GROUP-BAYES ESTIMATION

INVITED TALK AT THE PNWSG MEETING

AND

EXTENDED VERSION OF THE INVITED TALK AT THE 2004 SSC MEETING IN MONTREAL

BOTH TALKS IN HONOR OF JIM ZIDEK ON HIS 65TH BIRTHDAY

by Constance van Eeden

Montreal, 31 May 2004 and Vancouver, 8 October 2004

X with density $\frac{1}{\lambda}f(x/\lambda)$ x > 0

 $\lambda \geq a$ a > 0 known

$$\hat{\lambda}_{\rho} = \max(\rho X, a), \ \rho > 0 \ \text{known},$$

an estimator of λ

Conditions on f for the inadmissibility of $\widehat{\lambda}_{\rho}$ for squared error loss

Example: $f(x) = e^{-x}$ x > 0

Another example of Charras' result

$$X = |Y| \text{ with } Y \text{ logistic}$$
$$\mathcal{E}Y = 0$$
$$\sigma(Y) = \lambda$$

Charras and van Eeden (1994)

SUMMARY

1) Group-Bayes inference;

2) Group-Bayes estimation of an exponential mean;

3) Some of our results

See van Eeden and Zidek 1994a and 1994b

GROUP-BAYES INFERENCE

Group of decision makers (DMs). For instance a jury or a committee.

> data model(s) prior(s) loss function(s)

How to get to a compromise decision?

 δ_i the Bayes decision rule of DM_i , $i = 1, \ldots, k$ $r_i(\delta) \mathsf{DM}_i$'s Bayes risk of a rule δ .

Now define, in analogy to Wald,

a rule δ is group-Bayes inadmissible if there exists a rule δ_o with $r_i(\delta_o) \leq r_i(\delta)$ for all i = 1, ..., k $r_i(\delta_o) < r_i(\delta)$ for some $i \in \{1, ..., k\}$.

Also:

 δ_o is group-Bayes minimax if it minimzes $\max_{1\leq i\leq k}r_i(\delta)$

GROUP-BAYES ESTIMATION OF THE EXPONENTIAL MEAN

$$X_1,\ldots,X_n$$
 i.i.d. $rac{1}{\lambda}e^{-x/\lambda}I(x>0)$

The sufficient statistic $T = \sum_{i=1}^{n} X_i$ has density:

$$\frac{1}{\lambda^n \Gamma(n)} t^{n-1} e^{-t/\lambda} \quad t > 0$$

Conjugate priors for λ :

$$\pi_{lpha,eta}(\lambda) \propto \lambda^{-lpha} e^{-eta/\lambda}$$

with $\alpha > 3$ the same for all DMs and $\beta > 0$.

Lindley's (1976) conjugate utility function:

$$u_{lpha,\ eta}(\widehat{\lambda},\lambda) = \gamma_o - \gamma(\widehat{\lambda}-\lambda)^2 \quad \gamma > 0$$

7

Before I go on to tell you about some of the results Jim and I have on this problem I want to tell you how and when we got started on it.

We need to go back to the fall of 1991. I was spending the semester at UBC. Jim and I had been talking about working together and he proposed a problem which would combine

his interest in Group-Bayes inference

with my interest in

restricted-parameter-space estimation

He wrote his proposal on the blackboard in my office Did not want to lose what he had written Took some pictures of it Saved them in a safe place Found that safe place again Thanks to technical assistance from Ruben and David Zamar

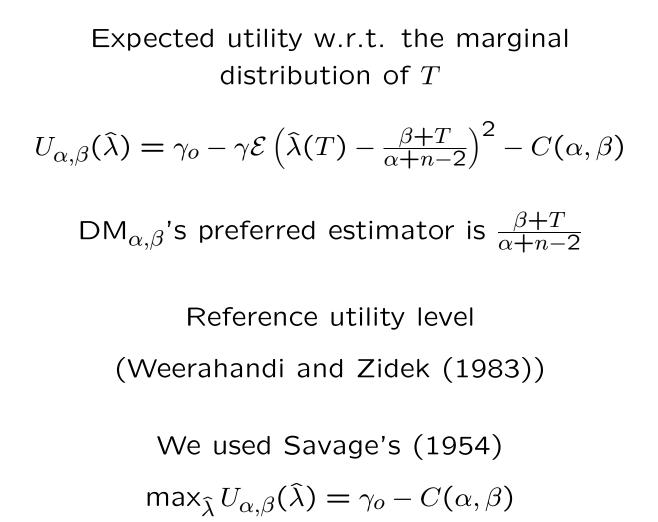
I can now show you Jim's proposal in his own handwriting

Here is the left hand side.

gyertung: (2) Preposterior case (H) at Can Cim be improved upon Eet C Â(T) = CT. Does JC = $(\hat{\lambda} = \hat{\lambda}(\tau), f_{(10)} = K_{m,n} \theta^{m-1} t^{n-1} / (t+0)$ ()=10,02) OE() (art=)(b) 15 ChinT= 2, (a) minimax? any. the Les Admissible?" wintall noncondonis (d) Truncate O conditiona An . Is result admissible

...and the right hand side!

m-14 m-(tie) -L.B) - (t1 ELIT CB $\theta \in \Theta$ (T+0) M+W



Thus, we use
$$-U_{\alpha,\beta}(\hat{\lambda}) = \frac{\gamma}{(\alpha+n-2)^2} \mathcal{E}\left(\frac{\hat{\beta}(T)}{\beta} - 1\right)^2$$

where $\hat{\beta}(T) = \hat{\lambda}(T)(\alpha + n - 2) - T$

How to estimate β based on T with loss

 $\left(\frac{d}{\beta}-1\right)^2$

when ${\boldsymbol{T}}$ has the F-density

$$\propto rac{(t/eta)^{n-1}}{(1+t/eta)^{n+lpha-1}} \quad t>0?$$

Need a parameter space

1) $\beta > 0;$

2) $a \leq \beta \leq b$ for $0 < a < b < \infty$, a, b known.

3) $\beta \ge a$ for a > 0 known.

CASE 1, $\beta > 0$ $\hat{\beta}_{MLE} = \frac{\alpha - 2}{n}T$ is inadmmisible dominated by $\hat{\beta}_{BE} = \frac{\alpha - 3}{n+1}T$ which is admissible and minimax

Correspondingly $\hat{\lambda}_{MLE} = \frac{1}{n}T$ is G-inadmissible and dominated by $\hat{\lambda}_{BE} = \frac{1}{n+1}T$ which is G-admissible and G-minimax CASE 2, $a \le \beta \le b$, $0 < a < b < \infty$ $\beta_{MLE} = \frac{T}{n}I(a \le \frac{T}{n} \le b) + aI(\frac{T}{n} < a) + bI(\frac{T}{n} > b)$ β_{MLE} inadmissible van Eeden and Zidek (1994b) by using Charras (1979) Charras and van Eeden (1991)

or, equivalently,

$$\lambda_{MLE}(T) = \frac{\beta_{MLE} + T}{\alpha + n - 2}$$

is group-inadmissible for estimating λ .

Dominators for β_{MLE} ? van Eeden and Zidek (1994b) Using Charras (1979) Charras and van Eeden (1991) T with density $\frac{1}{\beta}f\left(\frac{t}{\beta}\right)$, t > 0, $a \leq \beta \leq b$ Conditions on f $\delta(T)$ estimator of β $P_{\beta}(\delta(T) = a) > 0$ and $P_{\beta}(\delta(T) = b) > 0$ for all $\beta \in [a, b]$ Two dominators.

First dominator:

There exists (a', b') with a < a' < b' < bsuch that the MLE of β for $\beta \in [a', b']$ dominates β_{MLE} on [a, b].

Second dominator:

There exist ε_1 , ε_2 with

 $a < a + \varepsilon_1 < b - \varepsilon_2 < b$ such that

$$\delta'(T) = \begin{cases} a + \varepsilon_1 & \text{if } \beta_{MLE} = a \\ b - \varepsilon_2 & \text{if } \beta_{MLE} = b \\ \beta_{MLE} & \text{if } a < \beta_{MLE} < b \end{cases}$$

dominates β_{MLE} on [a,b].

18

Minimaxity when $a \leq \beta \leq b$ From a general result by van Eeden and Zidek (1999)

When (b/a) - 1 is "small enough", there exists a prior on $\{a, b\}$ for which the Bayes estimator is unique minimax and thus admissible. CASE 3, $\beta \ge a$, a > 0 known $\hat{\beta}_{\rho} = \max(\rho T, a)$ $\rho > 0$ known

is inadmissible by Charras (1979) and Charras and van Eeden (1991)

 $\widehat{\beta}_{1/n}$ is the MLE of β

By van Eeden and Zidek (1994a and b)

 $\widehat{\beta}_{(\alpha-3)/(n+1)}$ is minimax

When $\frac{\alpha-3}{n+1} < \frac{1}{n}$ or $\alpha < 4 + \frac{1}{n}$ $\hat{\beta}_{(\alpha-3)/(n+1)}$ dominates $\hat{\beta}_{1/n} = \beta_{MLE}$

REFERENCES

A. Charras (1979) PhD thesis, Université de Montréal.

A. Charras and C. van Eeden (1991) Canad. J. Statist., 19, 121-134.

A. Charras and C. van Eeden (1994) Statist. Decisions, 12, 257-266.

D.V. Lindley (1976) Ann. Statist., 4, 1-10.

L.J. Savage (1954) *The Foundations of Statistics*, Wiley.

C. van Eeden and J.V. Zidek (1994a) *Statistical Decision Theory and Related Topics* V (S.S. Gupta and J.O. Berger, eds.), Springer-Verlag, 35-49.

C. van Eeden and J.V. Zidek (1994b) Test, 3, 125-143. Corrections: p. 247.

C. van Eeden and J.V. Zidek (1999) Statist. Decisions, 17, 1-30.

S. Weerahandi and J.V. Zidek (1983) Ann. Statist., 11, 1032-1046.