Computer Model Calibration: Bayesian Methods for
Combining Simulations and Experiments for
Inference and Prediction

Department of Statistics and Actuarial Science
SFU SIMON FRASER UNIVERSITY
ENGAGING THE WORLD



Example

* The Lyon-Fedder-Mobary (LFM) model simulates the interaction of solar
wind plasma in the magnetosphere

e e see this as the Aurora Borealis

* Have a computer model that attempts to capture the main features of this
phenomenon

* Outputs are large 3-dimensional space-time fields or extracted features
thereof

* Computer model has three inputs: § = («, 8, R)
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Example

* T@eld observations available from the Polar Ultraviolet Imager satellite

* Computer model 1s assumed to capture all salient features of the solar wind
interactions, up to random error

* However, the inputs () = («, 8, R)) are not known

e Scientific problem: estimate 6 = («, 8, R)
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Basic inverse problem — Statistical
formulation

Ys (t) — 77(75)
yr(0) =n(0) + e

Where,
— Y, system response

— Y, simulator response at input /
— 0 calibration parameters

— & random error
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Have data from 2 separate
sources — computer model
and field observations

Problem is to estimate the
calibration parameters



Solutions

e Many different solutions to such problems... can you think of one?
e Suppose the computer model 1s fast?

* Suppose the computer model 1s slow?
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Model calibration — Statistical formulation
y3($, t) — 77($7 t)
yf(xa (9) — 77(337 9) T €

e  Where,
— X model or system inputs;

— Y, system response
— Y, simulator response
— 0 calibration parameters

— €& random error
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Have data from 2 separate
sources — computer model
and field observations

Problem is to estimate the
calibration parameters



Solutions

e Many different solutions to such problems... can you think of one?
e Suppose the computer model 1s fast?

* Suppose the computer model 1s slow?
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Example: Radiative shock experiment

A conceptually simple sk Base experiment
experiment
— Launch a thin Be plasma 600 ym dia. tube 200 |
down a shock tube at
~ 200 km/s

Target Coord. Y (um)
<)

A radiative shock is a wave in which
both hydrodynamic and radiation

: L 1600 1700 1800 1900 2000
.transport physics play a significant role Target Coord. X (um)
in the shock’s propagation and structure
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Application

Initial experiments:

— 1 ns, 3.8 kd laser irradiates Be disk=>» plasma
down Xe gas filled shock tube at ~ 200 km/s

— Circular tube; diam = 575um
— Timing 13-14 ns

stube filled with Xe gas ~1.2atm

Additional experiments
— Laser energy ~ 3.8kJ
— Circular tube; diam = 575, 1150um
— Timing 13,20,26 ns
Nozzle experiments
— Laser energy ~ 3.8kJ
— nozzle length = taper length = 500um

— Circular tube; diam = 575um
— Timing 26 ns

nozzle length

Extrapolation experiments (5" year)
— Laser energy ~ 3.8kdJ
—  Elliptical tube; diam = 575-1150um
— Aspectratio=2
— Includes nozzle in shock tube

— __Timing 26 ns
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Have several outputs & inputs

Outputs (y) * Inputs ()
— Shock location — Observation time
— Shock breakout time — Laser energy
— Wall shock location — Be disk thickness
— Axial centroid of Xe — Xe gas pressure
— Area of dense Xe — 'Tube geometry

e Calibration parameters (f))
— Vary with model
— Electron flux limiter

— laser scale factor

Wall shock location

Area of dense Xe

Fixed window . Centroid of dense Xe



We can measure and we can compute

600 um 1200 um Circular Elliptical
tube tube nozzle nozzle

[—

o 4

e TN S SEACE, B T N e TV Y P12 e
T ST A o TR \ iy oS
LR e O T:.,._Tj;»;"' s R

n e VS e e
R e

Goal is to predict elliptical tube quantities of
interest and uncertainty, without using any data *Shocks at 13 ns
from elliptical tube experiments



Data

e Have observations from 1-D CRASH model and experiments

e Experiment data:
— 9 experiments
— experiment variables: Be thickness, Laser Energy, Xe pressure and Time
— responses: Shock location

e 1-D CRASH Simulations
— 320 simulations, varied over 8 inputs
— experiment variables: Be thickness, Laser Energy, Xe pressure and Time
— calibration parameters: Be Gamma, Be OSF, Xe Gamma, Xe OSF
— response: Shock location
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Use observations and simulations for
prediction in real world

Have simulations from the CRASH code

Have observations from laboratory experiments

Want to combine these sources of data to make prediction of the real-world
process ... Also have to estimate the calibration parameters

Additional complicating factor, the computer model is not an exact
representation of the mean of the physical system... darn!

Approach: Model calibration (Kennedy and O’Hagan, 2001; Higdon et al.,
2004)
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Model calibration — Statistical formulation

v(xr) = nlxr)
yf(x,H) = n(x,9)+5(x)+8

e Where,
— x model or system inputs;

— Yy, system response
— Y, simulator response
— 0 calibration parameters

— €& random error
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Model calibration — Statistical formulation

v (xr) =
)’f(xﬂ) =

Shared signal



Model calibration — Statistical formulation

v(xt) = nlxr)
)’f(xﬂ)
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Model calibration — Statistical formulation

v (xr) = nlxp)
yf(x,H) = n(x,6)+(5(x)+8

Gaussian process models



Back to Gaussian process models

. y(wi) = p+ 2(x;)

. 2(z;) ~ N(0,02)

e cor((2(x;),2(x;) =e” Sofey Ok (i —m k)
2(x) ~ N(0n, 02 R)

° (ZC ™~ N(:ulna 02R)
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Gaussian process model for the emulator in
this setting

. Ys(wi ;) = p+ 2(w, 1)

e 2(m,t;) ~ N(O, ag)

¢ cor (<Z(x’)’ Z(xj)) =e i ek(mik_mjk)Q_Zi/ﬂ wi (tie—tj)>
° z(a:,t) NN(On,OER)

) y(x’ t) ™~ N(Nlna O-ER)
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Have Gaussian process model for the
discrepancy

o cor((6(zi),d(x;)) =€~ Sy Vi (Tik—xjk)?
e () ~ N(Op,05Rs) = N(0pp, Xs)
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Hierarchical model is used to combine
simulations and observations

*  View computational model as a * Can combine sources of
draw of a random process (like information using a single GP
before)

ys(x’t) = n('x’t)
*  Denote vectors of simulation trials yi(x0) = n(x.0)+6(x)+e

as and field measurements as

ys&yf

*  Suppose that these are 7 and 7-
vectors respectively
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Hierarchical model is used to combine
simulations and observations

*  View computational model as a * Can combine sources of
draw of a random process information using a single GP
e  Denote vectors of simulation trials y(xt) = nlxr)
as and field measurements as 3 v (x,0) = n(x.0)+(x)+e
Ys & Yf
Vs
Suppose that these are 7 and 7- y=| |~ N( w(z Wz 43 )
r r . l o €
vectors respectively v,

Contains correlations between all sources
of data via the joint signal in the
computer model
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Hierarchical model is used to combine
simulations and observations

*  View computational model as a * Can combine sources of
draw of a random process information using a single GP
e  Denote vectors of simulation trials y(xt) = nlxr)
as and field measurements as 3 v (x,0) = n(x.0)+(x)+e
Ys & Yf
Vs
Suppose that these are 7 and 7- y=| |~ N( w(z Wz 43 )
r r . l o €
vectors respectively v,

Problem... correlations involving field
trials have t = 6
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Hierarchical model is used to combine
simulations and observations

*  View computational model as a * Can combine sources of
draw of a random process information using a single GP
*  Denote vectors of simulation trials v(x) = nlx)
as and field measurements as 3 yi(x0) = n(x.0)+6(x)+e
Ys & Yf
Vs
Suppose that tkolese are 7 and 7- y=| |~ N( W )
vectors respectively

Only operates on the field data
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Calibration idea: No discrepancy model

(Plot taken shamelessly from Dave Higdon)

nixt)
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Calibration idea: Discrepancy model

(Plot taken shamelessly from Dave Higdon)
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(b) data & prior uncertainty (c) posterior mean for n(x,t)

y(x), n(x.)

(e) posterior model discrepancy (f) calibrated prediction
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Comments

* Interpretation of unknown constants can change
e Without discrepancy: estimating unknown physical constants

* With discrepancy: selecting tuning constants that best fit the model
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Estimation

What parameters do we have to estimate?
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Estimation

Can apply Bayes’ Rule:
B|A|lA
ap =24
| B] Ignoring statistical model
parameters for the
moment...

In the unbiased case for a fast simulator,

01n, yr| o< [yr|n, 0][n|0]|0]

For the simulators we have been considering, use an emulator in place of
computer model... basic idea

[716] = 17116, ys]

017,y o< [yr|n, 0][10]0, ys] 0]
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Estimation

* How could we put this together for the CRASH problem?
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Back to CRASH

Inverted-gamma priors for variance components
Gamma priors for the correlation parameters
Log-normal priors for the calibration parameters

Samples from the posterior are generated through MCMC... anyone know
how to do this?
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CRASH predictions
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Calibration - BE Gamma

Pesterior Histegram for BE Gamma
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Calibration - BE OSF

Posterior Histogram for BE OSF
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Calibration - XE Gamma

Posterior Histogram for XE Gamma
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Posterior Histogram for XE OSF
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Exploring the discrepancy

e The CRASH project was an ongoing endeavor

e Computer codes were being developed

e Idea is to use the statistical model to inform code development
e Predicted the discrepancy over a 4-d grid

e Used posterior mean surface
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Discrepancy




e Reasons for the discrepancy

It was interesting that the discrepancy is always positive

Incorrect radial loss of energy results in Xe that is too hot in front
of the shock, and that systematically messes up the shock speed

The region where the discrepancy is highest is thought to be the
region where Xe pressure is largely going to impact

Why might this be a crazy approach to explore the discrepancy?
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