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1 Introduction

“All models are wrong, but some are useful.”
-George Box, 1976

We are surrounded by a web of complex systems that govern why the world around us
works the way it does. Applied scientists/mathematicians are given with the arduous task
of observing these seemingly chaotic phenomenon with the hopes of finding some structure
and make inferences. This is done systematically by collecting data and using it to develop
models that aim to answer questions we have about our system under the umbrella of the
scientific method. As technology advances, the quality and quantity of data we have ac-
cess to improves, which in turn, necessitates the models are refined accordingly to better
approximate the phenomenon of interest.

As much as we would like to think otherwise, designing a good model is an art. We
have a great deal of flexibility with regards to the properties we want our models to have
or not have. As statistician George Box, famously stated “all models are wrong, but some
are useful”, we always need to make sacrifices between accuracy in favour of tractability and
interpretability, but this does not mean the design choices we make can still be very useful
to gain intuition about our system. It is the task of a statistician to strike that balance
between developing a model that accurately allows us to make inferences about our system
while working within the limitations of our data, mathematical tools, and computational
power. The design choices we make are fundamental, and it is important to be critical and
understand their strengths and limitations.

One such task is comes from ecology, and the study of tracking mammal movement.
Mammal tracking is a complicated phenomenon with a variety of spatial and temporal factors
that govern an animal moves. In this report, we will focus our attention to comparing and
contrasting the design choice of using a discrete or continuous time model for mammal
tracking. Specifically we will analyse the case study on Seal tracking tracking data.

We will first give an overview of the problem, discuss how it can be formulated as a
discrete and continuous time problem. We will then compare and contrast these models,
and discuss possible extensions.

2 Characterization of the Movement Process

Most analysis of animal location data is broken into two distinct components: the movement
process and the observation model process. The movement process X = (X)t is the assumed
underlying unobserved state of the system of interest at time t parametrized by hyper param-
eters θ. The observational process Yt interprets the data D as observed noisy measurements
of Xt. The class of models we will be working with are commonly referred to as hierarchical
models or state-space models (SSM). When the movement process is Markovian, we refer
this as a hidden Markov model (HMM).

The effectiveness of state space model come from the movement process, which we have
a lot of freedom in constructing. We will demonstrate this by focussing our attention to the
tracking of North Fur seals, noting that the ideas can be adapted to modelling movement of
other mammals.
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2.1 Seal tracking data

For the purpose of this case study we will be developing continuous and discrete time space
models to a northern fur seal track in Pribilof Islands of Alaska as during a 10 day foraging
trip. The data was attained by equipping a nursing female with a satellite tag, which has
Fastloc GPS, and time-depth recoding capabilities. Fastloc GPS are designed to specifically
to track species that only surface briefly by quickly take snapshots of the radio signals
produced by overhead GPS satellites [fas17]. This is ideal for seal tracking as they are often
foraging underwater and may only resurface for short periods of time.

The diving depth data is collected continuously and is summarized every hour over a 10
day period (242 data points), and the raw location data consists of 241 data points with
over 40% of the time steps containing no observed location due to foraging dives.

We are making an assumption that the seal are always in one of three latent (unobserved)
states: foraging, transit, resting, which we define as follows:

• Foraging (F): movement that is characterized as area restricted searches and foraging
dives. A foraging dive is a dive that has a max depth of more than 5m and atleast 5
changes in vertical direction.

• Transit (T): movement that is predominantly travelling with little to know foraging
dives.

• Resting (R): Movements that are not foraging or transit. We will assume that no
foraging occurs while resting.

Using the location and diving activity data, our goal is to characterize the latent be-
haviour of the seals during their foraging trip. We should expect to see low speeds during
resting, low to moderate speed when foraging, and high speeds for transit states. We also
expect to see high amounts of directional persistence during transit and little to none when
resting and foraging.

In order for our movement model to incorporate the different types of movement, we
want the movement process to have postitive correlations in the direction of travel between
time steps. This will also ensure directional persistency, which we want for the transit and
foraging states. We would also like to define out model in such a way that it can have a
Bayesian interpretation.

3 Discrete Time Formulation

We will first begin by formulating how to formulate a measurement model from our seal data,
and then we will develop a discrete time model following framework laid out in [MKT+12].

3.1 Measurement Model

When developing a discrete model, we need to work with fixed time steps, but since the
location data (x,y) = {(xt,i, yt,i) : t = 1, . . . , N, i = 1, . . . , kt} is temporally irregular we
need to be a bit careful with how we handle it. First off, we will work a temporal units of 1
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hour, so for t = 1, . . . , N , we denote the position of the seals at time t hours as µdist = (Xt, Yt).
We can extend µdiss for t < s < t+ 1, by linear interpolation. Within time [t− 1, t], we have
i = 1, . . . , kt observations (xt,i, yt,i) which take place at time jt,i ∈ [0, 1) hours after time
t− 1. We will assume that (xt,i, yt,i) noise measurements of µt−1+jt,i , or equivalently,

xt,i = (1− jt,i)Xt−1 + jt,iXt + εxt,i (1)

yt,i = (1− jt,i)Yt−1 + jt,iYt + εyt,i , (2)

where [εxt,i ] = N (0, σ2
x), and [εyt,i ] = N (0, σ2

y)are independent and represent the measure-
ment error from the GPS tracking 1. This implies we are assuming that the measurement
error in the x-coordinate is independent of the measurement in the y-coordinate and fur-
thermore the measurement error is independent of time.

At time t, denote the behaviour state of our process as Zt, where Zt ∈ {F, T,R} as
defined in Section 2.1. We also want to incorporate dive data δ = {δt : t = 1, . . . , N} which
is the number of foraging dives in the hour time span into our measurement model. Given
Zt = z, for z ∈ {F, T,R}, we will assume that

[δt|λ, Zt = z] = Poisson(λz), (3)

where λF > λT , and λR = 0 to indicate more that one expects more forage dive attempts
when foraging as opposed to the opportunistic foraging that occurs in transit. λR = 0 forces
the condition that no diving occurs when resting. We will futher assume that conditioned
on Zt, δt is independent of the position.

This is an okay assumption as the Poisson distribution assumes a certain independence
between dive attempts. Perhaps it may be better to use a geometric distribution to model
the first time a dive was unsuccessful. It is reasonable to assume that if a dive was successful,
a seal would be move likely to reattempt that dive, and one would stop diving if no food was
caught.

Thus our discrete measurement model can be parametrized by (σ2
x, σ

2
y,λ).

3.2 Movement Model

We will now create a model for µdist = (Xt, Yt) for t = 1, . . . , N . Given an initial µdis0 =
(X0, Y0) we wish to iteratively define how to move from position µdist to µdist+1. Let V dis

t =
µdist − µdist−1 = (V dis

x,t , V
dis
y,t ) be the discrete velocity process so that we have

µdist =
t∑

s=0

V dis
s .

It will be more natural to describing V dis
t in polar coordinates (φt, St) as opposed to Cartesian

coordinates. Specifically, define the step size St = ‖V dis
t ‖ and the bearing angle φt. Ie

St =
√

(V dis
x,t )2 + (V dis

y,t )2 =
√

(Xt −Xt−1)2 + (Yt − Yt−1)2,

1We are following the notation in the paper [MJH+14], [X] represents the density of the random variable
X inside the brackets.
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and,

φt = arctan

(
V dis
y,t

V dis
x,t

)
= arctan

(
Yt − Yt−1

Xt −Xt−1

)
Conditional on the behaviour state Zt, we will assume that St and φt are independent. We

now have flexibility in how we chose to specify a family of distributions for Xdis
t = (St, φt, Zt),

which we will discuss now. We will refer to our discrete movement model Xdis = (S,φ,Z).

3.2.1 Step Size

Following the work of [MKT+12], we will assume,

[St|a,b, Zt = z] = Weibull(az, bz) =
bz
az

(
St
az

)bz−1

exp

[
−
(
St
az

)bz]
, (4)

where z ∈ {F, T,R} and az, bz > 0 are scale and shape parameters. Note that given St is
fully determined by the latent behaviour as is independent of previous step sizes. Weibull
distribution has the ability to assume the characteristics of many different types of distri-
bution and varies dramatically with bz. When bz < 1, the Weibull distribution has heavy
tails, when bz = 1, we get an exponential distribution, for 1 < bz, the Weibull distribution
resembles a bell curve at with skewness governed by bz. It even approximate a normal dis-
tribution for bz = 3.4. This versatility makes it robust to the different possible behaviours
we may want from St.

A possibly more suitable alternative for this specific paper would have been the Rice
distribution R(µ, σ2), which is the distribution of the distance from the origin of a bivariate
Gaussian random vector with covariance Σ = σ2I. This is because it arrives naturally as
the distribution of the step size in the continuous time model, and would have allowed for a
better comparison of the two methods.

3.2.2 Bearing angle

We need to chose our distribution for φt carefully as φt governs how correlated the direction
of the movement is between time steps. If φt was uniform on [0, 2π], then it would mean
that conditional on the behaviour state, the movement is process is a random walk and has
no direction correlation/persistence. In general we want our directional movement to be
biased towards φt−1 as that imply directional persistence. There are many distributions on
the circle that concentrate around φt−1, in particular every distribution f(x) on R induces a
“wrapped” distribution fw(x) on the circle [0, 2π] by identifying x with x+ 2kπ, k ∈ Z.

fw(x) =
∞∑

k=−∞

f(x+ 2kπ)

One natural example would be a wrapped Gaussian, but due to the infinite sum, it is not an
nice to work with. We model the bearing angle θt using the wrapped Cauchy distribution
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centered at θt−1, as the sum can be simplified to a nice formula using some complex analysis
to the following.

[φt|φt−1,ρ, Zt = z] = wCauchy(φt−1, ρz) =
1− ρ2

z

2π[1 + ρ2
z − 2ρz cos(φt − φt−1)]

, (5)

Where ρz ∈ [0, 1) is a hyper-parameter governing the dispersion of the bearing angle. As
ρz → 0, we have the wrapped Cauchy begins to approach a uniform distribution on the circle
since [φt|φt−1,ρ, Zt = z] → 1

2π
. To see what happens when ρz → 1−, note [φt|φt−1,ρ, Zt =

z]→ 0 as |ρz| → 1 for φt 6= φt−1. If φt = φt−1, then

[φt−1|φt−1,ρ, Zt = z] =
1− ρ2

z

2π(1− ρz)2)
=

1

2π

1 + ρz
1− ρz

ρz→1−−−−−→∞

and thus [φt|φt−1,ρ, Zt = z]→ δφt−1(φt).
We are leaving out the formal details as they are not very insightful, mainly because there

is nothing particularly special about using the wrapped Cauchy than the mathematically
convenience that comes with a closed formula. This was the reasoning used in [MKT+12],
where this design choice was proposed. In the continuous time model as we will soon see, the
bearing has a Von Mises distribution, which is commonly referred to as the circle analogue
of the Normal distribution [MEP01]. Thus using a Von Mises distribution for the bearing,
it would have allowed for a more direct comparison of the results between continuous and
discrete time models.

3.2.3 Latent Behaviour Model

Finally we need to model how our latent behaviour state Zt changes between time steps.
We will assume that at each time step, Zt is a stationary and in fact a Markov process with
transition kernel ψ, i.e. P (Zt = z|Zt−1 = z′) = ψz′,z, or to continue with our notation above,

[Zt|ψ, Zt−1 = z] = Categorical(ψz,F , ψz,T , ψz,R). (6)

This is definitely a reasonable assumption to make, as the the current state you are in is
far more relavent to the furture decision to forage, more, or rest for a seal. It is reasonable
to assume that incorporating Zt−2, . . . , Zt−k via an auto regressive time series model, might
lead to slightly more accurate predictions. However in the context of seal tracking, one would
assume the auto-correlation function f(k) = Cov(Zt, Zt−k) to decrease rapidly as k increases,
and by incorporating too many previous time steps, could possibly lead to over-fitting.

Overall the Markovian assumption is a reasonable one and the gains we get in terms of
model accuracy are overshadowed by the mathematical difficulties that will arise by losing
the Markov property.

3.3 Posterior Model

Finally, now that we have specified our measurement and movement model, we can now
compute the posterior of our hyper-parameters

Θ = {a, b,ρ,λ,ψ, σ2
x, σ

2
y, (X0, Y0)}.
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We will now compute the joint posterior density of Θ and our movement process Xdis =
(S,φ,Z), and data D = {x,y, δ}. Let [Θ] denote the prior of our hyper-parameters, which
we will discuss below. First let us compute the joint posterior. We first use Bayes theorem,
and the product rule.

[Θ,Xdis|D] ∝ [Xdis,D|Θ][Θ]

= [S,φ,Z,x,y, δ|Θ][Θ]

= [S,φ,x,y, δ|Θ,Z][Z|Θ][Θ]

= [x,y, δ|Θ,Z,S,φ][S,φ|Θ,Z][Z|Θ][Θ]

= [δ|Θ,Z,S,φ][x,y|Θ,Z,S,φ]

× [S|Θ,Z][φ|Θ,Z][Z|Θ][Θ].

The last line used the assumption that conditioned on Z, that δ is independent of the position
data x,y, and S is independent of φ. Combining (1),(3),(4),(5),(6), we get,

[Θ,Xdis|D] ∝ [Θ]
N∏
t=1

{[δt|λ, Zt]
kt∏
i=1

[xt,i, yt,i|σ2
x, σ

2
y, X0, Y0, φ1:t, S1:t]

× [St|a,b, Zt][φt|φt−1,ρ, Zt][Zt|ψ, Zt−1]}

For our prior, we have

[Θ] = [a][b][ρ][λ][ψ][λ][σ2
x][σ

2
y][X0, Y0]

Where we have,

[az] = Uniform(0, 10800) z ∈ {F, T,R}
[bz] = Uniform(0, 3) z ∈ {F, T,R}
[ρz] = Uniform(0, 1) z ∈ {F, T,R}
[λz] = Γ(0.1, 0.1) z ∈ {F, T}
[ψz] = Dirichelet(1, 1, 1) z ∈ {F, T,R}
[σ2
x] = Γ−1(0.1, 0.1)

[σ2
y] = Γ−1(0.1, 0.1),

and [X0, Y0] is defined uniformly over the Bering Sea. These weakly informative priors are
chosen as they assume very little information about the system and are computationally
easy to work with, since they are either flat or conjugate to their respective families.

4 Continuous Time Formulation

We will now proceed to develop a continuous time model analogous to the discrete time
model above. We will be modelling the continuous time latent position process µctst , by
the continuous time correlated random walk (CTCRW) model of Johnson in [JLLD08].
Analogous to the discrete setting, CTCRW model uses a on Ornstein-Uhlenbeck (OU) process
to stochastically describe the velocity V cts

t , and using that to derive the position process µctst
by integrating V cts

t . Let us first describe the measurement model, and then we will construct
the movement model.
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4.1 Measurement, Latent Space Model

Our measurement model in the continuous setting will be very similar to that of the discrete
setting with some mild simplifications. To allow for comparisons to the discrete time model
latent space model, we will still assume a temporal resolution of 1 hour. We will assume
we have the same location data (x,y) = {(xt,i, yt,i) : t = 1, . . . , N, i = 1, . . . , kt} as in the
discrete setting where the observation (xt,i, yt,i) occurs at time t < ti < t + 1 and ti < ti+1.
Unlike the discrete-time setting where the measurement model for the location data required
linear interpolation of the latent position process µdis, in the continuous case out we can avoid
that messiness. Let µctsti = (Xti , Yti), then

xt,i = Xti + εx,ti (7)

yt,i = Yti + εy,ti , (8)

Where εc,ti ∼ N (0, τ 2) are iid. This is slightly different than the discrete setting where we
assumed that each coordinate had a different movement measurement error. This was the
design choice made in [MJH+14], which I personally disagree with. To allow for a better
comparison to the discrete-time model, we should have assumed different measurement error
in each coordinate, as computationally it is not expensive.

The measurement model for the dive date δ is identical to the discrete-setting, and we
will use [δt|λ, Zt = z] as in (3).

Finally to allow for direct comparison to the discrete-time model, we will assume that
the latent state model Zt is unchanged from the discrete setting, including the fact that it
only changes for t = 1, . . . , N . We will also assume that [Zt|ψ, Zt−1] is the same as (6).

Personally, I think was a poor choice made by the authors, as this imposed the discrete-
time restrictions of the continuous-time model, where hours t = 1, 2, . . . , N are not the
natural time of intererst, but rather we care about ti. The continuous time analogue would
have been to model the transition between state z → z′ via an exponential distribution with
rate ψz,z′ . This would have retained the same interpretation of ψ from the discrete-time
model, as well have eliminated the some of the hassle that comes with dealing having to deal
with observations that occur at time ti < t < ti+1 where t is an integer.

We are almost ready to introduce the CTCRW, but first it will be worth formally intro-
ducing the OU process.

4.2 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process is a continuous time stationary, Markov, Gaussian process,
characterized by the stochastic differential equation,

dVt = −β(Vt − γ)dt+ σdWt, (9)

where β, σ > 0 are the autocorellation parameter and standard deviation respectively and
γ ∈ R is the mean drift and Wt is a standard Brownian motion. Note that if Vt > γ (similarly
Vt < γ), then the drift component is negative (positive) and will have a tendency to decrease
(increase) towards γ. Thus the solution to (9) has a tendency to revert to the γ. We can
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solve (9) explicitly by defining Yt = expβt(Vt − γ). Ito’s lemma gives us the following SDE
for Y ,

dYt = βeβt(Vt − γ)dt+ eβtdVt

= βeβt(Vt − γ)dt+ eβt(−β(Vt − γ)dt+ σdWt)

= σeβtdWt

By integrating both sides from s to t we get,

Yt = Ys + σ

∫ t

s

eβudWu.

Substituting Y and simplifying leads to our solution to (9).

eβt(Vt − γ) = eβs(Vs − γ) + σ

∫ t

s

eβudWu.

Vt = γ + e−β(t−s)(Vs − γ) + σe−βt
∫ t

s

eβudWu. (10)

To compute the distribution of the stochastic integral the following result from stochastic
analysis will be helpful.

Lemma 4.1. For f(t), g(t) be deterministic functions, and Wt be a standard Weiner Process,
then,

1.

∫ t

s

f(u)dWu ∼ N
(

0,

∫ t

s

f(u)2du

)
.

2. Cov

(∫ t

s

f(u)dWu,

∫ t

s

g(u)dWu

)
=

∫ t

s

f(u)g(u)du

Using this we get that

σe−βt
∫ t

s

eβudWu ∼ N
(

0,
σ2

2β
(1− e−2β(t−s))

)
.

To see how this related to the auto-regressive model AR(1), let us fix ∆t, and define
Zk = Vk∆. Then (10) implies that,

Zk+1 = γ + e−β∆t(Zk − γ) + εk

= a+ bZk + εk

where b = e−β∆t, a = (1− b)γ and

εk ∼ N
(

0,
σ2

2β
(1− e−2β(t−s))

)
.

Thus we can see that the sampled OU process is the solution to an AR(1) model which
implies the OU process is the continuous time analogue of the an AR(1) model.
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4.2.1 Integrated OU Process

Suppose that when γ = 0, in which case (10) reduces to,

Vt+∆ = e−β∆Vt + σ

∫ t+∆

t

eβ(t+∆−u)dWs

≡ e−β∆Vt + εV (∆), (11)

where

εV (∆) ∼ N
(

0,
σ2

2β
(1− e−2β∆)

)
.

Let us look at the integrated OU process Xt = X0 +
∫ t

0
Vsds be defined by the differential

equation,
dXt = Vtdt. (12)

Note that we can substitute (12) into (9) to get,

dVt = −βdXt + σdWt,

Integrating both sides from t to t+ ∆,

Vt+∆ − Vt = −β(Xt+∆ −Xt) + σ

∫ t+∆

t

dWs.

Rearranging terms, and using (11), we get,

Xt+∆ = Xt −
1

β
(Vt+∆ − Vt) +

σ

β

∫ t

s

dWs

= Xt +
1− e−β∆

β
Vt +

σ

β

∫ t+∆

t

(e−β(t+∆−s) + 1)dWs

≡ Xt +
1− e−β∆

β
Vt + εX(∆) (13)

Where using Lemma 4.1, we have

εX(∆) ∼ N
(

0,
σ2

β2

(
∆− 2

β
(1− e−β∆) +

1

2β
(1− e−2β∆)

))
.

If αt = (Xt, Vt), then (11), and (13) implies, that

αt+∆ = T∆αt + η∆,

where

T∆ =

[
1 1−e−β∆

β

0 e−β∆

]
, (14)

η∆ ∼ N(0,Q∆), (15)
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where, use Lemma 4.1 to get,

Q∆ =

[
Var(εX(∆)) Cov(εX(∆), εV (∆))

Cov(εX(∆), εV (∆)) Var(εV (∆))

]
=

[
σ2

β2

(
∆− 2

β
(1− e−β∆) + 1

2β
(1− e−2β∆)

)
σ2

2β2 (1− 2eβ∆ + e−2β∆)
σ2

2β2 (1− 2eβ∆ + e−2β∆) σ2

2β
(1− e−2β∆)

]
.

4.3 Continuous-time Correlated Random Walk

Similar to the discrete-time model, we want to define the position process in such a way that
we maintain correlation between movements, and so that we have directional persistency.
We achieved this in the discrete-time setting by forcing the bearing angle in the φt in the
discrete velocity process V dis

t to be be centered around φt−1. Given the latent state Zt = z,
we have that the position process µt =

∑t
s=1 Vs is performing a correlated random walk with

a tendency to go towards the previous direction of movement. This is precisely what the OU
process aims to do in continuous time, and thus we will use it to define our velocity process
V cts
t . We will then define our continuous time position process µctst = µ0 +

∫ t
0
V cts
s ds, where

µ0 = (X0, Y0).
Given our latent state Zt = z, we define V cts

t = (V cts
x,t , V

cts
y,t ), be the velocity process for our

movement mode, where V cts
x,t , V

cts
y,t are both independent OU processes with autocorrelation βz

and variance σz and zero drift (γ = 0). It was argued in [JLLD08], that the two components
should be independent, as a correlation would result in strange movement patterns and
unrealistic switching of directions.

We can now define our position process µctst = (Xt, Yt) by the differential equations,

dXt = V cts
x,t dt

dYt = V cts
y,t dt.

Let αt = (αx,t, αy,t), where αx,t = (µctsx,t, V
cts
x,t ), and αy,t = (µctsy,t , V

cts
y,t ). Using the analysis of

Section 4.2.1, we have for c ∈ {x, y}

αc,ti+1
= Tz,∆i

αc,ti + ηz,∆i
,

where ∆i = ti+1 − ti, and Tz,∆, ηz,∆i
were defined by (14), and (15).

Finally will add the constraint to our model that βR > βF > βT and σR < σF < σT . Since
we expect less auto correlation and volatility in the velocity when moving versus resting.

Thus movement model (αt) is parametrized by ψ,β,σ, and the measurement model
is parametrized by (τ 2,λ). Define out parameters Θ = {ψ,β, τ 2,λ}, and our data as
D = {x,y, δ}.

Since α is a linear Gaussian model, we can sample form the posterior using a Kalman
Filter without needing to sample α. We can now compute the posterior for the continuous
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time model:

[Θ,Z|D] ∝ [D,Z|Θ][Θ]

= [D|Θ,Z][Z|Θ][Θ]

= [δ|Θ,Z][x,y|Θ,Z][Z|Θ][Θ]

= [δ|λ,Z][x,y|β,σ, τ 2,Z][Z|ψ][Θ]

= [Θ]
N∏
i=1

{[δt|λ, Zt]
kt∏
i=1

{[xt,i, yt,i|βt,σ, τ 2, Zt]}[Zt|ψ, Zt−1]}

= [β][σ][λ][ψ][τ 2]
N∏
i=1

{[δt|λ, Zt]
kt∏
i=1

{[xt,i, yt,i|βt,σ, τ 2, Zt]}[Zt|ψ, Zt−1]}

5 Comparison Discrete vs Continuous Time models

Now that we have identified the two models in both the discrete and continuous time,
[MJH+14] used Monte Carlo methods to samples from the posterior to get a Bayesian esti-
mate of the parameters of the movement model. We will now discuss the similarities and
differences in the latent states, bearing and step size in both temporal settings.

5.1 Latent State

Summarizing the analysis done in [MJH+14], we were able to predict the percentage of the
10 day foraging trip spent foraging, in transit, and resting along with 95% Bayesian credible
regions summarized below: The breakdown of the path in given in Figure 2 in [MJH+14].

Table 1: Average time spent in each latent state
State Discrete-time Continuous-time

F 0.36 (0.26,0.39) 0.29 (0.23,0.34)
T 0.36 (0.29,0.45) 0.61 (0.53,0.67)
R 0.28 (0.22,0.37) 0.10 (0.03,0.15)

We also some estimates of some entries of the transition matrix ψ with their credible
regions. For some reason, the authors in [MJH+14] did not list the full transition matrix,
only the probability that the state doesn’t change from time t → t + 1 and the two most
likely transitions in each temporal model.

The discrete and continuous time models give very different results. The discrete-time
model predicts roughly equal about of time spent in state F, T,R, where as the continuous-
time model says that more of the time in transit versus resting. The author notes, that
there were larger movement associated with resting, and small movement steps in transit,
which call into question how accurate classification of the states really are. This could be be
possibly be the result of the OU process being a poor choice to construct the position model.
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Table 2: Transition rates
Transition Discrete-time Continuous-time

ψ̂F,F 0.78 (0.67, 0.88) 0.75 (0.62, 0.86)

ψ̂T,T 0.78 (0.65, 0.89) 0.82 (0.75, 0.89)

ψ̂R,R 0.81 (0.71, 0.92) 0.52 (0.10 ,0.86)

ψ̂F,T 0.15 (0.05 ,0.27) 0.23 (0.12, 0.35)

ψ̂T,F 0.14 (0.06, 0.22) -

ψ̂R,T - 0.40 (0.09, 0.81)

It can also be the poor choice of how to choose to model continuous-latent state model Zt
essentially in discrete time.

The biggest notable difference in the available transition entries, is that there is a large
focus on the continuous time model to enter a transit state, whereas the discrete-time process
spends more time alternating between transit and foraging, both seem reasonable as a viable
patter would be to forage, and once an area has been depleted, more to a new area to forage
and repeat until time to rest. Again, it is difficult to discuss the transitions further without
seeing the full matrix.

Although very different results, it can be argued that both models give reasonable solu-
tions, it is also difficult to say without some expert knowledge about seal movement, which
one performs better.

5.2 Bearing & Step Size

Although, we used very different methods to characterize the movement in the discrete
and continuous time models, we can use the properties of the OU process to derive the
distribution of the step size and bearing angle for the continuous time process between time
t→ t+ 1. We will do this by using the result as shown in [KMT11].

Lemma 5.1. Let A ∼ N (µA, σ
2) and B ∼ N (µB, σ

2) are independent.

1. If L =
√
A2 +B2, and µ =

√
µ2
A + µ2

B, then [L] = R(µ, σ2), where R is called the Rice
distribution, with density,

[L] =
L

σ2
exp

(
−L

2 + µ2

σ2

)
I0

(
Lµ

σ

)
,

where I0 is the modified Bessel function of the first kind of order 0.

2. If θ = arctan
(
B
A

)
, then [θ|L = l] = VM(ω, κ), called the Von Mises. In particular,

[θ|L = l] = VM(ω, κ) =
exp(κ cos(θ − ω))

2πI0(κ)
,

where κ = lµ
σ2 and ω = arctan

(
µB
µA

)
.
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Note the modified Bessel function I0(x) is given to be the exponentially growing solutions
to Bessel’s equation,

x2y′′ + xy′ − x2y = 0,

and can be solved using the power series and the method of Frobenius. This is a common
task in an introductory differential equations class. Bessel’s functions are as ubiquitous in
applied mathematics as the error function is in statistics. It arrives naturally in our context
as it I0(x) can be expressed as,

I0(x) =
1

π

∫ π

0

ex cos θdθ.

Now suppose µcts, V cts, are the position and velocity of the continuous time movement model,
we can use (11), and (13) to derive the distribution of the step-size and bearing angle denoted

from time t to t+ 1 by Sctst , and φctst . If lt = ‖V cts
t ‖ and θt = arctan

(
Vy,t
Vx,t

)
, then

[Sctst |lt, Zt = z] = R

(
lt(1− eβz)

βz
,
σ2
z

2βz
(1− e−2βz)

)
,

and,

[φctst |Sctst , lt, Zt = z] = VM

(
θt,

Stlte
−βz

σ2
z

2βz
(1− e−2βz)

)
.

We can now compare the bearing angle and step size in the discrete and continuous-
time setting for the different states from Figure 3 in [MJH+14]. Note that both models
give roughly similar movement distributions while foraging, but drastically different results
for resting and transit. The continuous-time model take significantly smaller steps than the
discrete model when in transit, and significantly larger time steps when resting. This suggests
the continuous time model is not robust enough to differentiate between the different states.
For future efforts, having a strong criterion to differentiate the different states other that
just the monotonicity condition imposed on βR > βF > βT and σR < σF < σT might make
the model more robust.

The continuous-time model is however significantly better at predicting the movement
path. The posterior prediction for the measurement error in the discrete model was σ̂x =
472m and σ̂y = 489m with 95% credible interval given by (360, 596) and (381, 617) re-
spectively compared to the measurement error in the continuous time model of τ̂ = 64m
with credible interval (55,75). Which primarily because we did not have to do any linear
interpolations when designing the measurement model in continuous time.

6 Discussion

6.1 Continuous versus discrete time models

The Northern fur seal tracking example shows that it is not always clear whether or not one
show use discrete or continuous time models for mammal tracking. They both have their
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advantages as well as difficulties. In general it really depends on the time scales are natural
to the process we want to observe, and the data we have access to.

Discrete-time models are the natural choice when your observation occur in a temporal
homogeneous way and there is a natural time scale for your process and data. If the process
you are observing occurs in regular time intervals then discrete time methods can be very
effective. They have the benefit of being easy to define and are often easier to implement,
both mathematically and computationally. Often one arrives at the continuous time models
by taking scaling limits of discrete ones.

Continuous time-models are often derived by taking scaling limits of discrete-time models
that we know and love. This often results in the continuous time model smoothing out the
“messiness” of the discrete-time system and allow us to extract the essential properties.
These scaling limits are themselves scale invariant, making them very robust to temporally
irregular data, such our case with the seal data.

The canonical example to illustrate this scale invariant nature is Brownian motion and
random walks. A random walk Sn is a very general discrete time model characterized by
the fact that Xn ≡ Sn − Sn−1 are iid with mean 0, that ubiquitous when discussing random

systems. Donsker’s theorem states that if Xn has variance σ2, then
SbNtc√
Nσ2

converges weakly
to a standard Brownian motion, independently of X. Thus, Brownian motion, a mathemat-
ically convenient, well-studied, continuous-time model can be used to gain insight about a
potentially very complicated discrete-time random walk.

In our case, we used an OU process, as it is the scaling limit of a complicated AR(1)
process, is natural when discussing systems that we wish to have mean reverting behaviour.

Once a continuous-time model is defined, they have the advantage that they are very
powerful in terms of insights they can give about our system. Moreover, and there has been
a great deal of theory developed to classify and manipulate them. The disadvantage is that
they can be very difficult to formulate and require a bit of finesse and mathematical maturity
to interpret.

In defence of discrete-time systems, the fact that they are easy to design and interpret
makes them a very powerful tool in the statisticians arsenal, and can be quite robust to a
variety of data. They do require a lot of choices to be be made by the designer and thus
designing a good model is very much an art. They can also be very useful none the less.

6.2 Future extensions

For future work, it is possible to design discrete time systems with irregular time steps. For
example when taking a step in the measurement model between time ti to ti+1, one can
scale the step size proportional to the time window. That can eliminate the need for linear
interpolation in the measurement model and can potentially improve the accuracy of the
movement model.

We also did not incorporate any environment factors. It seems reasonable to assume that
the animals are in taking in the environment factors to decide where to move. Seals might
avoid certain areas if there are currents that are difficult to navigate, and might be drawn
certain known sources of food. One active area of research in propobabilty theory is the
study of random walks in random environments. It might be reasonable to model the ocean
as a random environment and model the seals as performing a random walk, as opposed
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to just modelling the seal movement as a correlated random walk. One area of potential
research might be the study of a correlated random walk in a random environment.

This seem more difficult to incorporate for tracking sea mammals, but it definitely can
be incorporated in for tracking land mammals such as bears. Topographical and satellite
data can be used to identify how easy certain areas of forests are to have resources that
would be of interest to a bear, and to identify the difficulty of a bear to navigate to. One
could incorporate into the model certain regions that would bias a bear, as opposed to just
assuming purely a random walk.
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