Computer Model Calibration... part 2 Some comments on model calibration and an approach for unbiased computer models

Department of Statistics and Actuarial Science SIMON FRASER UNIVERSITY ENGAGING THE WORLD

How do we feel about this set-up?

$$y_s(x,t) = \eta(x,t)$$

$$y_f(x,\theta) = \eta(x,\theta) + \delta(x) + \varepsilon$$

- Where,
 - -x model or system inputs;
 - y_f system response
 - y_s simulator response
 - θ calibration parameters
 - ε random error

Comments/questions

- Suppose that the computer model does not perfect reflect the mean of the physical process
- What can go wrong?
- What does the discrepancy function do?

Toy example - Chemical Kinetics example

• Field design with 11 equally spaced (time) points in [0,3] with 3 replicates for the model

$$y_f(x) = 1.5 + 3.5e^{-1.7x} + \epsilon; \ \epsilon \sim N(0, 0.36)$$

- Computer model run design: 21-point random Latin hypercube design
- Computer model:

$$y_s(x) = 5e^{-\theta x}$$

• Note: $\theta = 1.7$

Profile likelihood for θ is multi-modal

Computer model output and bias function for different values of θ

Predictive distribution appears relatively unaffected by changes in θ

Questions

- What is a good value of the calibration parameter?
- How should this be interpreted?

Back to CRASH example

- We have just looked at issues related to the calibration parameter
- What about the discrepancy?
- Where does the information come from?

CRASH data summary

- Have observations from 1-D CRASH model and experiments
 - Experiment data:
 - 9 experiments
 - experiment variables: Be thickness, Laser Energy, Xe pressure and Time
 - responses: Shock location
- 1-D CRASH Simulations
 - 320 simulations, varied over 8 inputs
 - experiment variables: Be thickness, Laser Energy, Xe pressure and Time
 - calibration parameters: Be Gamma, Be OSF, Xe Gamma, Xe OSF
 - response: Shock location

What does this say about model calibration?

- Have to be thoughtful about what it can and cannot do
- Generally very good at combining field and simulation data to make predictions in the physical system
- By very cautious about using the calibration parameters for any other purpose **if the discrepancy is important**
- Be even more cautious about the form of the discrepancy

Return to the classical inverse problem

$$y_s(t) = \eta(t)$$

 $y_f(\theta) = \eta(\theta) + \epsilon$

- Where,
 - y_f system response
 - y_s simulator response at input t
 - θ calibration parameters
 - ε random error

Have data from 2 separate sources – computer model and field observations

Problem is to estimate the calibration parameters

Obvious solutions

- Just do the K-O approach
- Could emulate computer model and minimize the least squares deviation

$$L = \sum_{field \ obs} (y_f - \hat{\eta}(t))^2$$

• What if field data are complex data structures?

Example

- Field observations available from the Polar Ultraviolet Imager satellite
- Computer model is assumed to capture all salient features of the solar wind interactions, up to random error ... model is unbiased
- However, the inputs $(\theta = (\alpha, \beta, R))$ are not known
- Scientific problem: estimate $\theta = (\alpha, \beta, R)$
- Computer model is slow to run... 4 runs \approx 1 month

Data

- 20 simulations from the deterministic computer model
- Each simulation gives a space-time field on a 1,944 grid for each response variable
- Have one field observation from UVI for both responses on the same grid (i.e., have observed one storm)
- Leads to roughly 40, 000 × 40, 000 covariance matrix to calibrate one response

... and complicating matters

- LFM model output exhibits behaviour that is not well represented by a non-stationary GP as a function of the inputs
- Challenges: Large data structure and non-stationary covariance model is required

Approach (Pratola et al., 2013)

- Criterion-based approach
- Need a (well designed) collection of initial model runs
- Attempts to measure the discrepancy between the computer model run at a each input setting and the field observation
- Model the criterion as a function of the calibration parameter
- Estimate of the calibration parameter is where the criterion surface is minimized (can use expected improvement to pick future trials)

Basic set-up

• Recall,

$$y_s(t) = \eta(t)$$

 $y_f(\theta) = \eta(\theta) + \epsilon$

• If ran the computer model at $t = \theta$, then the difference between the simulator output and the observations would be a vector (or matrix) of white noise

Discrepancy

• Let
$$\delta(t) = Y_f(\theta) - Y_c(t) = \eta(\theta) - \eta(t) + \epsilon$$

- Idea:
 - Restricted model: if $t = \theta$, $\delta(\theta) \sim N(0, \sigma^2 I)$

- Unrestricted Model: otherwise
$$\delta(t) \sim N(\mu_t, \sigma_t^2 R + \sigma^2 I)$$

GP

Discrepancy criterion

• Define the discrepancy criterion:

$$\Delta(t_i) = -2\log\left(\frac{L_r^*(\delta(t_i))}{L_u^*(\delta(t_i))}\right)$$

where L_r^* denotes the maximized likelihood for the restricted model, L_u^* denotes the likelihood for the unrestricted model

Idea

- If we are lucky enough to have run the computer model at the correct value of the calibration parameter, then criterion will be small (zero)
- Otherwise, the criterion will be relatively large

$$\Delta(t_i) = -2log\left(\frac{L_r^*(\delta(t_i))}{L_u^*(\delta(t_i))}\right)$$

• Will model this surface with a GP

Sequential design

- Criterion allows for simple sequential design strategy based on the Expected Improvement of Jones et al (1998) we have already covered
- Define the improvement as $I(t) = max(min\Delta(t) \Delta(t), 0)$

• New trials are chosen so that E(I(t)) is maximized

Toy example

- Consider the simple harmonic oscillator of an object with unit mass
- A simplified form of the solution to the differential equation is (*t* is the calibration parameter):

$$\eta(t) = t \times \sin(ts)$$

Department of Statistics and Actuarial Science SIMON FRASER UNIVERSITY ENGAGING THE WORLD

Toy example

Toy example

• Simulate from this system with $(n_f = 20; n_c = 20)$

$s \in [0, 10] \qquad \quad t \sim U[0, 11]$

• Error for field observations:

$$\epsilon \sim N(0, \rho Var(\eta(\theta))$$

• Did this 1000 times, each time applying the estimation method

$\rho=0.25$

Toy example

Back to LFM

- The LFM model has three inputs
- 20 simulations from the deterministic computer model
- Two output fields: flux and energy

Back to LFM

alpha

Department of Statistics and Actuarial Science SIMON FRASER UNIVERSITY ENGAGING THE WORLD

