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Abstract

Neural networks are powerful yet notoriously fickle beasts. They require tuning
by hand over many parameters. Meanwhile the best tuning methods are only
marginally instructive, generally consisting of anecdotal evidence and values that
are known to work. Furthermore, even with the same parameters, neural networks
often exhibit a range of efficacy, as training is stochastic in nature. We present
a method which utilizes a genetic algorithm to train capable neural networks,
while simultaneously producing an ensemble to harness their combined power.
We demonstrate that this can lead to excellent candidates for further hand tuning,
and powerful ensembles which are a match for finely hand-tuned neural networks.
These ensembles are surprisingly robust. Multiple training runs produced very
similar results, which were remarkably stable. This approach allows for an au-
tomated process for training capable neural networks, reducing the drudgery of
hand-tuning.

1 Introduction

Over the last two decades, neural networks have become a force to be reckoned with in machine
learning literature. Their effectiveness at solving both modern and classical problems is undeniable.
In practice however, it is incredibly difficult to train neural networks. There are two main issues which
arise when training neural networks: the loss function is highly non-convex, and neural networks
are very sensitive to architecture, i.e. the number of layers and hidden units. Stochastic gradient
descent and back propagation have been quite effective at tackling the first issue, but addressing the
architecture problem does not have a standard, elegant solution. Neural networks are often fine-tuned
by hand based on heuristics, anecdotal evidence, and best practice. Since the connections in each
layer are highly dependent on one another, it takes a vast amount of trial and error to get a well-trained
model. Overall the process can be very labour intensive and frustratingly inefficient. Moreover,
it is generally not known what the upper bound on the performance is for a given problem, nor if
neural networks are even able to treat the problem with great precision. Luckily, there is often a
“good-enough” error rate; a rate sufficiently low as to be acceptable given real world constraints.
Thus any solution which provides a “good-enough” result will be viable for a given application.
This provides the motivation for constructing an ensemble of networks, which may surpass the
“good-enough” threshold without further intervention.

We use a genetic algorithm to automate the process of finding and training suitable architectures for
neural networks with L layers. We simultaneously produce an ensemble from the trained networks.
In short, we explore the state space of model parameters by randomly initializing a population of
neural networks. We then assign a fitness score based on how well the networks do on a validation
set after training. The fitter networks have a better chance of passing on their traits to successive
generations, while the weaker ones die out. As the generations progress, the average fitness tends to
increase. We then create an ensemble from the best models found during the search.
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Our method produces well trained neural networks, trading off additional computational time for
manual labour. We simultaneously produce better networks while constructing an ensemble in an
unsupervised manner (in the colloquial sense). Thus, if the ensemble produces results which are
“good-enough”, we are done. On the other hand, if additional precision is required, we observe
successful models as the generations progress. These serve as a good foundation for further fine-
tuning. Finally the method can be extended beyond neural network architecture to also optimize for
other hyperparameters: the regularization rate, learning rate, dropout rate, etc.

2 Genetic Algorithm’s for NN Architecture

A genetic algorithm is an optimization strategy that mimics the principles of evolution to search the
parameter space Θ, where Θ is a d dimensional space of parameters. This occurs in four stages:
initialization, selection, crossover, and mutation [? ].

We begin with a population P ⊂ Θ, called phenotypes. The phenotypes are encoded into a d-
dimensional vectors; with each component representing a characteristic of the population called a
gene. Each phenotype’s fitness is computed via a fitness function f : Θ → R. Fitter phenotypes
are more likely to be selected to proceed into the next generation. Some of the selected phenotypes
breed by exchanging genes (known as crossover) to produce offspring - the next generation. To allow
exploration of other genes not part of the initial population, we mutate some of the genes. That is we
allow some genes to reinitialize with given probability. The process is repeated until some stopping
criterion is met. In principal this should produce a population that converges to a higher fitness level
as the generations progress.

2.1 Initialization

Given a neural network with L layers, the architecture is specified by the number of hidden units in
each layer. Thus, the parameter space searched is the set of possible architectures Θ = NL. Each
x ∈ Θ is a vector where xi represents the number of hidden units in layer i. Instead of N, we
limit our search to the cube Θ = [1, N ]L, for some N . We initialize our population size M by
setting P0 = {x1, . . . , xp}, where xj is a random vector chosen uniformly from Θ. A population in
generation t is denoted by Pt.

2.1.1 Fitness

Given a trained neural neural network with architecture x, the fitness f(x) is the performance of the
network on a validation set.

2.2 Selection

Recall the population at generation t is Pt. The fitter phenotypes in Pt are more likely to be selected
than the weaker ones by letting p(x), the probability that x ∈ Pt is chosen, be proportional to its
fitness. Namely:

p(x) =
f(x)∑
y∈Pt

f(y)
.

Let P̃t denote the new population of size M generated and sampled from Pt via p(x).

2.3 Crossover

During the crossover phase, each phenotype in P̃t is chosen to breed with some probability κ - the
crossover rate . In preliminary testing, we found κ = 0.3 to be a good value. Generally, the algorithm
was not very sensitive to the crossover rate.

Let x̃1, . . . , x̃m ⊂ P̃t denote the phenotypes that are chosen for breeding. Since they are already
random, we decided to breed the genes of x̃i with x̃i+1, where the subscripts are mod m. For each
1 ≤ i ≤ m, we pick a random integer 1 ≤ ki < L and define the child x̂i by the vector

(x̂i)j =

{
(x̃i)j if 1 ≤ j ≤ ki
(x̃i+1)j if ki < j ≤ L
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Let P̂t denote P̃t, where x̃i is replaced with x̂i.

2.4 Mutation

Finally, to bring some genetic diversity into the population, we allow some of the genes to mutate.
For each x̂ ∈ P̂t, and for each 1 ≤ j ≤ L, we let (x̂)j reinitialize to an integer between 1 and N with
probability µ, called the mutation rate. We found that µ = 0.3 worked well. As with the crossover
rate, the algorithm was not particularly sensitive to the mutation rate. Where a greater mutation rate
proved useful was when an evolution got stuck in a rut - when every member of the population has
the same low fitness. In these cases, a higher mutation rate allowed the population to exit the rut
faster. After mutation has occurred the generation t is over. The new post-mutation population is
denoted Pt+1.

The procedure now repeats starting with the fitness phase for a specified number of generations.

2.5 Ensemble Classifier

To get to generation t, we must train each model in Ps for s < t. Although the latter generations
generally produced fitter individuals than previous generations, many already trained networks in
previous generations exhibited strong fitness. Pooling all the networks above a fitness threshold F0

allows us to create a robust ensemble. Let Qt denote all the trained networks x ∈ Ps, such that
f(x) ≥ F0 for s ≤ t. We then create a new model Mt, where we take the mode of the predictions of
networks in Qt. Mt is a diverse ensemble. The new networks added to the ensemble are the ones that
survive the death-match described above, and thus are getting progressively fitter. This process leads
the ensemble to become fitter as the evolution progresses.

2.6 Related work

There have been many approaches to the problem of finding a suitable model for the structure of
a neural network. Adams, Wallach, and Ghahramani in [AWG10] used a non-parametric Bayesian
approach to find an optimal network. They used a cascading Indian buffet process to create a prior
over the number of layers and hidden units, with a Gaussian prior on the weights. To make inferences
from the model, the (non-analytic) posterior is sampled using MCMC. The benefit of their approach
is that they do not need to assume the number of layers. In addition to the complexity of the model,
this approach is very dependent on the prior imposed on all the parameters. Moreover, MCMC can
take a long time to converge. Therefore, this approach is highly sensitive to assumptions, and may be
ill suited for certain problems.

There have been many different neuro-evolution approaches to construct and train neural nets. Stanley
& Miikkulainen in [SM02], and Stepniewski & Keane in [SK96], have used genetic algorithms to
encode both the structure and the weights; training and evolving the model without the need for a
backpropagation implementation. Their approach allows for the possibility of certain connections
between nodes to not exist, instead of having each layer fully connected. In contrast to our model,
running each generations is computationally inexpensive, although the number of generations required
to achieve a reasonably well trained network is very high, and convergence can be slow.

The ways to implement genetic algorithms to evolve neural networks are numerous, as evidenced
by [MTH89],[MD89], and [tZM93]. These use different approaches than ours when it comes to
interpreting the fitness functions, the genetic encodings, and crossover, allowing us to present a new
methodology. The idea of using genetic algorithms to evolve neural networks is far from novel.
Our contribution is that the described method is comparatively simple, and lends itself very well
to constructing both strong neural nets and a robust ensemble of them, which none of the above
attempted to do.

3 Experiments

The genetic algorithm with ensemble was implemented in MATLAB. We used a subset of the MNIST
Database of handwritten digits to provide data for a classification task [LC]. To keep training tractable,
we used only a portion of the available data set: 5000 training examples, 5000 validation examples,
and 1000 test examples. Our selected training procedure ran an implementation of stochastic gradient
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descent using a combination of Nesterov update with momentum parameter β, and learning rate α, as
suggested by Sutskever et al. [SMDH13]. We annealed the learning rate with a further parameter δ.
To regularize, we implemented L2 weight decay with parameter λ. Finally we added dropout with
probability p on the second hidden layer,which has been shown to help prevent over-fitting [SHK+14].
We ran this for a constant I iterations to train each neural network. When the ensemble stopped
improving on the validation result, we stopped producing new generations, as long the evolution was
not in a rut. We define a rut as a state where all members of a generation are nearly equally fit, and
produce a poor output (usually about random for classification).

3.1 Implementation Details

3.1.1 Stochastic Gradient Descent

We implemented stochastic gradient descent with the following Nesterov style updates:

wt+1 = wt − αt∇f(wt − βt(wt − wt−1)) + βt(w
t − wt−1)

where αt is the learning rate αδτ and τ =
⌊
10t
I

⌋
. That is the learning rate decays by δ every

⌈
I
10

⌉
iterations. The parameter βt is the momentum parameter.

3.1.2 Regularizaton and Dropout

We implemented standard L2 weight decay, as well as dropout. We performed the scaling of the
weights during training rather than testing. This allows us to leave the weights untouched during
testing and validation, making for a cleaner implementation.

3.1.3 Loss, Activation, and Fitness Functions

Our implementation used a tanh activation function, with a standard least squares loss function. The
fitness function used was the proportion of correctly classified items in a validation set.

3.2 Experimental Results

We trained networks with two, three, and four hidden layers respectively. The following parameters
were used for each run:

• Max Population N = 250
• Population M = 8
• Crossover κ = 0.3
• Mutation µ = 0.3
• Fitness Cutoff F0 = 0.8

• Iterations I = 250,000
• Learning Rate α = 0.01
• Learning Rate Annealing δ = 0.7
• Momentum βt = 0.9 for all t
• Dropout Probability p = 0.5

Every ensemble of networks was trained five times. When the fitness of the ensemble stopped
rising on the validation set, the training was ended and the learned weights were used on the test set.
The fittest single neural net encountered during the evolution was also reported. The figure below
summarizes the findings. The box plots represent the fitness of the trained ensembles on the test set,
while the x marks represent the fittest and least fit individual neural network found over all training
runs. The black x marks represent the fittest individuals, while the green x marks represent the least
fit. The full data set is reported in Appendix A.
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Figure 1: Fitness Evaluation

In figure 1, a few things are immediately noticeable. Firstly, except in a few cases, the ensemble
outperformed the fittest individual. This is to be expected. This trend however was not observed with
two hidden layers. This is likely due to the fact that two hidden layers are simply not complex enough
to capture the full intricacies of the features. During the evolution of two hidden layer populations, we
saw more frequent and longer ruts. In general very few two hidden layer neural networks performed
better than a random classifier, and those that did perform better often did not perform particularly
well. Thus the ensemble contained a number of relatively poor neural networks, even with a high
fitness cutoff F0 of 0.8. While a lower fitness cutoff did not perform more poorly in general, it also
did not perform better. Training simply took longer, as a greater number of less fit individuals were
admitted to the ensemble.

Secondly, there is a clear delineation between the different number of layers of hidden units. In
particular, two hidden layers performed the worst, while three hidden layers performed the best. What
is remarkable is how tightly the results were coupled to the network architecture. Not a single of
the fittest two hidden layer networks in a run performed as well as any of the fittest in a four hidden
layer network. Similarly, the three hidden layer networks summarily outperformed the two and four
hidden layer networks. The only slight aberration was the fittest four hidden layer network in a single
run marginally outperformed the least well performing of the individual fittest networks with three
hidden layers; however the difference is so slight it can be ignored - 0.9638 vs 0.9642 which equates
to two additional correct classifications per five thousand predictions. The same pattern holds for
the ensemble classifiers. Every three hidden layer ensemble outperformed every four hidden layer
ensemble, which in turn outperformed every two hidden layer ensemble.

A further delineation between the different number of layers of hidden units was that networks with
more layers tended to have fewer ruts, and exited ruts faster. Both one hidden layer and five hidden
layer networks were also tested, however one hidden layer networks performed abysmally. Due to
the long computation times involved with training deeper networks, a full complement of five runs
was not tested for five hidden layer networks. Five hidden layer networks performed in general no
better than four hidden layer networks, based on the preliminary tests run.

Finally, the ensembles were remarkably consistent. The best and worst ensemble classifiers in a
given architecture differed by a rate of only four correct predictions per thousand for the two and
three hidden layer networks, and only three correct predictions per thousand for the four hidden
layer network on the test set. The fittest individual networks in each run similarly showed a tight
coupling. This is somewhat surprising, as the high non-convexity of the loss function, along with
gradient descent can lead to considerable variability even when training two networks with the same
parameters.

On the other hand, while the networks were clearly delineated by the number of hidden layers, within
a family of networks with the same number of hidden layers, the results were much less clear. Well
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over 50% of networks encountered during our training runs were no better than random. Those
that were better than random usually displayed quite strong fitness (0.5000 or better, with most in
the 0.7500 and up range). Furthermore amongst the fittest networks, there was quite a variety of
phenotypes, though most of the fittest networks had a decreasing number of hidden units in the higher
hidden layers. An increasing number of hidden units in the higher hidden layers was particularly bad
for performance on this data set. When a given network layout worked well, perturbing the number
of units per hidden layer by a slight amount generally had little effect. Thus while the search space is
vast, as long as the perturbations were small, the exact structure was not overly sensitive.

The ensembles were compared to a hand tuned neural network which achieved an error rate (fitness)
of 0.9710 on average, and a best fitness of 0.9750 over multiple training runs on the test set. This
network however was trained with 500,000 iterations rather than 250,000 iterations. When comparing
with the fittest reported three hidden layer networks, and then training those networks for 500,000
iterations, we saw results that were very close without further tuning, around 0.9680 on average.
Thus the fittest networks produced automatically were within 0.3% or three correct predictions per
thousand. Looking at the ensembles produced, we saw results that matched the hand tuned network.

4 Discussion and Future Work

4.1 Strengths/Contributions

The results witnessed where somewhat surprising. The initial motivation was to cut down the time
needed to hand tune a neural network, by providing some insight into network configurations which
produced acceptable results. The method however exceeded our expectations, providing results as
good as those produced by many man-hours of laborious hand tuning. In particular, the ensembles
produced were as capable as the best hand tuned networks, even over multiple training runs. The
result is a robust method which provides both good candidates for further hand tuning and strong
ensembles. The fittest networks can give good insight into an overall distribution over possible
architectures, which can serve as a starting point for further Bayesian methods. The real strength of
this approach lies in the automated nature of the procedure which is generally only limited by time
and available computing power.

4.2 Criticisms

One downfall to this method is that many neural networks need to be trained. For smaller, less
complicated networks, they can be trained in reasonable time on standard computer hardware. The
data set used is known to be somewhat simple which allows less complicated neural networks to
perform well. Other data sets may require more complicated and deeper neural nets to show similar
performance. For very deep nets with many units per layer, it could take weeks or even months to
complete an evolution. For comparison, each evolution presented in this paper took about 10-20
hours to train on a standard laptop with an Intel i7 Processor. The algorithm however is eminently
parallelizable. Training the networks in each generation can be done completely in parallel, and can
be implemented in a straightforward manner to run on GPU architectures. Thus training can be sped
up considerably.

We implemented and explored the architecture in a discrete way, setting the number of hidden layers
manually. Networks with disparate numbers of hidden layers were never directly compared by our
method. The method however, is perfectly general, and this can be easily accommodated. Additional
parameters can be easily added to the phenotype vectors.

4.3 Next steps

The results warrant further work. Firstly, the additional parameters which were held fixed should be
added to the phenotype vector, allowing more general mixing and evolution. This will likely lead
to even better results, as the chosen values for the fixed parameters where generally just the typical
values found in literature. Secondly, new data sets should be explored. While the method proved
robust on the chosen dataset, this need not hold in general. Further parameters can be added as well.
For example, the momentum parameter could be annealed.
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The ensemble generation could also be improved. A soft-max style implementation of the classifier
could be used. The results of the individual networks in the ensemble could also be scaled by their
fitness. Furthermore, the fitness cutoff Ft could increase over time, allowing less fit networks into the
ensemble initially, but only the very fittest as the gains from incremental networks decrease. One
could also feed back the overall fitness of the ensemble to determine the best cutoff evolution as time
progresses.

Finally in order to deal with larger and deeper nets, an implementation of this method using GPUs
and parallel processing would be highly beneficial to further experimentation. MATLAB may not be
the ideal platform, and other implementations may be better suited to environments such as THEANO
or PYTHON.

5 Conclusion

We set out to produce capable neural networks with minimal user intervention and hand tuning.
Turning to a genetic style algorithm, we were able to generate many fit neural networks, and
combining them into an ensemble, found results as good as those of finely hand tuned networks. Our
results exceeded our expectations, providing excellent candidates for further hand tuning, even with
only a few parameters considered by the genetic algorithm. This technique shows great promise, and
further work could allow for even fitter individuals and ensembles.
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A
Appendix

Experimental Results Tables

Fitness Evaluation L = 2 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Max Min Mean
Individual Maximum 0.9502 0.9496 0.9512 0.9522 0.9512 0.9522 0.9496 0.9509
Ensemble Validation 0.9446 0.9454 0.9478 0.9508 0.9504 0.9508 0.9446 0.9478
Ensemble Test 0.9530 0.9500 0.9510 0.9530 0.9490 0.9530 0.9490 0.9512

Fitness Evaluation L = 3 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Max Min Mean
Individual Maximum 0.9668 0.9654 0.9672 0.9654 0.9638 0.9672 0.9638 0.9657
Ensemble Validation 0.9678 0.9706 0.9700 0.9710 0.9698 0.9710 0.9678 0.9698
Ensemble Test 0.9710 0.9730 0.9730 0.9750 0.9720 0.9750 0.9710 0.9728

Fitness Evaluation L = 4 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Max Min Mean
Individual Maximum 0.9642 0.9640 0.9626 0.9620 0.9596 0.9642 0.9596 0.9625
Ensemble Validation 0.9652 0.9650 0.9644 0.9640 0.9620 0.9652 0.9620 0.9641
Ensemble Test 0.9650 0.9630 0.9650 0.9640 0.9650 0.9650 0.9630 0.9644
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