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When to be discrete: the importance of time
formulation in understanding animal movement
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Abstract

Animal movement is essential to our understanding of population dynamics, animal behavior, and the
impacts of global change. Coupled with high-resolution biotelemetry data, exciting new inferences about animal
movement have been facilitated by various specifications of contemporary models. These approaches differ, but most
share common themes. One key distinction is whether the underlying movement process is conceptualized in discrete
or continuous time. This is perhaps the greatest source of confusion among practitioners, both in terms of
implementation and biological interpretation. In general, animal movement occurs in continuous time but
we observe it at fixed discrete-time intervals. Thus, continuous time is conceptually and theoretically appealing,
but in practice it is perhaps more intuitive to interpret movement in discrete intervals. With an emphasis on state-space
models, we explore the differences and similarities between continuous and discrete versions of mechanistic
movement models, establish some common terminology, and indicate under which circumstances one form
might be preferred over another. Counter to the overly simplistic view that discrete- and continuous-time
conceptualizations are merely different means to the same end, we present novel mathematical results revealing
hitherto unappreciated consequences of model formulation on inferences about animal movement. Notably, the speed
and direction of movement are intrinsically linked in current continuous-time random walk formulations, and
this can have important implications when interpreting animal behavior. We illustrate these concepts in the
context of state-space models with multiple movement behavior states using northern fur seal (Callorhinus
ursinus) biotelemetry data.

Keywords: Animal location data, Diffusion, Movement model, Random walk, State-space model, Switching
behavior, Telemetry
Introduction
Animal movement is at the heart of many important
ecological processes and considered essential for a better
understanding of population dynamics, animal behavior,
and the impacts of global change. However, movement
is a complex process modulated by many factors acting
at different spatial and temporal scales. Our ability to
study animal movement has been bolstered by recent
advances in animal-borne biologging technology that
have permitted the collection of detailed location and
biotelemetry data [1-3]. The quality and quantity of in-
formation from these devices is rapidly increasing, and
there has been a recent flood in the development of
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sophisticated statistical models that use these data for
model-based inferences about animal movement and as-
sociated behaviors [4-8].
This myriad of new methods for analyzing movement

data can make the selection of any particular method (or
model) a difficult task, particularly for ecologists and
wildlife biologists without formal statistical training. This
poses a dilemma because ecologists and biologists con-
stitute the vast majority of scientists collecting the very
data for which these methods were developed. The com-
plexities of animal movement and location data require
sophisticated analytical techniques, but we believe that
the inconsistent mathematical and statistical jargon used
to describe these methods may be discouraging their
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widespread application by non-statisticians. In our ex-
perience, the greatest source of confusion among prac-
titioners, both in terms of implementation and biological
interpretation, seems to be the distinction between
continuous- and discrete-time formulations of the
movement process.
Here we briefly review several of the model-based

(non-phenomenological) approaches for analyzing ani-
mal location data that have been proposed in recent
years. We then focus on how time is formulated in these
movement process models, establish some common ter-
minology (see Table 1), elucidate the differences and
similarities among them, and identify some potential
advantages and limitations. We also present novel
mathematical results (see Does a continuous- or discrete-
time formulation really matter?) refuting the overly
simplistic view that discrete- and continuous-time concep-
tualizations are merely different means to the same end in
terms of inferences about animal movement. We then illus-
trate these concepts in the context of state-space models
Table 1 Glossary

Term Definition

Behavioral state A discrete (and typically latent) behavior
type of movement.

Brownian motion A simple random walk in continuous tim
with no centralizing tendency.

Central tendency A tendency to move back towards a ce
center of a home range or patch) as a r
movement.

Correlated movement Short-term directional persistence result
continue moving in a similar direction (
moves.

Directed movement Systematic, non-random movement in a
Directed movement associated with a p
gradient, such as a “center of attraction,
directional persistence and/or central te

Directional persistence A tendency for successive movements t

Hidden Markov model A special class of state-space models wi
hidden (e.g., behavioral) states.

Markov process A stochastic process where state transiti
on the current state (first-order Markov
immediately previous states (higher-ord

Multistate model A mixture of random walk models corre
movement behavior states.

Ornstein-Uhlenbeck
(OU) process

A diffusion model with centralizing tend
dependence between observations. Wit
Brownian motion is obtained as a limitin

Random walk Given an initial starting position, a math
generating a stochastic movement traje
walks are often Markov processes and c
discrete or continuous time. They have
persistence or bias.

State-space model A conditionally specified hierarchical mo
system process model and an observati
with multiple movement behavior states using northern fur
seal (Callorhinus ursinus) movement data collected in the
Pribilof Islands of Alaska, USA.

Review
Characterization of the movement process
Regardless of the underlying statistical framework, most
analyses of animal location data that are based on hier-
archical movement models consist of two components: a
mechanistic model for the movement process and a stat-
istical model for the observation process. Although earlier
methods ignored error in the location of observations
[5,9,10], most contemporary approaches simultaneously
model both the movement process and observation process
using a so-called’ “state-space” framework [6,8,11,12].
Recent technological advances (e.g., GPS) are making

location measurement error less of a concern, and this
has allowed greater focus on the development of more
realistic (and biologically meaningful) models for the
movement process. These developments primarily differ
Synonyms

associated with a specific Behavior; behavioral mode

e, i.e., a diffusion model Wiener process

ntral location (e.g., the
esult of directed

Mean-reverting

ing from a tendency to
or velocity) as previous

particular direction.
articular location or
” can result in long-term
ndency.

Biased or oriented movement
(discrete time); drift or advection
(continuous time)

o be in a similar direction.

th a finite number of

ons are dependent only
process) or current and
er Markov process).

sponding to different Mixture model, switching model

ency that accounts for
h no central tendency,
g case.

ematical model for
ctory in space. Random
an be formulated in
no directional

del consisting of a latent
on model.
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in the spatio-temporal conceptualization of the move-
ment process, including discrete-time and discrete-
space [13-15], discrete-time and continuous-space [5,6],
continuous-time and discrete-space [16,17], and continuous-
time and continuous-space [8,9] movement process models
(see Table 2). Although time formulation in continuous
space is our primary focus henceforth, discrete-space
movement models are often employed in the absence
of detailed location data (e.g., capture-mark-recapture
studies e.g., [14,16]), or resource selection studies in
heterogeneous environments e.g., [17]. Latent behav-
iors associated with different types of movement can also
be treated as continuous [18] or discrete [5,6,19,20] states
among which individuals transition in response to changes
in their internal and external environment. Other ap-
proaches go a step further by attempting to combine
“macroscopic” resource selection models with “micro-
scopic” discrete- or continuous-time movement process
models [7,21-27].
Before proceeding, we note that hierarchical discrete-

time, continuous-space movement process models are
often referred to as “state-space” models in the literature.
This is not a misnomer. However, based on conventional
time series jargon, any approach that simultaneously ac-
counts for the system process (i.e., the movement process)
and the observation process through time qualifies as a
state-space model. In this sense, all of the hierarchical
Table 2 Summary of conventional mechanistic movement pro
and space), movement metric, types of movement that are ac
of multiple movement behavior states using multistate mode

Time Space Metric

discrete discrete position

discrete continuous position

discrete continuous position

discrete continuous velocity

discrete continuous step length

discrete continuous step length and turning angle

discrete continuous step length and bearing

discrete continuous step length and bearing

continuous discrete position

continuous discrete position

continuous discrete velocity

continuous continuous position

continuous continuous position

continuous continuous step length and turning angle
velocity

continuous continuous velocity

continuous continuous velocity

continuous continuous velocity

Example references are also provided.
modeling approaches above employ state-space methods.
In the contemporary statistical literature, state-space
models are now more commonly referred to as hier-
archical models; “hierarchical” because the data arise
from a probability distribution that depends on a latent
process, which, in turn, is modeled stochastically [34,35].
We also note that discrete-time movement models where
each behavioral state is associated with a distinct random
walk [5,6,20,30] can be considered as hidden Markov
models, a special class of state-space models with a finite
number of latent states [36].
In general, animal movement occurs in continuous

time but we observe it at fixed discrete-time intervals.
Thus, continuous-time models are conceptually and the-
oretically appealing, but in practice it is perhaps more
intuitive to interpret movement in discrete intervals
(e.g., turning angle and step length per unit time). It
is easier to conceptualize the movement process as a
series of steps and turns sampled from particular dis-
tributions than to deal with partial differential equations.
This may in part explain why the methodological develop-
ment and application of discrete-time models has thus far
exceeded that of continuous-time models.
Whether in discrete or continuous time, most mechanistic

movement process models are based on correlated random
walks. In discrete time, correlated movement is typically
modeled with non-uniform turning angle distributions,
cess models based on spatiotemporal formulation (time
counted for (directed or correlated), and accommodation
ls

Directed Correlated Multistate Reference

NA NA yes [13-15]

yes no yes [28]

yes no no [7]

no yes yes [6]

no yes yes [18]

no yes yes [5]

yes no no [29]

yes yes yes [20,30]

yes no yes [16]

yes yes no [17]

yes yes yes [19]

yes no no [10]

yes no yes [4,9,31]

no yes yes [32]

no yes no [33]

yes yes no [8]

yes yes yes [31]
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usually with mean of zero, which result in short-term
directional persistence between successive time steps.
The more highly correlated movement exhibits turning
angles tending towards zero [5,6]. In continuous time,
correlated movement can be expressed through a spe-
cial type of diffusion model that accounts for depend-
ence between locations, the Ornstein-Uhlenbeck (OU)
process [4,10]. The OU process is essentially a continuous-
time random walk with a tendency to drift towards a cen-
tral location. Using an OU process to model movement
velocity instead of locations, Johnson et al. [8] developed a
correlated random walk model that is a continuous-time
analog to the discrete-time model of Jonsen et al. [6].
Both discrete- and continuous-time random walk models

can incorporate directed (or oriented) movement, but this
is often referred to as “biased” movement in discrete-time
models [20,37] and “drift” or “advection” in continuous-
time models [4,10]. Directed movements are typically asso-
ciated with specific locations in space, such as “centers of
attraction” or “centers of repulsion,” and can be used to
model a general tendency towards the center of a home
range [7,10] or patch [4,20,31]. Thus, directional persist-
ence can result from directed movements, but the long-
term directional persistence that can result from directed
movement is different from the short-term directional per-
sistence associated with a correlated random walk [38].
Under directed movement, longer-term directional persist-
ence results from an individual being constantly pulled to-
wards (or pushed away from) a particular location or
gradient (without explicit consideration of the direction of
previous movements).
Without correlated movements, the discrete-time models

of Morales et al. [5] and Jonsen et al. [6] reduce to simple
random walks. Without directed movements, the discrete-
time model of McClintock et al. [20] reduces to the corre-
lated random walk model of Morales et al. [5]. The OU
process models of Dunn and Gipson [10], Blackwell [4,9],
Johnson et al. [8], and Harris and Blackwell [31] reduce to
Brownian motion (i.e., a continuous-time simple random
walk), using a mathematical limit argument. We note that
because the directional persistence in a correlated random
walk decays exponentially as the time lapse increases, cor-
related random walks can be approximated at larger scales
with a simple diffusion model [16].
To incorporate both correlated and directed move-

ment, the expected direction of movement must reflect
a trade-off between short-term directional persistence
and the strength of bias towards (or away from) a center
of attraction (or repulsion). This has been examined in
discrete time by modeling the expected direction as a
weighted average of the strength of bias in the direction
of the center of attraction and the previous movement
direction [20,37]. Although a similar approach has yet to
be thoroughly investigated in continuous time, this
would be akin to modeling the drift parameter of an
OU process as a function of both directed and corre-
lated movements.

The metrics of movement
Movement metrics also differ among the aforemen-
tioned approaches by specifying the movement process
on the positions themselves [7,9,28] or on derived quan-
tities, such as the differences between consecutive loca-
tions (i.e., velocities) [6,8,19,32,33], step lengths [18], step
lengths and turning angles [5], or step lengths and bear-
ings [20,29] (see Table 2). These movement metrics are
important for model specification and interpretation. For
example, by modeling velocity, the discrete-time model of
Jonsen et al. [6] and the continuous-time model of
Johnson et al. [8] induce dependence between the
speed and direction of movement, so that long steps
are possible when turning angles are small, resulting in
higher-order auto-correlations than found in standard
correlated random walks [5,20]. Although Blackwell
[4,9] models position and Johnson et al. [8] model
velocity, the speed and direction of movement are
intrinsically linked through the drift process of these
continuous-time models (see Does a continuous- or
discrete-time formulation really matter?). By modeling
turning angles independent of step lengths in discrete-
time, Morales et al. [5] could investigate correlated
(but not directed) movements independent of speed. By
modeling bearings using a similar discrete-time movement
process model, McClintock et al. [20] could simultaneously
investigate both correlated and directed movements
independent of speed.

Does a continuous- or discrete-time formulation really
matter?
Outside of fitting them to data and empirically assessing
differences, it is not immediately apparent how alternative
time formulations of movement models differ analytically.
In fact, continuous- and discrete-time formulations are
often over simplistically viewed as merely different means
to the same end. But this is not the case, and we derive
a partial translation here to compare continuous- and
discrete-time formulations with a common and intui-
tive language: step length and bearing.
Kobayashi et al. [39] provides the following necessary

result for two independent normally-distributed random
variables, A and B. If

A;B½ � ¼ N μA; σ
2

� �N μB; σ
2

� �
;

then the distance from the origin, L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
; has a

Rice distribution, R(μ, σ2), where μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2A þ μ2B

p ¼ μk k
is the distance from the origin to the center of the
bivariate normal distribution, σ2 is a variance parameter,
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and NðÞ is the Normal probability density function. The
Rice distribution is a generalization of the Rayleigh
distribution (for μ ≠ 0) whose expected value increases
with increasing values of μ. Further, the bearing θ = tan− 1

(B/A), has the conditional von Mises distribution

�
θ
��L ¼ l

� ¼ VM ω; κð Þ ¼ eκcos θ−ωð Þ

2πI0 κð Þ ;

where κ = lμ/σ2, ω = tan− 1(μB/μA), and I0() is the modified
Bessel function of the first kind and of order 0. The von
Mises distribution is symmetric and centered on the angle
ω, and dispersion decreases with increasing κ values.
We can now translate a time step of the continuous-

time correlated random walk (CTCRW) model of Johnson
et al. [8] to a discrete-time step length and bearing. First,
the transformation of the bivariate velocity process to
speed (distance unit per time unit) and direction is given
by

lt ¼ jjvtjj
and

θt ¼ tan−1 Vy;t=Vx;t
� �

:

The resulting distributions are obtained by applying the
results in Kobayashi et al. [39] to the CTCRW velocity
model equations (see Eqs. 3 and 4 in Continuous-time for-
mulation below). Using the velocity process transformation,

the location step length St ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xtþ1−Xtð Þ2 þ Y tþ1−Y tð Þ2

q
and bearing ϕt = tan− 1{(Yt+ 1−Yt)/(Xt+ 1−Xt)} are distrib-
uted as

St∣lt ;Zt ¼ z½ � ¼ R lt 1−e−βz
� �

=βz; qz;t
� 	

ϕt∣St ; lt ;Zt ¼ z½ � ¼ VM θt ; Stlte−βz=qz;t
� 	

;

where Zt is the latent behavioral state, and qz,t is the
(1,1) (or, (2,2) as they are the same) entry of the
covariance matrix for the velocity process (Qz,t).
There are now notable differences that one can easily

distinguish between the continuous and discrete formu-
lations for step length and bearing distributions. First,
unlike the discrete-time model (see Eqs. 1 and 2 in
Discrete-time formulation below), the step length and
bearing of the continuous-time model are clearly corre-
lated. As step length increases the distribution of the
bearing becomes more concentrated around θt, the la-
tent velocity bearing. Second, given a constant state
process, step lengths are independent in the discrete-
time formulation. However, in the CTCRW model step
lengths are still correlated via the auto-correlated speed
process, lt. Thus, unlike the discrete-time model, the
CTCRW maintains not just directional persistence, but
persistence in speed as well. Note that this result does
not depend on latent behavioral state (Zt) and holds for
movement models with a single behavioral state.
We emphasize that these results are not simply at-

tributable to the fact that the CTCRW model is based
on an integrated OU velocity. They hold analogously
for continuous-time models which use OU process
models for position directly [4,9,31], even if Xt and Yt

are modeled independently (i.e., by setting the off-
diagonal elements of the covariance matrix for the bi-
variate OU process to zero). Using the same result
from Kobayashi et al. [39], the distributions of the step
length and bearing of an OU process directly modeling
position, with central location μ = (μx, μy), are

St∣Zt ¼ z½ � ¼ R Dt μð Þ e−βz−1

 �

; σ2t
� �

ϕt∣St ;Zt ¼ z½ � ¼ VM θt ; St e−βz−1

 �� �

where Dt(μ) and θt are respectively the distance and
bearing from the current position to the central location,
and σ2t is the variance of the OU process at time t. One
can see that the OU model directly applied to the posi-
tions still maintains correlation between step length and
bearing. Moreover, it also possesses the (potentially un-
desirable) quality that movement rate depends on dis-
tance from the point of attraction, thus necessitating
rapid movement that slows as the animal approaches the
central location.

Potential advantages and disadvantages
Given the various ways by which similar movement
properties can be expressed using either discrete- or
continuous-time process models, some potential advan-
tages and disadvantages are evident. Although animal
movement clearly occurs in continuous time, discrete-
time models are often viewed as more intuitive, and per-
haps the biological interpretation of instantaneous move-
ment parameters in continuous time (e.g., those related to
OU processes and other diffusion models) can in practice
be discouraging to applied ecologists wishing to use or ex-
tend continuous-time methods.
Notably, discrete-time models that simultaneously

incorporate multiple latent movement behavior states,
Markov state-switching, correlated movements, and di-
rected movements have already been developed and
fitted to data [5,6,20]. For example, Morales et al. [5]
used a discrete-time random walk mixture model to
examine time allocations and transition probabilities
between two latent movement behaviors in elk: a long-
step, directionally-persistent “exploratory” state and a
short-step, negatively-correlated (i.e., with animals tending
to move in the opposite direction of the previous move)
“encamped” state. Similarly, Jonsen et al. [6] investigated
analogous “transit” and “foraging” movement behavior
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states in seals. Also using seal data, McClintock et al. [20]
developed a biased, correlated random walk mixture
model with five latent movement behavior states allowing
for directed and exploratory movement among foraging
and haul-out locations.
Similar applications of multistate mixture models have

yet to appear in continuous-time (but see Example:
northern fur seal). Blackwell [9] assumed movement
behavior states were known, and Johnson et al. [8] as-
sumed states were defined by known covariates, hence
neither of these approaches included an estimation
framework for both latent movement states and switch-
ing behavior. Hanks et al. [19] extended the framework
of Johnson et al. [8] and Hooten et al. [17] to accommo-
date inhomogeneous movement characteristics along the
movement path using a change-point model. However,
because this approach does not explicitly incorporate
distinct movement behavior states or state-switching
mechanisms with direct biological interpretation, post
hoc cluster analyses were used to identify potential
movement behavior states. Harris and Blackwell [31] re-
cently described a continuous-time multistate mixture
modeling framework, but fitting these models is challen-
ging, and they have yet to be demonstrated using real
data. Part of the difficulty of multistate mixture models
in continuous time is due to the underlying relationships
these models typically impose on the movement charac-
teristics (e.g., speed or directional persistence) com-
monly used to distinguish movement behavior states
(see Does a continuous- or discrete-time formulation
really matter? and Example: northern fur seal). Be-
cause multistate models are of great practical importance
for investigating time allocations to different behaviors
(i.e., “activity budgets”), this currently remains an ad-
vantage of discrete-time models.
Two important disadvantages of discrete-time models

are related to the necessary discretization of the move-
ment path into a finite number of temporally-regular
time steps [40]. The time step length must be specified a
priori, but inferences about animal movement from a
discrete-time analysis are not time scale-invariant. For
example, inferences about bumblebee movement charac-
teristics from discrete-time analyses using 30-second
versus 30-minute time steps would likely be dramatically
different. The 30-second analysis would reveal fine-grain
movement properties but could potentially mask coarser-
grain properties. The 30-minute analysis could reveal
coarse-grain properties, but would completely miss fine-
grain properties. The specification of time step length in a
discrete-time analysis is therefore critical and requires
very careful consideration [41-43], and it is particularly
important that the time step is chosen to match the scale
at which behavioral decisions are made [40]. A major ad-
vantage of continuous-time models is that they avoid
dependence on a particular timescale. Within reasonable
limits, a continuous-time analysis will yield the same re-
sults regardless of the temporal resolution of observations;
if so desired, movement properties from a continuous-
time analysis may be summarized a posteriori for time
steps of any length. However, we note that for any
continuous- or discrete-time approach to be useful,
the temporal resolution of the observed data must be rele-
vant to the specific movement behaviors of interest.
Discrete-time movement models can also be more com-

putationally demanding than continuous-time models.
Unless observations exactly match the regular time steps
required of a discrete-time model, the movement path
must be predicted at temporally-regular intervals. Per-
fectly observed, temporally-regular observations are very
rare in animal telemetry data (especially for marine spe-
cies). For longer time series, this can result in thousands
of additional location parameters that must be estimated.
As movement process models incorporate more details
and realism, model fitting becomes more complex. This is
particularly true for multistate mixture models. Therefore,
once multistate model development and fitting in con-
tinuous time has caught up with that in discrete time, the
computational advantages of continuous-time formula-
tions are likely to be significant.

Example: northern fur seal
To illustrate the concepts elaborated above in the con-
text of state-space models with latent movement behav-
ior states, we apply comparable multistate movement
models in discrete and continuous time to a northern
fur seal track in the Pribilof Islands of Alaska, USA. The
animal was a nursing female equipped with a Mk10-AF
satellite tag from Wildlife Computers (see [44] for full
study deployment details). The Mk10-AF tag has both
Fastloc GPS and time-depth recording capabilities. Using
both location and diving activity data, we wish to iden-
tify and characterize three latent movement behavior
states: “resting,” “foraging,” and “transit”. We define for-
aging (state F) as movement that is characteristic of area
restricted searches and includes foraging dives, where a
foraging dive must have a max depth >5 m and at least
5 changes in vertical direction (i.e., sinuosities or “wig-
gles”). The sinuosities are a characteristic of the animal
chasing prey during the dive. We define transit (state T)
as predominantly travelling with little to no foraging di-
ves, noting that seals may opportunistically feed while
travelling. Resting (state R) is defined by types of move-
ment that do not fall under foraging or transit states, in-
cluding resting at haulouts and resting at sea. In terms
of trajectory, we would expect speeds to be low during
resting and low to moderate during foraging, with little
directional persistence. During transit, we would expect
higher speeds and greater directional persistence.
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The diving activity data were summarized as the num-
ber of foraging dives for each of N = 242 1-hour time
steps between 7–17 October 2007. Although diving data
were logged continuously, location data were obtained
opportunistically at 15-minute intervals. There are there-
fore frequent missing location data due to an inability to
obtain locations while the seal was underwater. Because
the tag possessed GPS capabilities, rather than ARGOS
technology, we expect location measurement error to be
minimal. The raw location data consist of 241 observa-
tions during a single foraging trip (Figure 1), with 40% of
the 1-hour time steps containing no observed locations.

Discrete-time formulation
With the location data being temporally irregular, a
discrete-time analysis requires that the movement path
be estimated at regular time steps. We chose 1-hour
time steps to exactly match the temporal resolution of
the foraging dive data. Using the same state-space for-
mulation as McClintock et al. [20], for time step
t = 1,…, N, and observation i = 1,…, kt, we relate the
irregularly observed locations (xt,i, yt,i) to the tempor-
ally regular model locations (Xt, Yt) using

xt;i ¼ 1−jt;i
� 	

Xt−1 þ jt;iXt þ �xt;i ;

and

yt;i ¼ 1−jt;i
� 	

Y t−1 þ jt;iY t þ �yt;i ;

where jt,i ∈ [0, 1) is the proportion of the time interval
between locations (Xt − 1,Yt − 1) and (Xt,Yt) at which the
ith observation between times t- 1and t was obtained,

�xt;i � ¼ N 0; σ2x
� �

;
� ½�yt;i � ¼ N 0; σ2y

� 	
; …½ � indicates the

probability density function for the random variable in
Figure 1 Observed locations during a foraging trip 10–17 October
Islands, Alaska.
brackets, and NðÞ is the Normal (Gaussian) density.
Time steps with no observations (i.e., kt = 0) do not con-
tribute to the observation model.
We then model movement between the temporally

regular locations using a multistate correlated random
walk model [5,20]. Specifically, we assume that, condi-
tional on the behavioral state, Zt, the step length at time
t, St, is distributed as

�
St
��a; b;Zt ¼ z

� ¼ Weibull az; bzð Þ ¼ bz
az

St
az

� bz−1

�exp −
St
az

� bz
" #

ð1Þ
where St ≥ 0, z ∈ {R, F, T} is the unknown latent behav-
ioral state, and az and bz are state-dependent scale and
shape parameters, respectively. The Weibull distribution
is popular for modeling step length because of its flexi-
bility; it has fat tails when bz < 1, reduces to an exponen-
tial distribution when bz = 1, has exponential tails when
bz > 1, and can resemble a normal distribution when bz ≈
3.4. The bearing of movement, ϕt, is modeled with the
wrapped Cauchy distribution�

ϕt

��ϕt−1; ρ;Zt ¼ z
� ¼ wCauchy ϕt−1; ρz

� �
¼ 1−ρ2z

2π 1þ ρ2z−2ρzcos ϕt−ϕt−1ð Þ� �
ð2Þ

where 0 ≤ ϕt < 2π, ϕt − 1 is the previous bearing, and
− 1 < ρz < 1 is the state-dependent dispersion parameter.
Unfamiliar to most non-statisticians, the wrapped
Cauchy distribution converges to a uniform distribution
over the circle as ρz goes to zero. As ρz goes to 1 (or − 1),
2007 for a northern fur seal that hauls out in the Pribilof
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the distribution tends to a point mass concentrated
towards (or away from) the previous bearing. Standard
correlated movement is typically modeled with the wrapped
Cauchy distribution by constraining 0 ≤ ρz < 1 [5,45].
It can be difficult to distinguish resting, foraging, and

transit states for seals based on trajectory alone [45],
particularly because northern fur seals can forage oppor-
tunistically while travelling and will often rest at sea or
in the vicinity of breeding rookeries. We therefore in-
corporate the number of foraging dives during each time
step, δt, to help inform the foraging state. Specifically,
we assume

δt λ;Zt ¼ z� ¼ Poisson λzð Þj½
with the constraints λR = 0 and λF > λT. This model
therefore assumes a priori that time steps with foraging
dives are never assigned to resting, and steps with rela-
tively many foraging dives are more likely to be assigned
to foraging than transit. Note that by constraining
λF > λT, we still allow some possibility for steps with
foraging dives to be assigned to transit.
Finally, we model switches between behavior states as

a first-order Markov process. We assign the conditional
distribution to the latent state variable Zt�

Zt

��ψ;Zt−1 ¼ z
� ¼ Categorical ψz;R; ψz;F ;ψz;T

� 	
where for z; z′∈ R; F ;Tf g;ψz;z′ is the probability of
switching from state z at time t – 1 to state z′ at time t.
Using Bayesian analysis methods, the joint posterior

distribution for our state-space model in discrete time is�
a; b; ρ; λ;ψ; σ2

x; σ
2
y ;X0;Y 0;ϕ; S;Z

��x;y;δ�
∝
YN
t¼1


�
St
��a;b;ZtÞ

��
ϕt

��ϕt−1; ρ;ZtÞ
��
δt
��λ;Zt

��
Zt

��ψ;Zt−1
�

�
Ykt
i¼1

�
xt;i; yt;i

��σ2x; σ2
y ;X0;Y 0;ϕ 1:t½ �; S 1:t½ �

��

� a½ � b½ � ρ½ � ψ½ � λ½ � σ2x
� �

σ2y

h i
X0;Y 0½ �

where (X0,Y0) is the initial (latent) location. Note that,
conditional on Zt, this discrete-time model assumes step
length, bearing, and the number of foraging dives are in-
dependent. Weakly informative priors were used for all
parameters, including the conjugate priors σ2x

� � ¼ Γ−1

0:01; 0:01ð Þ; σ2y

h i
¼ Γ−1 0:01; 0:01ð Þ; [λz] = Γ(0.01, 0.01)

for z ∈ {F,T}, and [ψz] =Dirichlet(1, 1, 1) for z ∈ {R, F,T},
where Γ() and Γ− 1() are the gamma and inverse gamma
probability density functions, respectively. For [X0,Y0],
we specified a joint uniform prior over the region de-
fined by the Bering Sea. We specified a maximum sus-
tainable speed of 3 m/s, such that St ≤ 10800m, with
[az] =Unif(0, 10800), [bz] =Unif(0, 30), and [ρz] =Unif
(0, 1) for z ∈ {R, F,T}. Similar to McClintock et al. [20,45],
we used a Metropolis-within-Gibbs Markov chain Monte
Carlo algorithm written in the C programming language
[46] to obtain samples from the posterior distribution,
performing pre- and post-processing in R via the .C inter-
face [47]. The only notable difference from the MCMC al-
gorithm for the individual-level model of McClintock
et al. [45] results from our model for δt, for which the con-
jugate prior on λz yields the full conditional distributions

λF ⋅j � ¼ Γ λT ;∞ð Þ 0:01þ
XN

t¼1
δtI Zt¼Ff g;0:01þ

XN

t¼1
I Zt¼Ff g

� 	h
and

λT ⋅j � ¼ Γ 0;λFð Þ 0:01þ
XN

t¼1
δtI Zt¼Tf g;0:01þ

XN

t¼1
I Zt¼Tf g

� 	
;

h
where Γ(l,u) is the renormalized gamma density truncated
at l and u, 0 ≤ l < u, and I() is the indicator function. When
full conditional distributions were analytically intractable,
random walk Metropolis-Hastings parameter updates
were used. After initial pilot tuning and burn-in, a single
chain of 5 million iterations was attained for posterior
summaries. The algorithm required approximately 3 hours
to run on a machine running 64-bit Windows 7 (3.4GHz
Intel Core i7 processor, 16Gb RAM).
Estimated activity budgets to the three movement be-

havior states were 0.28 (95% HPDI: 0.22-0.37) to resting,
0.36 (0.26-0.39) to foraging, and 0.36 (0.29-0.45) to tran-
sit (Figure 2a). Estimated state transition probabilities
were ψ̂R;R = 0.81 (0.71-0.92), ψ̂F ;F . = 0.78 (0.67-0.88),

and ψ̂T ;T = 0.78 (0.65-0.89), with state-switches more

likely to occur between foraging ψ̂F ;T = 0.15 (0.05-0.27)

and transit ψ̂T ;F = 0.14 (0.06-0.22). The bivariate poster-
ior densities for step length and turning angle (Figure 3a)
indicate some opportunistic foraging during travelling,
with foraging movements often exhibiting high speed
and directional persistence typically associated with
transit. As expected, time steps with >1 foraging dives
were rarely assigned to the transit state (Figure 4a). Also
as expected, we found lower speeds and less directional per-
sistence during resting movements and higher speed and
more directional persistence during transitory movements.
The estimated error (in meters) for the observation

process model was similar between longitude (σx = 472;
360 − 596) and latitude (σy = 489; 381 − 617) coordinates.
Although relatively small, these errors are larger than
would typically be expected of GPS location measure-
ment error. We therefore suspect the additional error is
attributable to deviations from the simple linear model
used to relate the temporally irregular observed loca-
tions to temporally-regular predicted locations.

Continuous-time formulation
We analyzed the same fur seal data set using a continuous-
time model to assess what inferential differences might re-
sult by extending the correlated random walk (CRW)



Figure 2 Estimated path and movement behavior states during a foraging trip of a northern fur seal that hauls out in the Pribilof
Islands, Alaska. Results are presented for discrete- and continuous-time movement process models. Estimated movement states for the predicted
locations correspond to “resting” (red), “foraging” (green), and “transit” (blue) movement behavior states. Uncertainty in the state assignments (<95%
posterior probability) are indicated by hollow circles within predicted locations. Uncertainty in predicted locations are indicated by 95% credible bands
(dashed lines).
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models of Jonsen et al. [6] (discrete-time, latent states) and
Johnson et al. [8] (continuous-time, state model with
known covariates) to a continuous-time CRW model with
latent states. The continuous-time correlated random walk
(CTCRW) is described by modeling the velocity (instant-
aneous rate of change) of movement with a bivariate
Ornstein-Uhlenbeck (OU) process. The OU process is the
continuous-time version of the bivariate autoregressive
model Jonsen et al. [6] use to model position difference.
The CTCRW locations are then modeled by integrating
the velocity process (i.e., the positions are the solution to
the stochastic differential equation used to model velocity).
To make the inference comparable between each ana-

lysis, we maintained the same hourly structure for the tran-
sitions of behavior states. Thus, the models [Zt|ψZt − 1 = z]
and [δt|λZt = z] are the same as in the previous discrete-
time analysis with the minor technical change that the state
Zt is assumed to be held constant within the interval [t, t +
1). Also, we use the notation ti to represent the time of the
ith observed location in the interval [t, t + 1).
The CTCRW model is defined by a stochastic differen-

tial equation model of velocity νti ¼ Vx;ti ; Vy;ti

� �
at time

ti, such that

Vc;tiþ1 ¼ γc þ e−βtΔi Vc;ti−γc
� �þ ζ Δið Þ ð3Þ

for each coordinate axis c ∈ {x,y}, where t ≤ ti < ti+ 1 ≤ t + 1,
Δi = ti+ 1− ti, γc is the mean velocity (or drift), βt is an auto-
correlation parameter, ζ Δið Þ ¼ N 0; σ2

t 1−exp −2βtΔi
� �� �

=2βt
� �

;

and σt is a parameter controlling the overall variability in
velocity. The solution to this autoregressive differential
equation is the location μti ¼ Xti ; Y tið Þ . Johnson et al. [8]
provide details to illustrate that the CTCRW model can be
formulated as a linear, Gaussian state-space model that al-
lows efficient calculation of the CTCRW likelihood. For t ≤
ti < ti+ 1 ≤ t + 1, observation yti ¼ xti ; yti

� �
; and the vector



Figure 3 Estimated bivariate densities of northern fur seal step lengths and turning angles for three distinct movement behavior
states (“resting”, “foraging”, and “transit”) based on discrete- and continuous-time movement process models with 1-hour time steps.
For both models, step lengths and turning angles were calculated from the estimated paths shown in Figure 2.
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Figure 4 Hourly probabilities for the number of foraging dives by a northern fur seal while in the foraging and transit states based on
discrete- and continuous-time movement process models. Foraging dives were defined as dives with a max depth >5 m with at least 5
sinuosities (i.e., “wiggles”). Probabilities were calculated from the estimated Poisson distribution for δt based on posterior samples for λF and λT.
Dashed lines indicate 95% highest posterior density intervals.
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of the true location and velocity process αti ¼ μti ; νti
� �

; the
state-space model is given by

yti ¼ μti þ εti
αtiþ1 ¼ Tz;tiαti þ ηz;ti

ð4Þ

where εti½ � ¼ N 0; τ2Ið Þ and ηz;ti

h i
¼ N 0;Qz;ti

� �
. The

entries of Tz;ti and Qz;ti are functions of Δi and the move-
ment parameters βt and σt (see [8] for details), and as in
the discrete-time analysis, the movement parameters de-
pend on the latent state Zt = z via βt = βz and σt = σz.
We used an MCMC sampler for Bayesian inference of

movement parameters and states. Similar to Johnson
et al. [8], we assumed no drift (i.e., γc = 0) and similar
movement processes in both coordinates (i.e., βc,t = βt
and σc,t = σt for c ∈ {x, y}). The same priors were used for
all common variables between the two analyses (e.g., div-
ing rates, behavior states). For the CTCRW movement
parameters, we used vague priors on the log scale with
the following constraints: βR > βF > βT and σR < σF < σT.
These constraints imply that movement is typically fas-
ter and more correlated as one moves from R to T. The
flat prior [log τ] > 10 m was used for the measurement
error parameter. The sampler was custom coded in R
[47] making use of the FORTRAN coded CTCRW likeli-
hood and posterior track simulation in the R package
crawl [48]. The CTCRW likelihood computed via the
Kalman filter allowed us to sample from the marginal
posterior distribution of the states and movement pa-
rameters without having to sample the unobserved αt
values. The sampled posterior distribution is given by

�
β; σ ; τ; λ;ψ;Z

��x; y; δ�∝ β½ � σ½ � τ½ �
YN
t¼1

�
δt
��λ;Zt

��
Zt

��ψ;Zt−1
�

�
YN
t¼1

Ykt
i¼1

�
xti ; yti Zt ; βt; σ t; τ

���
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where the right hand-side of the product is the CTCRW
likelihood. Note that the true locations Xti ; Y tið Þ and vel-
ocities Vx;ti ; Vy;ti

� �
. have been integrated from the poster-

ior. The benefit of this is that the MCMC sampler for the
states and parameters converges more quickly to the ap-
proximate posterior distribution. The full algorithm took
66 hours to run (due to coding in R rather than C), how-
ever, only 20,000 iterations were necessary to obtain an ef-
fective sample of ≥ 4,000 posterior draws. To compare
step lengths and turning angles of the CTCRW model to
the discrete time model, we needed a sample of hourly lo-
cations. To obtain a posterior sample of αt, t = 1,…,N, on
the hour, the sampling method of Johnson et al. [49] was
used at each MCMC iteration as if αt was a derived par-
ameter. From the sampled αt values, step length and turn-
ing angle were calculated for comparison to the equivalent
discrete-time quantities.
Estimated activity budgets to the three movement be-

havior states were 0.10 (95% HPDI: 0.03-0.15) to resting,
0.29 (0.23-0.34) to foraging, and 0.61(0.53-0.67) to
transit (Figure 2b). Estimated state transition prob-
abilities were ψ̂R;R = 0.52 (0.10-0.86), ψ̂F;F = 0.75 (0.62-

0.86), and ψ̂T ;T = 0.82 (0.75-0.89). State-switches to transit

were most likely, with ψ̂R;T = 0.40 (0.09-0.81) and ψ̂F;T =
0.23 (0.12-0.35). These are noticeably different from the
discrete-time analysis, with much less time spent “resting.”
The bivariate posterior densities for step length and turn-
ing angle (Figure 3b) also reflect this reduction in state R,
with more small steps associated with the travel state.
However, there were also more large steps associated with
the resting state. This calls into question the designation
of these states as actually “resting” when using the
continuous-time multistate movement model. As in
the discrete-time analysis, time steps with >1 foraging
dives were rarely assigned to the transit state (Figure 4b).
The estimated error (in meters) for the observation process
model was τ̂ ¼ 64 m (55 m-75 m). Because the observed
data linear interpolation does not need to be accounted for,
the measurement error variance is noticeably smaller here
than in the discrete-time analysis.
Although inferences about time spent foraging were

similar between the two approaches, we found consider-
able differences between the discrete-time and continuous-
time formulations with respect to resting and travelling
activity. This is counter to the simplistic view that time
formulations are merely different means to the same
end. The reasons for these differences lie in the under-
lying relationships of the metrics of movement (speed
and directional persistence) that are used to define
resting and travelling. Because these metrics are dependent
and speed is auto-correlated in the continuous-time model
(see Does a continuous- or discrete-time formulation
really matter?), the lack of auxiliary information (such as
metabolic rate) to help distinguish these movement behav-
ior states induces a tendency for the “resting” state to be
associated with sudden switches (or change-points) in
movement properties during periods with no foraging di-
ves. In other words, instead of identifying periods of slow
movement with no foraging dives as intended, the “resting”
state serves to break the momentum of the continuous-
time movement process.
Although continuous-time formulations necessarily in-

duce dependence between step length and bearing, the
differences between our discrete- and continuous-time
analyses are not entirely attributable to time formulation
per se. In order to account for short-term directional
persistence in continuous time, Johnson et al. [8] used
correlation in the velocity process (Jonsen et al. [6] use
the same correlation model in discrete time). Whether
in continuous or discrete time, the modelling of velocity
clearly induces additional dependence between speed
and bearing. Correlated random walk models with two
latent movement behavior states can be relatively easy to
fit in continuous time (D. Johnson, unpublished data) or
when modeling velocity in discrete time [6,50]. However,
the modelling of velocity can make it more difficult to
characterize and identify >2 distinct movement behavior
states with straightforward biological interpretation. While
this can be easily avoided in discrete time by modelling
step length and bearing independently (as was done here),
most continuous-time CRW models are formulated on
the velocity process [8,31] (but see [22]).

Conclusions
Modern tracking and biologging devices allow us to rec-
ord detailed information on animal location and physi-
ology, thus opening the possibility to better understand
the role of movement in population dynamics, animal
behavior, and the environment [51,52]. To make the
most of these hard-earned data and learn about import-
ant aspects of animal movement such as activity bud-
gets, space use, and behavioral responses to landscape
features, sophisticated data analysis tools have been pro-
posed. State-space models, where one explicitly accounts
for the fact that the observed data arise from a mechan-
istic or “biological” model that is in turn sampled by an
observation model, are currently regarded as the most
correct and elegant methods to fit movement models to
data [12,52]. We have shown that there exist underap-
preciated differences among the current available formula-
tions, and although our northern fur seal example focused
on state-space models with multiple movement behavior
states, our findings have important implications for single-
state mechanistic movement process models, including
(discrete-time) step-selection or (continuous-time) partial
differential equation resource selection models (e.g., see re-
cent reviews by [26,27]).
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Although movement is a continuous-time process, it is
perhaps more intuitive to think about (and formulate
models for) movement in discrete time. In our experi-
ence, practitioners find a discrete-time model (Eqs. 1
and 2) and its parameters easier to interpret than its
continuous-time counterpart (Eqs. 3 and 4). As we have
demonstrated, current discrete-time formulations also
provide both flexibility and feasibility for identifying la-
tent behavioral states and incorporating auxiliary biote-
lemetry or environmental data to inform these states.
However, these advantages of discrete-time models do
indeed come at a cost. Because inferences from discrete-
time models are not time scale-invariant, it is absolutely
critical that the chosen time scale between movement
steps appropriately matches the animal’s behavioral scales
and the frequency of observations.
In addition to loss of resolution, when observations are

irregular and/or the frequency of observations greatly ex-
ceeds that of the chosen time scale, discrete-time models
can suffer from additional lack of fit due to the need to
discretize the movement path into temporally-regular lo-
cations. This was apparent in the magnitudes of the meas-
urement error terms in our northern fur seal example,
where the discrete-time model had larger errors than
would normally be expected for GPS data. The need for
temporally-regular positions for the entire movement path
can also make it more difficult to deal with missing data
in a discrete-time framework. While this is less of a prob-
lem for terrestrial animals, missing data is a major issue
for marine animals due to our inability to obtain locations
while underwater.
Continuous time is clearly a more natural representa-

tion of movement than discrete time. These models are
not dependent on any particular time scale and do not
require temporally-regular observations. It is therefore
far easier to deal with missing data or changing observa-
tional frequencies in continuous time. However, as dem-
onstrated by our northern fur seal example and Does a
continuous- or discrete-time formulation really mat-
ter?, current continuous-time formulations may not be
well suited for identifying >2 latent movement behavior
states. This is unfortunate because the identification of
different behaviors, activity budgets, and how these po-
tentially relate to habitat use and demographic parame-
ters is among the most interesting aspects of movement
ecology [51].
Although discrete-time approaches thus far have seen

greater development and application, we believe further
development of continuous-time models is needed to fa-
cilitate more widespread application of these models to
real data. For example, the continuous formulations of
Blackwell [9], Johnson et al. [8], and Harris and Blackwell
[31] could potentially be extended to accommodate “stops”
where animals can reorient and change movement state,
thereby curbing the momentum inherent to these
continuous-time movement process models. By over-
coming the hurdles identified here and making latent
state-switching models more feasible in continuous
time, the best of both worlds may soon be within
grasp.
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