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1. Let Y(x) be a Gaussian process (GP) with the following properties:

e Y (x) has a Gaussian distribution;

e E(Y(x)) is given by a regression model,
Z Bifi(x) = £1(x)B,
where f(x) = (f1(x),..., fs(x)) is a vector of k given (known) functions,
and B = (B,...,B)" is a vector of unknown regression parameters;
e Var(Y(x)) = 02, i.e., constant;
e The correlation Cor(Y (x), Y (x')) is given by R(x,x’), a known correlation

function.

We will be taking the variance and correlation structure as known in this ques-
tion, but B will be estimated.

The GP is observed at n distinct locations, x(V, ..., x(™ | in the x space, giving
the random data vector Y = (Y (xV),..., Y (x™))T.

We define the n x n correlation matrix R with element ¢ j given by R(x®,x)
and the n x 1 vector r(x) with element i given by R(x,x"). Also, let F be the
n x k matrix with row ¢ containing £7(x®).

Consider predicting Y (x*), where x* is a specific value of the input vector,
by a predictor that is a linear combination of the data: Y(x*) = w7 (x*)Y,
where w'(x*) = (w1(x*),...,w,(x*)). We are taking a frequentist viewpoint
here: The Y (x®) and hence Y (x*) are random variables that will vary from
one sample realization to another according to the above probability model.

(a) Define the bias of prediction as
E(Y (x")) — E(Y (x)).
Show that the bias is
(Frw(x") — f(x"))" B.
(b) Define the mean squared error (MSE) of prediction as
MSE(Y (x7)) = B(¥ (x") — ¥ (x))%
Show that MSE(Y (x*)) is

(F'w(x*) — £(x*)"B)* + o (1 + w' (x*)Rw(x*) — 2w" (x*)r(x")) .
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(¢) Minimizing the mean squared error subject to unbiasedness implies mini-
mizing
1+ w! (x")Rw(x*) — 2w’ (x*)r(x")
subject to
Flw(x*) — f(x*) = 0.

By introducing a k x 1 vector of Lagrange multipliers, A, show that w(x*)

and A satisfy

R F w(x*) | [ r(x")

FT 0 A O\ f(x*) )
Here, A is really a function of x*, too. The notation can be made friendlier
by dropping the dependence on x* everywhere.

(d) Using standard results on the inverse of a partitioned matrix, we have
R F\' /R'-RIFK!'F'R! RIFK"!
FT 0 - K—IFTR—I _K—l )
where K = FTR™!F. Hence, show that the coefficients w(x*) are given

by
w(x*) = R7'r(x*) + R'FK ' (f(x*) — FTR 'r(x")).

(e) Hence, show that
V(x) = £7()B + 17 (<R (Y — ).
where 8 = (FTR™F)'FTR 'Y is the generalized least squares estimator
of 3.

(f) Substitute the optimal linear-combination coefficients, w(x*), from part 1d
into the MSE of part 1b to show that the optimal MSE is

o? (1 (xR 'r(x") + (F(x7) — FTR 'r(x")) K (F(x) — FTR’lr(x*))) .
This is a generalization of the formula on Slide 12 of Module 3.

2. Let Y (x) be a GP with the mean, variance, and correlation properties of Ques-
tion 1. The same notation will also be used. Unlike Question 1, however, we
will not be estimating the vector of regression parameters, 3, when developing
a prediction formula; all parameters are taken as known.

Again, the GP is observed at n distinct locations, x(M, ..., x( in the x space,
giving the data vector Y = (Y (xV),..., Y (x™))”. Hence, the joint density of
Y is multivariate normal:

1 1
fy(ylp,o®R) =

(2ma?)"/2 det'/(R) .

exp (= sy - FOV Ry - 7)),
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where det'/?(R) is the square root of the determinant of R.

Consider predicting Y (x*), where x* is a fixed location. The joint density of
(Y, Y (x*)) is multivariate normal for the n + 1 random variables. We will use
the conditional distribution of Y (x*) given Y, i.e.,

fY(x*)|Y(y(X*) | Y, H, 027 R)7

as a predictive distribution.

(a) Using results on conditional distributions, show that the predictive distri-
bution is (univariate) normal with mean

f'(x)B8 + 1" (x )R~ (y — FB),

and variance

o’ (1 -r"(x" )R 'r(x")).

Hints: The joint distribution of (Y, Y (x*))” has correlation matrix

(o "5)

The inverse of this partitioned matrix is

(%7 0) oL (R ot 1),

where ¢(x*) = 1 — v’ (x*)R™!r(x*), and its determinant is
det(R)q(x").

(b) In what sense is this a “posterior” distribution?

(¢) Compare the predictive variance with that in part 1f of Question 1?7 Is it
smaller or larger? Why?

3. Let Y(x) be a GP indexed by one-dimensional input, x. Its properties are
E(Y(z)) =0, Var(Y(x)) = 02, and

Cor(Y(z),Y (z + h)) = R(z,z + h) = exp (—0h?) .
Thus, the correlation function is from the squared-exponential family.

(a) Find E(Y(z + h) — Y (x))2.
(b) Hence, show that
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()
()

(e)

4. Suppose Y (z) for z € [0,1] follows a GP with mean zero, variance o

Hence contrast the behaviour of realizations from two GP models with the
same value of o2 but different values of 6.

Now suppose Y (x) is indexed by d-dimensional input, x. The correlation
function is a product of one-dimensional squared-exponential correlation
functions:

Cor(Y (x),Y(x)) = R(x,x') = HeXp(—Qj (z; — 2)?).

Let x' = x4 §;, where §; is a d x 1 vector with h in element j and 0

elsewhere. Find )
i E (Y(X+(5j) —Y(X)) .
h—0 h

What does this result say about the interpretation of the parameters
0, ...,0; in the squared-exponential correlation function?

2 and

correlation function R(Y (z),Y(z')) = R(x,2') = exp(—0(z —2')?). In this
question we will consider realizations of Y (z) at the 11 equally spaced points
x® = (4 —1)/10 for i = 1,...,11, i.e., with x® = 0 and x*" = 1. You will
write your own R code to carry out all computations, which should be handed

1.

(a)

Generate a realization from the above GP with 0% = 1 and § = 1 at the 11
locations 2V, Plot the observations (keep your (2, y(z)) realization as
we will use it below).

Generate a realization from the above GP with 02 = 5 and 6§ = 1 at the
11 locations . Plot the observations and comment on the impact of the
increase in variance from part 4a.

Generate a realization from the above GP with 02 = 1 and # = 5 at the
11 locations (. Plot the observations and comment on the impact of the
increase in 6 from part 4a (keep your (x(i),y(:p(i))) realization as we will
use it below).

Let x© = (M 20 . 20D) be the locations with odd indices, and
similarly let x(® = (2@ 2@ . 209) Consider the GP realization from
part 4a with 0> = 1 and # = 1 (i.e., the parameters of the GP that
generated the data are known to be 02> = 1 and § = 1). Use only the
observations at x(©) to predict the observations at x(®). Compute the root
mean square prediction error (RMSE).

Consider the GP realization from part 4c with 0 = 1 and 6 = 5 (i.e.,
again the values of the parameters of the GP that generated the data are
known). Use only the observations at x(©) to predict the observations at
x(©). Compute the RMSE and compare it with that in part 4d.
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(f) Consider the GP realization from part 4a. Predict the observations at x(©
using the data at x(©) only, but assume 0> = 1 and # = 100 for the GP used
for prediction (i.e., 8 is misspecified). Compute the RMSE and compare it
with that in part 4d.

(g) Consider the GP realization from part 4a. Predict the observations at x(©
using the data at x(© only, but assume o? = 1 and # = 0.1 for the GP
used for prediction (i.e., 6 is misspecified again). Compute the RMSE and
compare it with that in part 4d.

September—December 2014 5



