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1. Let Y (x) be a Gaussian process (GP) with the following properties:

• Y (x) has a Gaussian distribution;

• E(Y (x)) is given by a regression model,

k∑
j=1

βjfj(x) ≡ fT (x)β,

where f(x) = (f1(x), . . . , fk(x))T is a vector of k given (known) functions,
and β = (β1, . . . , βk)T is a vector of unknown regression parameters;

• Var(Y (x)) = σ2, i.e., constant;

• The correlation Cor(Y (x), Y (x′)) is given by R(x,x′), a known correlation
function.

We will be taking the variance and correlation structure as known in this ques-
tion, but β will be estimated.

The GP is observed at n distinct locations, x(1), . . . ,x(n), in the x space, giving
the random data vector Y = (Y (x(1)), . . . , Y (x(n)))T .

We define the n×n correlation matrix R with element i, j given by R(x(i),x(j))
and the n× 1 vector r(x) with element i given by R(x,x(i)). Also, let F be the
n× k matrix with row i containing fT (x(i)).

Consider predicting Y (x∗), where x∗ is a specific value of the input vector,
by a predictor that is a linear combination of the data: Ŷ (x∗) = wT (x∗)Y,
where wT (x∗) = (w1(x

∗), . . . , wn(x∗)). We are taking a frequentist viewpoint
here: The Y (x(i)) and hence Ŷ (x∗) are random variables that will vary from
one sample realization to another according to the above probability model.

(a) Define the bias of prediction as

E(Ŷ (x∗))− E(Y (x∗)).

Show that the bias is

(FTw(x∗)− f(x∗))Tβ.

(b) Define the mean squared error (MSE) of prediction as

MSE(Ŷ (x∗)) = E(Ŷ (x∗)− Y (x∗))2.

Show that MSE(Ŷ (x∗)) is

((FTw(x∗)− f(x∗))Tβ)2 + σ2
(
1 + wT (x∗)Rw(x∗)− 2wT (x∗)r(x∗)

)
.
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(c) Minimizing the mean squared error subject to unbiasedness implies mini-
mizing

1 + wT (x∗)Rw(x∗)− 2wT (x∗)r(x∗)

subject to
FTw(x∗)− f(x∗) = 0.

By introducing a k× 1 vector of Lagrange multipliers, λ, show that w(x∗)
and λ satisfy (

R F
FT 0

)(
w(x∗)
λ

)
=

(
r(x∗)
f(x∗)

)
.

Here, λ is really a function of x∗, too. The notation can be made friendlier
by dropping the dependence on x∗ everywhere.

(d) Using standard results on the inverse of a partitioned matrix, we have(
R F
FT 0

)−1
=

(
R−1 −R−1FK−1FTR−1 R−1FK−1

K−1FTR−1 −K−1
)
,

where K = FTR−1F. Hence, show that the coefficients w(x∗) are given
by

w(x∗) = R−1r(x∗) + R−1FK−1(f(x∗)− FTR−1r(x∗)).

(e) Hence, show that

Ŷ (x∗) = fT (x∗)β̂ + rT (x∗)R−1(Y − Fβ̂),

where β̂ = (FTR−1F)−1FTR−1Y is the generalized least squares estimator
of β.

(f) Substitute the optimal linear-combination coefficients, w(x∗), from part 1d
into the MSE of part 1b to show that the optimal MSE is

σ2
(

1− rT (x∗)R−1r(x∗) +
(
f(x∗)− FTR−1r(x∗)

)T
K−1

(
f(x∗)− FTR−1r(x∗)

))
.

This is a generalization of the formula on Slide 12 of Module 3.

2. Let Y (x) be a GP with the mean, variance, and correlation properties of Ques-
tion 1. The same notation will also be used. Unlike Question 1, however, we
will not be estimating the vector of regression parameters, β, when developing
a prediction formula; all parameters are taken as known.

Again, the GP is observed at n distinct locations, x(1), . . . ,x(n), in the x space,
giving the data vector Y = (Y (x(1)), . . . , Y (x(n)))T . Hence, the joint density of
Y is multivariate normal:

fY(y |µ, σ2,R) =
1

(2πσ2)n/2
1

det1/2(R)
×

exp

(
− 1

2σ2
(y − Fβ)TR−1(y − Fβ)

)
,
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where det1/2(R) is the square root of the determinant of R.

Consider predicting Y (x∗), where x∗ is a fixed location. The joint density of
(Y, Y (x∗)) is multivariate normal for the n + 1 random variables. We will use
the conditional distribution of Y (x∗) given Y, i.e.,

fY (x∗) |Y(y(x∗) |y, µ, σ2,R),

as a predictive distribution.

(a) Using results on conditional distributions, show that the predictive distri-
bution is (univariate) normal with mean

fT (x∗)β + rT (x∗)R−1(y − Fβ),

and variance
σ2
(
1− rT (x∗)R−1r(x∗)

)
.

Hints: The joint distribution of (Y, Y (x∗))T has correlation matrix(
R r(x∗)

rT (x∗) 1

)
.

The inverse of this partitioned matrix is(
R−1 0
0 0

)
+

1

q(x∗)

(
−R−1r(x∗)

1

)(
−rT (x∗)R−1 1

)
,

where q(x∗) = 1− rT (x∗)R−1r(x∗), and its determinant is

det(R)q(x∗).

(b) In what sense is this a “posterior” distribution?

(c) Compare the predictive variance with that in part 1f of Question 1? Is it
smaller or larger? Why?

3. Let Y (x) be a GP indexed by one-dimensional input, x. Its properties are
E(Y (x)) = 0, Var(Y (x)) = σ2, and

Cor(Y (x), Y (x+ h)) = R(x, x+ h) = exp
(
−θh2

)
.

Thus, the correlation function is from the squared-exponential family.

(a) Find E(Y (x+ h)− Y (x))2.

(b) Hence, show that

lim
h→0

E

(
Y (x+ h)− Y (x)

h

)2

= 2σ2θ.
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(c) Hence contrast the behaviour of realizations from two GP models with the
same value of σ2 but different values of θ.

(d) Now suppose Y (x) is indexed by d-dimensional input, x. The correlation
function is a product of one-dimensional squared-exponential correlation
functions:

Cor(Y (x), Y (x′)) = R(x,x′) =
d∏

j=1

exp(−θj(xj − x′j)2).

Let x′ = x + δj, where δj is a d × 1 vector with h in element j and 0
elsewhere. Find

lim
h→0

E

(
Y (x + δj)− Y (x)

h

)2

.

(e) What does this result say about the interpretation of the parameters
θ1, . . . , θd in the squared-exponential correlation function?

4. Suppose Y (x) for x ∈ [0, 1] follows a GP with mean zero, variance σ2, and
correlation function R(Y (x), Y (x′)) = R(x, x′) = exp (−θ(x− x′)2). In this
question we will consider realizations of Y (x) at the 11 equally spaced points
x(i) = (i − 1)/10 for i = 1, . . . , 11, i.e., with x(1) = 0 and x(11) = 1. You will
write your own R code to carry out all computations, which should be handed
in.

(a) Generate a realization from the above GP with σ2 = 1 and θ = 1 at the 11
locations x(i). Plot the observations (keep your

(
x(i), y(x(i))

)
realization as

we will use it below).

(b) Generate a realization from the above GP with σ2 = 5 and θ = 1 at the
11 locations x(i). Plot the observations and comment on the impact of the
increase in variance from part 4a.

(c) Generate a realization from the above GP with σ2 = 1 and θ = 5 at the
11 locations x(i). Plot the observations and comment on the impact of the
increase in θ from part 4a (keep your

(
x(i), y(x(i))

)
realization as we will

use it below).

(d) Let x(o) = (x(1), x(3), . . . , x(11)) be the locations with odd indices, and
similarly let x(e) = (x(2), x(4), . . . , x(10)). Consider the GP realization from
part 4a with σ2 = 1 and θ = 1 (i.e., the parameters of the GP that
generated the data are known to be σ2 = 1 and θ = 1). Use only the
observations at x(o) to predict the observations at x(e). Compute the root
mean square prediction error (RMSE).

(e) Consider the GP realization from part 4c with σ2 = 1 and θ = 5 (i.e.,
again the values of the parameters of the GP that generated the data are
known). Use only the observations at x(o) to predict the observations at
x(e). Compute the RMSE and compare it with that in part 4d.
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(f) Consider the GP realization from part 4a. Predict the observations at x(e)

using the data at x(o) only, but assume σ2 = 1 and θ = 100 for the GP used
for prediction (i.e., θ is misspecified). Compute the RMSE and compare it
with that in part 4d.

(g) Consider the GP realization from part 4a. Predict the observations at x(e)

using the data at x(o) only, but assume σ2 = 1 and θ = 0.1 for the GP
used for prediction (i.e., θ is misspecified again). Compute the RMSE and
compare it with that in part 4d.
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