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Submodularity in Machine Learning

What are submodular functions

Motivation

Motivation

In combinatorial optimization we are interested solving problems of
the form

max{f (S) : S ∈ F}
min{f (S) : S ∈ F}

Where f is some function and F is some discrete set of feasible
solutions. To make the above problems tractable we can either

Work with each problem individually or

Try an capture the properties of f and F that make the above
tractable.
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Submodularity in Machine Learning

What are submodular functions

Motivation

Motivation

In the continuous case we have have that f : Rn → R can be

minimized efficiently if f is convex and

maximized efficiently if f is concave.

We want to find the analogy to discrete functions.

Submodularity is plays the role of concavity/convexity in the
discrete regime.
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Submodularity in Machine Learning

What are submodular functions

Motivation

Why should you care about submodularity?

There are many problems in machine learning that can be
reformulated in the context of submodular optimization. They have
provided elegant solutions to many important problems including:

Coverage of sensor networks

Variable selection/regularization

Clustering

MAP decoding in graphical models
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Submodularity in Machine Learning

What are submodular functions

Motivation

Notation

For the rest of this talk we will assume V is a set of size n and

F : 2V → R

where 2V is the set of all subsets of V . Furthermore, we will
assume F (∅) = 0

Given S ∈ 2V , we define FS : V → R by

FS(i) = F (S ∪ {i})− F (S).

FS(i) represents the marginal value of i with respect to S .
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Submodularity in Machine Learning

What are submodular functions

Motivation

Submodularity

Definition

F is submodular if for all S ⊂ T and j ∈ V \T

FS(j) ≥ FT (j).

F is supermodular if −F is submodular.
F is modular (or additive) if it is both submodular and
supermodular.
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Submodularity in Machine Learning

What are submodular functions

Motivation

Intuitively the submodular condition says that “you have more to
gain from something new, if you have less to begin with.”

Note: Sometimes the less intuitive (but equivalent) definition of
submodularity is used. F is submodular if for all A,B ⊂ V

F (A) + F (B) ≥ F (A ∪ B) + F (A ∩ B).
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Submodularity in Machine Learning

What are submodular functions

Submodularity and Concavity

More Notation

Note that F : 2V → R induces a function F̂ : {0, 1}n → R by

F̂ (1A) = F (A)

Where 1A is the indicator function for A. I.e.,

1A = (xA1 , . . . , x
A
n )

Where xAi = 1 if i ∈ A and 0 otherwise.

We will use F̂ and F interchangeably.

9 / 39



Submodularity in Machine Learning

What are submodular functions

Submodularity and Concavity

Submodularity and Concavity

In some sense submodular functions are the discrete analogue of
concave functions.

f : R→ R is concave is the derivative f ′(x) is non-increasing
in x .

F : {0, 1}n → R is submodular if ∀i the discrete derivative,

∂i f (x) = f (x + ei )− f (x),

is non-increasing in x .

Furthermore if g : R+ → R is concave, then F (A) = g(|A|) is
submodular.
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Submodularity in Machine Learning

What are submodular functions

Examples

Examples of submodular functions

Coverage function. Suppose (Ai )i∈V are measurable sets .
Then

F (S) = |∪i∈SAi |

is submodular.
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Submodularity in Machine Learning

What are submodular functions

Examples

Examples of submodular functions

Cut functions. Given a (un)directed graph (V ,E ). Define
F (A) to be the total number of edges from A to V \A is
submodular.

More generally if d : V × V → R+ then

F (A) =
∑

i∈A,j∈V \A

d(i , j)

is submodular.
12 / 39



Submodularity in Machine Learning

What are submodular functions

Examples

Examples of submodular functions

Entropy. Given n random variables (Xi )i∈V , define

F (A) = H(XA)

to be the joint entropy. Then F is submodular.

Indeed, suppose that A ⊂ B, k ∈ V \B, then

F (A ∪ {k})− F (A) = H(XA,Xk)− H(XA)

= H(Xk |XA)

≥ H(Xk |XB)

Mutual information also submodular.

I (A) = F (A) + F (V \A)− F (V )
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Submodularity in Machine Learning

Properties of submodular functions

Properties of Submodular Functions

Positive linear combinations: If Fi are submodular and
αi ≥ 0 then ∑

i

αiFi

is submodular.

Restriction/marginalization: If B ⊂ V and F is
submodular, then

A→ F (A ∩ B)

is submodular on V and B.
Contraction/conditioning: If B ⊂ V and F is submodular,
then

A→ F (A ∪ B)− F (B)

Is submodular on V and V \B
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Submodularity in Machine Learning

Properties of submodular functions

Properties of Submodular Functions

Remark: If F ,G are submodular then

max{F ,G},
min{F ,G}

need NOT be submodular.
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Submodularity in Machine Learning

Properties of submodular functions

Submodularity and Convexity

Submodularity and Convexity

Although submodular functions are defined like concave functions,
their behaviour is very similar to convex functions. Before we
explore this relation, we will need more notation.

Given x ∈ Rn
+, A ⊂ V define

x(A) =
∑
i∈A

xi = xT1A

Where 1A ∈ Rn is the indicator of A.
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Submodularity in Machine Learning

Properties of submodular functions

Lovász Extension

Lovász Extension

Given F : {0, 1}n → R we will define the Lovász extension
f : Rn → R as follows. For w ∈ Rn, order wj1 ≥ · · · ≥ wjn and then

f (w) = wj1F ({j1}) +
n∑

k=2

wjk [F ({j1, . . . , jk})− F ({j1, . . . , jk−1})]

= wj1F ({j1}) +
n∑

k=2

wjkFVk−1
(jk)

Where Vk = {j1, . . . , jk}.

Intuitively you are summing the marginal gains of F , weighted by
the components of w .
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Submodularity in Machine Learning

Properties of submodular functions

Lovász Extension

Lovász Extension

The following are equivalent definitions of the Lovász Extension.

f (w) = wj1F ({j1}) +
n∑

k=2

wjkFVk−1
(jk) (1)

=
n−1∑
k=1

(wjk − wjk+1
)F (Vk) + wjnF (V ) (2)

=

∫ ∞
wjn

F (w ≥ z)dz + wjnF (V ) (3)

= sup
x∈P(F )

wT x (4)

Where P(F ) = {x ∈ Rn : ∀A ⊂ V , x(A) ≤ F (A)}, is the
submodular Polyhedra.
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Submodularity in Machine Learning

Properties of submodular functions

Lovász Extension

Properties of Lovász Extension

f is indeed an extension of F . For A ⊂ V ,

f (1A) = F (A).

f is peicewise affine

f is convex iff F is submodular

If f is restricted to [0, 1]n, then f attains it’s minimum at the
corner! I.e.

min
w∈[0,1]n

f (w) = min
x∈{0,1}

F (x)

20 / 39
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Submodularity in Machine Learning

Submodular minimization

Minimization of Submodular functions

Suppose we now want to find the minimizing set of a submodular
function. Ie, we want to find

A∗ = argmin{F (A) : A ⊂ V }

By the Lovász extention it is equivalent to finding

argmin{f (w) : w ∈ [0, 1]n},

where f is the Lovász function of F .

Theorem

f can be minimized using the Ellipsoid method in O(n8 log2 n).
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Submodularity in Machine Learning

Submodular minimization

Symmetric Submodular Functions

Symmetric Submodular Functions

We can knock down that O(n8) time down if we impose some
extra structure onto F .

We say that F is symmetric if F (A) = F (V \A). Examples
include:

Mutual Information. Given random variables (Xi )i∈V then

F (A) = I (XA;XV \A) = I (XV \A;XA) = F (V \A)

Cut functions. Given a weighted graph (V ,E ), with weights
{d(e)}e∈E

F (A) =
∑

i∈A,j∈V \A

d(i , j) = F (V \A).
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Submodularity in Machine Learning

Submodular minimization

Symmetric Submodular Functions

Symmetric Submodular functions

Note that for symmetric sub modular functions

2F (A) = F (A) + F (V \A)

≥ F (A ∩ (V \A)) + F (A ∪ (V \A))

= F (∅) + f (V )

= 2F (∅)
= 0

So F (A) is trivially minimized at V . We are interested in

argmin{F (A) : A ⊂ V , 0 < |A| < n}
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Submodularity in Machine Learning

Submodular minimization

Symmetric Submodular Functions

Theorem (Queyranne 98)

If F is a symmetric submodular function, then there is a fully
combinatorial, algorithm for solving

argmin{F (A) : A ⊂ V , 0 < |A| < n}

with run time O(n3).

The algorithm is very easy to implement but requires some new
machinery that we don’t have time for.

See slides 47-53 of
“http://submodularity.org/submodularity-slides.pdf”
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Submodularity in Machine Learning

Submodular minimization

Example: Clustering

Example: Clustering

Suppose we want to partition V into k clusters A1, . . . ,Ak such
that

F (A1, . . . ,Ak) =
k∑

i=1

E (Ai )

Where E is some submodular function such as Entropy, or a cut
functions.

In the special case of k = 2, then

F (A) = E (A) + E (V \A)

is symmetric and submodular and thus we can apply Queyranne’s
algorithm

26 / 39
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Submodularity in Machine Learning

Submodular minimization

Example: Clustering

Example: Clustering

When k > 2 we can apply a greedy slitting algorithm.

1 Initially let the partition P1 = {V }.
2 For i = 1 . . . k − 1.

For each Cj ∈ Pi ;

Get a partition P j
i from splitting Cj in 2 using Queyranne’s

algorithm.
Pi+1 = argminF (P j

i )

Theorem

If P is the partition of size k from the greedy splitting algorithm,
then

F (P) ≤
(

2− 2

k

)
F (Popt)

27 / 39
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Example: Clustering

Example: Clustering
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Submodularity in Machine Learning

Submodular minimization

Example: Image Denoising

Example: Image Denoising

Suppose we have a noisy image and we want to find the true
underlying image?

29 / 39



Submodularity in Machine Learning

Submodular minimization

Example: Image Denoising

Example: Image Denoising

Suppose we have a Pairwise Markov Random Field. Suppose Yi

are the true pixels and Xi are the “noisey” ones.

So we have the graphical model,

P(X1, . . . ,Xn,Y1, . . . ,Yn) =
∏
i ,j

ψi ,j(Yi ,Yj)
∏
i

φi (Xi ,Yi )

30 / 39
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Submodular minimization

Example: Image Denoising

Example: Image Denoising

To find the MAP estimate we want,

argmaxYP(Y |X )

=argmaxYP(X ,Y )

=argminY
∑
i ,j

Ei (Yi ,Yj) +
∑
i

Ei (Yi )

Where

Ei ,j(Yi ,Yj) = − logψi ,j(Yi ,Yj)

Ei (Yi ) = − log φi (Xi ,Yi )

In genral When is the MAP inference efficiently solvable (in high
tree width graphical models)? In general it is NP-hard.
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Submodular minimization

Example: Image Denoising

Example: Image Denoising

Suppose yi are binary, then we have

Theorem (Kolmogorov, Kabih,’04)

MAP inference problem is solvable by graph cuts
iff for all i , j ,

Ei ,j(0, 0) + Ei ,j(1, 1) ≤ Ei ,j(0, 1) + Ei ,j(1, 0)

iff each Ei ,j is submodular.

See
”http://www.cs.cornell.edu/~rdz/papers/kz-pami04.pdf”
if you are interested in seeing the details.

32 / 39

http://www.cs.cornell.edu/~rdz/papers/kz-pami04.pdf


Submodularity in Machine Learning

Maximization

Outline

1 What are submodular functions
Motivation
Submodularity and Concavity
Examples

2 Properties of submodular functions
Submodularity and Convexity
Lovász Extension

3 Submodular minimization
Symmetric Submodular Functions
Example: Clustering
Example: Image Denoising

4 Maximization
Greedy algorithm
Examples

5 References
33 / 39



Submodularity in Machine Learning

Maximization

Submodular maximization

Again, even though submodular functions are defined to emulate
concave functions, in practice they behave like convex ones.

Convex functions:

Minimizing ⇒ polynomial time

Maximizing ⇒ NP-hard

Submodular functions:

Minimizing ⇒ polynomial time

Maximizing ⇒ NP-hard

BUT all hope is not lost, as we can sometimes efficiently get
approximate guarantees!
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Maximization

Monotonic Functions

We say that F is monotonic if A ⊂ B then

F (A) ≤ F (B)

Some examples include:

Coverage function. If (Ai )i∈V are measureable sets, then
A ⊂ B ⊂ V ,

F (A) = |∪i∈AAi | ≤ |∪i∈BAi | = F (B)

Entropy. If (Xi )i∈V are random variables then if
B = A ∪ C ⊂ V ,

F (B) = H(XA,XC ) = H(XA) + H(XC |XA) ≥ H(XA) = F (A)

Similarly Information Gain is an other example.
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Maximization

Greedy algorithm

Greedy Algorithm

For monotonic functions we clearly have F is maximized at V . So
we are interested in the constraint problem:

argmax|A|≤kF (A).

We will apply the greedy approach.

1 Initialize A0 = ∅
2 For i = 1 to k:

xi = argmaxxFAi−1 (x) = argmaxxF (Ai−1 ∪ {x})− F (Ai−1)
Ai = Ai−1 ∪ {xi}

Theorem (Nemhauser et al 78)

Given a monotonic submodular function F , then

F (Agreedy ) ≥
(

1− 1

e

)
max
|A|≤k

F (A) ≈ 0.63 max
|A|≤k

F (A)
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Maximization

Examples

Example: Variance Reduction

Suppose we have the linear model

Y =
n∑

i=1

αiXi

Each Xi represents a measurement by some sensor i with joint
distribution P(X1, . . . ,Xn).
Let V denote the set of possible sensors.
Sensors are expensive so we want to pick the best k sensors
that minimized the variance in the prediction Y .

We want to find |A| ≤ k such that Var(Y |XA) is minimized.
Equivalently we want to find A such that the variance reduction is
maximized ie.

F (A) = Var(Y )− Var(Y |XA)
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Maximization

Examples

Example: Variance Reduction

argmax|A|≤kF (A) = argmax|A|≤kVar(Y )− Var(Y |XA)

In general this problem is NP-hard but It should be noted that F is
always monotonic.

Theorem (Das & Kempe, 08)

If X1, . . . ,Xn are jointly Gaussian, then F is submodular.

Thus we can apply the greedy algorithm!
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These are some of the sources I used to prepare for this talk and I
think are good to check out in case you are further interested in
submodularity or want more of a rigourous treatment.

Some slides worth reading:

http://www.di.ens.fr/~fbach/submodular_fbach_

mlss2012.pdf

http://submodularity.org/submodularity-slides.pdf

http://theory.stanford.edu/~jvondrak/data/

submod-tutorial-1.pdf

The following notes from Francis Bach were very helpful especially
if you are interested in the theory as opposed to a big picture
overview.

http://arxiv.org/pdf/1010.4207.pdf
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