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Computer Model Calibration… part 2 
Some comments on model calibration and an 

approach for unbiased computer models 
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How do we feel about this set-up? 

€ 

ys x, t( ) = η x, t( )
y f x,θ( ) = η x,θ( ) +δ x( ) +ε

•  Where,                         
–     model or system inputs;  
–     system response 
–     simulator response 
–     calibration parameters   
–     random error 
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Comments/questions 

•  Suppose that the computer model does not perfect reflect the mean of 
the physical process 

•  What can go wrong? 

•  What does the discrepancy function do? 
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Toy example - Chemical Kinetics example 
 

•  Field design with 11 equally spaced (time) points in [0,3] with 3 replicates 
for the model  

•  Computer model run design: 21-point random Latin hypercube design 

•  Computer model:  

•  Note: 

y

f

(x) = 1.5 + 3.5e�1.7x + ✏; ✏ ⇠ N(0, 0.36)
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Profile likelihood for      is multi-modal     ✓

✓
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Computer model output and bias function for 
different values of  ✓

✓
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Predictive distribution appears relatively 
unaffected by changes in  

✓

✓
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Questions 

•  What is a good value of the calibration parameter? 

•  How should this be interpreted? 
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Back to CRASH example 

•  We have just looked at issues related to the calibration 
parameter 

•   What about the discrepancy?   

•  Where does the information come from? 
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CRASH data summary 

•  Have observations from 1-D CRASH model and experiments 

•  Experiment data: 
–  9 experiments 
–  experiment variables: Be thickness, Laser Energy, Xe pressure and Time 
–  responses: Shock location 

•  1-D CRASH Simulations 
–  320 simulations, varied over 8 inputs 
–  experiment variables: Be thickness, Laser Energy, Xe pressure and Time 
–  calibration parameters: Be Gamma, Be OSF, Xe Gamma, Xe OSF 
–  response: Shock location 



 
                          Department of Statistics and Actuarial Science 

What does this say about model calibration? 

•  Have to be thoughtful about what it can and cannot do 

•  Generally very good at combining field and simulation data to make 
predictions in the physical system 

•  By very cautious about using the calibration parameters for any other 
purpose if the discrepancy is important 

•  Be even more cautious about the form of the discrepancy 
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Return to the classical inverse problem 

•  Where,                         
–      system response 
–      simulator response at input t 
–      calibration parameters   
–      random error 

yf
ys
θ

ε

ys(t) = ⌘(t)

yf (✓) = ⌘(✓) + ✏

Have data from 2 separate 
sources – computer model 
and field observations 
 
Problem is to estimate the 
calibration parameters 
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Obvious solutions 

•  Just do the K-O approach 

•  Could emulate computer model and minimize the least squares 
deviation 

•  What if field data are complex data structures? 

L =
X

field obs

(y
f

� ⌘̂(t))2
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Example 

•  Field observations available from the Polar Ultraviolet Imager satellite  

•  Computer model is assumed to capture all salient features of the solar wind 
interactions, up to random error … model is unbiased 

•  However, the inputs (                       )  are not known 

•  Scientific problem: estimate  

•  Computer model is slow to run... 4 runs ≈ 1 month  

✓ = (↵,�, R)

✓ = (↵,�, R)
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•  20 simulations from the deterministic computer model 

•  Each simulation gives a space-time field on a 1,944 grid for each 
response variable 

•  Have one field observation from UVI for both responses on the 
same grid (i.e., have observed one storm)  

•  Leads to roughly 40, 000 × 40, 000 covariance matrix to calibrate 
one response 

Data 
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•  LFM model output exhibits behaviour that is not well 
represented by a non-stationary GP as a function of the 
inputs 

•  Challenges: Large data structure and non-stationary 
covariance model is required 

… and complicating matters 
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•  Criterion-based approach  

•  Need a (well designed) collection of initial model runs 

•  Attempts to measure the discrepancy between the computer model run 
at a each input setting and the field observation 

•  Model the criterion as a function of the calibration parameter 

•  Estimate of the calibration parameter is where the criterion surface is 
minimized (can use expected improvement to pick future trials) 

Approach (Pratola et al., 2013) 
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•  Recall,  

•  If ran the computer model at          , then the difference between the 
simulator output and the observations would be a vector (or matrix) of 
white noise 

Basic set-up 

ys(t) = ⌘(t)

yf (✓) = ⌘(✓) + ✏

t = ✓
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•  Let  

•  Idea:  
–  Restricted model:   if  

–  Unrestricted Model:  otherwise  

Discrepancy 

GP 
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•  Define the discrepancy criterion: 

where      denotes the maximized likelihood for the restricted model,      
denotes the likelihood for the unrestricted model  

Discrepancy criterion 
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•  If we are lucky enough to have run the computer model at the correct 
value of the calibration parameter, then criterion will be small (zero) 

•  Otherwise, the criterion will be relatively large 

•  Will model this surface with a GP 

 

Idea 
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•  Criterion allows for simple sequential design strategy based on the 
Expected Improvement of Jones et al (1998) we have already covered 

•  Define the improvement as 

•  New trials are chosen so that E(I(t)) is maximized 

 

Sequential design 
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•  Consider the simple harmonic oscillator of an object with unit mass 

•  A simplified form of the solution to the differential equation is (t is the 
calibration parameter): 

 

Toy example 
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Toy example 
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•  Simulate from this system with (nf = 20; nc=20) 

•  Error for field observations: 

•  Did this 1000 times, each time applying the estimation method 

Toy example 
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Toy example 
⇢ = 0.25
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•  The LFM model has three inputs 

•  20 simulations from the deterministic computer model 

•  Two output fields: flux and energy 

Back to LFM 
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Back to LFM 


