum when f is self-concordant. This bound is necesarily conservative, but
not by much. The quantity 2/2 is often used as an estimate of f(x)—inf, f(x).

If (C%/4)f is self concordant for C' > 2, then a similar guarantee holds. The
Newton decrement for (C?/4)f is the same as that for f. So (C?/4)f is within
€2 of its minimum when v(x) < € < 0.68 and hence f is within 4¢2/C? of its
minimum.

4.3 An example from Yang and Small (2012)

Yang and Small (2012) encountered numerical difficulties with empirical likeli-
hood in an instrumental variables model. They needed to compute the empir-
ical likelihood for a mean of zero in four dimensions where the variables were
Zl(Y—B;LW—al), Y- W—ay, ZQ(Y—(ﬁl-i-(S)W—OéQ), and Y_(,61+6)W_a2.
The variables Z; and Zs are binary instrumental variables. The other factors
are residuals. Their model specified values for the parameters aq, 82, as and 4.
For the meaning of these variables, see Yang and Small (2012). They encoun-
tered difficulties when profiling 31 over a series of values with fixed levels of the
other parameters on a bootstrap resample of the underlying data.

Figure 1 shows pairwise scatterplots of the four variables at one value of
B1. That value is f; = 1.84 (others are similar). The hypothesized mean of
0 is just barely inside the convex hull of the data. In particular the fifth plot,
shows that the two kinds of residuals lie very nearly on a straight line. On
closer inspection they fall onto two very close parallel lines (W is binary) with
the origin in between. The data matrix depicted in Figure 1 is given as an
R file at stat.stanford.edu/~owen/reports/e85samp. To use it within R,
save the file in a directory, run R in that directory, and use the R command
load(“e85samp”).

By using a backtracking Newton method, Yang and Small (2012) were able
to compute the empirical likelihood for this case. They obtain a log empirical
likelihood of —339.6937 for this data in 9 Newton steps with a Newton decrement
of 6.74277 x 10716, Using backtracking along with the self-concordant version
of the empirical log likelihood yields identical values to this level of precision.
Both algorithms used the same backtracking parameters a = 0.3 and 8 = 0.8
and the same start of 0 for the Lagrange multiplier.

5 Quartic log likelihood

Corcoran (1998) considered replacing — log by its fourth order Taylor approxi-
mation around the point € = 1. The resulting alternative nonparametric likeli-
hood function preserves many of the properties of empirical likelihood, including
Bartlett correctability. Theorem 2 shows that 3.922 /4 times this alternative log
likelihood is self-concordant.



Variable 1 vs 2 Variable 1 vs 3 Variable 1 vs 4

© - . o -
. © - i
©o - i . H p © - i
i - < - | e i -
< - I // o o | /.-' < _’/
I / 4 T e N N /
% - 04 L~ 1% -
o) v o - —————dfn et []
xr o - & e xr o -
N o ] Ve
Y9 N Dl
. ! - H .- !
© 4 . © . © .
T T T T T T T T T T T T T T T T T T
-4 -2 0 2 4 6 -4 -2 0 2 4 6 -4 -2 0 2 4 6
Z1 x Resl Z1 x Resl Z1 x Res1
Variable 2 vs 3 Variable 2 vs 4 Variable 3 vs 4
. o - . o - B
© - © - 1
T < A < - |
o !
o .
£ g v ¥
x © -1 &) o - & o -
N
N o ~ ~
I 1
. n / _
© 4. ® 4. ¢ 4.
T T T T T T 7T T T T T T T 71 T T T T T 1T
-6 -2 0 2 4 6 8 -6 -2 0 2 4 6 8 -6 -2 0 2 4 6
Resl Resl Z2 x Res2

Figure 1: Pairwise scatterplots of four variables in the instrumental variables
model of Yang and Small (2012). They hypothesized mean of 0 is shown as a
circle. The 1000 data points are plotted as dots.

We can thus construct the quartic empirical log likelihood problem:
n
minimize Z hy(nw; — 1;1),
i=1

subject to Zwi =1, (11)
i=1

n
Z wi X; =
=1

and define log(R¢g(u)) to be the minimizing value. This problem is a linearly
constrained convex minimization. There are now n variables given by w € R™.
The vector w is feasible as long as it satisfies the linear constraints, because the
objective function is finite for any w. There is always a feasible vector w, so
long as p is in the affine hull of X1,..., X,,.

When, as usual, the X; span all of R¢, then there is a feasible vector w.
Confidence regions based on the quartic empirical log likelihood can extend
beyond the convex hull of the data. For any point p outside the convex hull of
X, the corresponding vector w must contain at least one negative element.



5.1 Convexity of the quartic empirical likelihood regions

The quartic empirical likelihood ratio confidence regions are of the form

{peR| f(n) < F.} (12)

for a critical value F, < oo. The quartic empirical likelihood ratio regions
need not be nested within the convex hull of the data. They therefore share
this critical property that motivated the adjusted empirical likelihood of Chen
et al. (2008). Convexity of adjusted empirical likelihood confidence regions was
recently established by Chen and Huang (2012). Quartic empirical likelihood
confidence regions are easily seen to be convex. The proof holds for functions
more general than hy.

Theorem 3. Let h(-) be a conver function on R and let Xi,...,X, € R? for
integers n > 1 and d > 1. Define

H(p) = max{zn: h(nw; — 1) | Zn:wl = l,zn:wiXi = ,u},
i=1 i=1 i=1

and
C(r) ={n e R | H(p) <7}

Then C(T) is a convez set.

Proof. If C(7) has fewer than two points, then it is convex. Otherwise, choose
any p, i’ € C(7). Let w; satisfy > " w; =1, > " w; X; = p, and > | h(nw;—
1) < 7. Similarly let w} satisfy > ., wi =1, > " w;X; = ¢/, and Y| h(nw]—
1)<7.ForO<@<lletp=0u+(1—-0)y and w; = 0w; + (1 — 0)w}. Then
St wi=1land Y, w; =0u+ (1—0)y and

Z h(nw; —1) =Y h(0(nw; — 1)+ (1 — ) (nw; — 1))
i=1 i=1
<0 h(nw; — 1)+ (1—0) h(nw] —1)
i=1 i=1
<.
It follows that 1z € C(7) as well and so C(7) is convex. O

5.2 Computation for quartic empirical likelihood

The quartic empirical log likelihood problem (11) is a convex optimization in
n variables with d + 1 linear constraints. For empirical likelihood, we could
eliminate the Lagrange multiplier corresponding to Z?zl w; = 1 by summing w;
times the gradient of the Lagrangian with respect to w;. That multiplier cannot
be eliminated for the present problem. In the example of the next section an
equality constrained convex optimization using a primal-dual algorithm (Boyd
and Vandeberghe, 2004, Algorithm 10.2) was used.
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Figure 2: Empirical likelihood (nearly piecewise linear) and quartic empirical
likelihood (smooth) contours for the mean of the given data points. An open
circle marks the sample mean.

5.3 Example of quartic empirical likelihood

Figure 2 shows the duck data of Larsen and Marx (1986). Subjective plumage
and behavior scores were obtained for 11 ducks. The figure shows extreme
empirical likelihood and quartic empirical likelihod contours for the mean. They
are both at a nominal coverage level of 1 — 107!° from a X%z) calibration for
—2log(R). The contours for empirical likelihood are close to the convex hull of
the data. The quartic empirical likelihood contours are almost ellipsoidal and
extend out of the convex hull.

While the quartic empirical likelhood confidence region extends outside of
the convex hull, it does not extend very far out of it. Both of these regions

11



have roughly the same area and neither is plausible as a 1 — 10719 confidence
region. The Hotelling’s T region for 0.99 confidence has roughly the same size
as these regions. It is thus not reasonable to expect the usual x? calibration to
be effective at small sample sizes for the quartic empirical likelihood. Instead,
some technique used for improved calibration of empirical likelihood, such as
bootstrap calibration or adding extra points will be needed.

6 Conclusions

This paper has shown that a quartic extension to the logarithm yields a convex
self-concordant objective function which is equivalent to minus the empirical log
likelihood. Self-concordance implies gauranteed convergence for back-tracking
Newton methods. Without self-concordance, convergence depends on hard to
verify properties of the objective function. This does not necessarily mean that
backtracking with the usual quadratic extension will fail often. Indeed it may
require special data circumstances for difficulties to arise even with Levenberg-
Marquardt style step reductions. Self-concordance does however allow one to
translate a desired accuracy in the log likelihood into a convergence criterion.
Finally, the quartic log empirical likelihood studied by Corcoran (1998) is self-
concordant and yields convex confidence regions for the mean.

Acknowledgments

I thank Dylan Small and Wang Dan for helpful comments and Jiahua Chen for
sharing an early version of Chen and Huang (2012). This work was supported
by the U.S. NSF under grant DMS-0906056.

References

Boyd, S. and Vandeberghe, L. (2004). Convex Optimization. Cambridge Uni-
versity Press, Cambridge.

Chen, J. and Huang, Y. (2012). Finite-sample properties of adjusted empirical
likelihood. Technical report, University of British Columbia.

Chen, J., Sitter, R. R., and Wu, C. (2012). Using empirical likelihood meth-
ods to obtain range restricted weightes in regression estimators for surveys.
Biometrika, 89(1):230-237.

Chen, J., Variyath, A. M., and Abraham, B. (2008). Adjusted empirical likeli-
hood and its properties. Journal of Computational and Graphical Statistics,
2:426-443.

Corcoran, S. A. (1998). Bartlett adjustment of empirical discrepancy statistics.
Biometrika, 85:967-972.

12



Hall, P. (1990). Pseudo-likelihood theory for empirical likelihood. The Annals
of Statistics, 18:121-140.

Kitamura, Y. (2003). Asymptotic optimality of empirical likelihood for testing
moment restrictions. Econometrica, 69(6):1661-1672.

Larsen, R. J. and Marx, M. L. (1986). An introduction to mathematical statistics
and its applications. Prentice-Hall, Englewood Cliffs, NJ.

Lazar, N. and Mykland, P. A. (1998). An evaluation of the power and condi-
tionality properties of empirical likelihood. Biometrika, 85:523-534.

Nesterov, Y. and Nemirovskii, A. (1994). Interior-point polynomial methods
in convexr programming. Society for Industrial and Applied Mathematics,
Philadelphia.

Owen, A. B. (1991). Empirical likelihood for linear models. The Annals of
Statistics, 19:1725-1747.

Owen, A. B. (2001). Empirical Likelihood. Chapman and Hall/CRCpress, Boca
Raton, FL.

Polyak, B. T. (1987). Introduction to Optimization. Optimization Software Inc.,
New York.

Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating
equations. The Annals of Statistics, 22:300-325.

Rheinboldt, W. C. (1998). Methods for solving systems of nonlinear equations.
Society for Industrial and Applied Mathematics, Philadelphia, second edition.

Yang, D. and Small, D. S. (2012). An R package and a study of methods
for computing empirical likelihood. Journal of Statistical Computing and
Simulation. (to appear).

13



