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A RESULT OF ALEC CHARRAS

Charras (1979)

PhD thesis, Université de Montréal

X with density 1
λf(x/λ) x > 0

λ ≥ a a > 0 known

λ̂ρ = max(ρX, a), ρ > 0 known,

an estimator of λ

Conditions on f for the inadmissibility of

λ̂ρ for squared error loss

Example:

f(x) = e−x x > 0
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Another example of Charras’ result

X = |Y | with Y logistic

EY = 0

σ(Y ) = λ

Charras and van Eeden (1994)
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SUMMARY

1) Group-Bayes inference;

2) Group-Bayes estimation of an

exponential mean;

3) Some of our results

See van Eeden and Zidek 1994a and 1994b
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GROUP-BAYES INFERENCE

Group of decision makers (DMs).

For instance

a jury or a committee.

data

model(s)

prior(s)

loss function(s)

How to get to a compromise decision?
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δi the Bayes decision rule of DMi, i = 1, . . . , k

ri(δ) DMi’s Bayes risk of a rule δ.

Now define, in analogy to Wald,

a rule δ is group-Bayes inadmissible

if there exists a rule δo with

ri(δo) ≤ ri(δ) for all i = 1, . . . , k

ri(δo) < ri(δ) for some i ∈ {1, . . . , k}.

Also:

δo is group-Bayes minimax if it minimzes

max1≤i≤k ri(δ)
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GROUP-BAYES ESTIMATION OF THE

EXPONENTIAL MEAN

X1, . . . , Xn i.i.d. 1
λe−x/λI(x > 0)

The sufficient statistic T =
∑n

i=1 Xi has

density:

1
λnΓ(n)

tn−1e−t/λ t > 0

Conjugate priors for λ:

πα,β(λ) ∝ λ−αe−β/λ

with α > 3 the same for all DMs and β > 0.

Lindley’s (1976) conjugate utility function:

uα, β(λ̂, λ) = γo − γ(λ̂ − λ)2 γ > 0
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Before I go on to tell you about some of the

results Jim and I have on this problem

I want to tell you how and when we got

started on it.

We need to go back to the fall of 1991.

I was spending the semester at UBC.

Jim and I had been talking about

working together

and he proposed a problem which would

combine

his interest in Group-Bayes inference

with my interest in

restricted-parameter-space estimation
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He wrote his proposal

on the blackboard in my office

Did not want to lose what he had written

Took some pictures of it

Saved them in a safe place

Found that safe place again

Thanks to technical assistance from

Ruben and David Zamar

I can now show you Jim’s proposal

in his own handwriting
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Here is the left hand side.
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...and the right hand side!
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Expected utility w.r.t. the marginal

distribution of T

Uα,β(λ̂) = γo − γE
(

λ̂(T ) − β+T
α+n−2

)2
− C(α, β)

DMα,β’s preferred estimator is β+T
α+n−2

Reference utility level

(Weerahandi and Zidek (1983))

We used Savage’s (1954)

maxλ̂ Uα,β(λ̂) = γo − C(α, β)
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Thus, we use

−Uα,β(λ̂) = γ
(α+n−2)2

E

(

β̂(T )
β − 1

)2

where β̂(T ) = λ̂(T )(α + n − 2) − T

How to estimate β based on T with loss
(

d
β − 1

)2

when T has the F-density

∝
(t/β)n−1

(1+t/β)n+α−1 t > 0?
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Need a parameter space

1) β > 0;

2) a ≤ β ≤ b for 0 < a < b < ∞, a, b known.

3) β ≥ a for a > 0 known.
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CASE 1, β > 0

β̂MLE = α−2
n T is inadmmisible

dominated by β̂BE = α−3
n+1T

which is admissible and minimax

Correspondingly

λ̂MLE = 1
nT is G-inadmissible

and dominated by λ̂BE = 1
n+1T

which is G-admissible and G-minimax
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CASE 2, a ≤ β ≤ b, 0 < a < b < ∞

βMLE = T
nI(a ≤ T

n ≤ b) + aI(T
n < a) + bI(T

n > b)

βMLE inadmissible

van Eeden and Zidek (1994b)

by using Charras (1979)

Charras and van Eeden (1991)

or, equivalently,

λMLE(T ) =
βMLE+T
α+n−2

is group-inadmissible for estimating λ.
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Dominators for βMLE?

van Eeden and Zidek (1994b)

Using Charras (1979)

Charras and van Eeden (1991)

T with density 1
βf

(

t
β

)

, t > 0, a ≤ β ≤ b

Conditions on f

δ(T ) estimator of β

Pβ(δ(T ) = a) > 0 and Pβ(δ(T ) = b) > 0

for all β ∈ [a, b]

Two dominators.
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First dominator:

There exists (a′, b′) with a < a′ < b′ < b

such that the MLE of β for β ∈ [a′, b′]

dominates βMLE on [a, b].

Second dominator:

There exist ε1, ε2 with

a < a + ε1 < b − ε2 < b such that

δ′(T ) =























a + ε1 if βMLE = a

b − ε2 if βMLE = b

βMLE if a < βMLE < b

dominates βMLE on [a, b].
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Minimaxity when a ≤ β ≤ b

From a general result by

van Eeden and Zidek (1999)

When (b/a) − 1 is “small enough”, there

exists a prior on {a, b}

for which the Bayes estimator

is unique minimax

and thus admissible.
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CASE 3, β ≥ a, a > 0 known

β̂ρ = max(ρT, a) ρ > 0 known

is inadmissible by Charras (1979)

and Charras and van Eeden (1991)

β̂1/n is the MLE of β

By van Eeden and Zidek (1994a and b)

β̂(α−3)/(n+1) is minimax

When α−3
n+1 < 1

n or α < 4 + 1
n

β̂(α−3)/(n+1) dominates β̂1/n = βMLE
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