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INTRODUCTION

25 years ago in Statistics:
Bayesian Gaussian Process models (GaSP) introduced for design 
and analysis of expensive-to-run computer experiments

About the same time in Polynomial Chaos (PC) methods 
introduced. 

Since then: a multitude of varieties of design, GaSPs and PCs. 
What to choose and on what basis?



Why Bother 

    Two reasons (apart from avoiding embarrassment):

● “UQ is the end-to-end study of the reliability of scientific inferences”
so apply UQ to reliability of UQ methods

● In the absence of proof what constitutes adequate evidence?



 How to Address

(1) Focus:  use of  computer experiment to build a surrogate to the 

code output. (With a good surrogate "everything" can be done.)  

(2) Accuracy of surrogate prediction at untried inputs.

 (3) Apply to codes that reflect what m odelers might face.

(4) Present  evidence to a Court for "judgment"
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ȳ − y(x

(i)
ho)
)2 .

What are tolerable levels of error? Clearly these are application specific so that
tighter thresholds would be demanded say, for optimization than for sensitivity
analysis. For general purposes we take the rule of thumb that ermse,ho < 0.10 is
useful. For normalized maximum error it is plausible that the threshold could
be much larger say, 0.25 or 0.30. These speculations are consequences of the
experiences we document later, and are surely not the last word. The value of
having thresholds is to provide benchmarks that enable assessing when differ-
ences among different methods or strategies are practically insignificant versus
statistically significant.

3. FAST CODES

3.1 Generating a reference set for comparisons

For fast codes under our control large holdout sets can be obtained. Further-
more, many designs and hence training data sets can easily be generated.

We generate many equivalent designs by permuting the input indices for a given
design. For fast codes we will commonly use 25 (different) random permutations
of the columns of an mLHD to generate a reference set of designs if d ≥ 5. (When
d = 4 we use all 24 possible permutations.) The designs, generated data sets, and
replicate analyses then serve as the reference set for a particular problem and
provide the grounds on which variability of performance can be assessed. For fast
codes performance is measured through the use of a single holdout (test) set of
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Accuracy of Prediction

For fast codes: large (N) set of holdout points i.e., inputs not used in the 
experiment, and compute

Notation: x in d-cube, input to code; y(x) the scalar output; ŷ the surrogate

= average of the experimental output, the training data. 

Benchmark:  ermse,ho ≤ .10



Docket

Case 1: Designs

Case 2: GaSP v. PC

Case 3: Parameters of GaSP

Case 4: Stationary v. Non-stationary GaSP 
Case 5: MLE v. Bayes 



Argument for Fast Codes

● Select (base) design
● Choose GaSP or PC
● Select test function and run code
● Compute ermse,ho
● Repeat for (20-25) designs by permuting coordinates of

base design; holdout set remains fixed



Varieties of Design

(1) Completely Random

(2) Discrepancy Sequence (Sobol)
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(3) “Maximin” Latin Hypercube Design (mLHD):

maximize minimum distance between points in the class of LHDs 
-- "approximately" and with “nicer” 2-d projections

(4) Transform mLHD (trLHD) (Dette&Pepelyshev, 2009): 
          xi → (1 − cos(πxi))/2
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Case 1: trLHD v Others

Use GaSP for prediction.  
Test Function: 

Borehole:  d=8



Borehole (d=8); ermse,ho



 Borehole (d=8); max error



Decision – Case 1: Designs

1. On basis of RMSE: disadvantage for trLHD unless extreme behavior

 at boundary. Advantage to trLHD under max error.

2. Minor differences among other choices.

3. Use easy to generate random LHD or Orthogonal LHD (nice 2-
dimensional projections)



Don't sweat the design



Case 2: GaSP v PC

  Test Functions: 

(1) Corner Peak:  d =10

 y(x)  ci = C(1/i2); ∑ci =.25

(3) Random Oscillator:  d=6

(2) Resistor Network  d=40



Polynomial Ch(oices)

Relies on orthogonal polynomials 
1. Adaptive sparse-grid
2. Compressed Sensing (OMP) — dual of Lasso:

 minc ║c║1   s.t. ║ y ‒ Ac║2 < ε 

Choose ε,p (p the degree of the polynomials) via cross-validation

3. Expand #2 by choosing better basis terms e.g., by adding higher
degree terms where called for (Jakeman, Eldred, Sargsyan, 2014)



ermse,ho =







Decision – Case 2: GaSP v PC 

1. For "modest" n (e.g., n=10d) preponderance of evidence favors
GaSP.

2. For "large" n not clear.



Things go better with GaSP



GaSP 

Model y as a random function, a Gaussian stochastic process with 
mean function µ(x) and covariance function σ2R. 

For any {(x(1)),...,(x(n))} let µ = the vector of µ(x(i)) and R the 
covariance matrix of y = {y(x(1)),...,y(x(n))}. 

The likelihood, or density, of y,  L(y | parameters µ,σ2,R), is

1

(2πσ2)n/2 det1/2(R) 
exp

(
− 1

2σ2 (

)
(y-μ)T R−1(y-μ))



Random Function Model: Technical Formulation

Given data y the conditional (posterior) distribution of  y(xnew),

 y(xnew)  |{y(x(1)), . . . , y(x(n))} is  N(ŷ(xnew), v(xnew)).

   ŷ(xnew) = µ(xnew) + rT(xnew)R−1(y − µ) 

is the predictor of y(xnew). 

(rT(x) = (R(x, x(1)),...,R(x, x(n))) 

J. Sacks and W.J. Welch (NISS & UBC) Module 2: RF Model Oakland U, Mar 13–14, 2008 20 / 30

GaSP Prediction



GaSP - Choices of µ

Constant (Con)
Linear in x  (FL)
Select linear: linear in “significant” coordinates (SL)



GaSP - Choices of R

R(x,x') = R(x–x')  (stationary):

  PowExp

When p = 2,  R = Gauss 

Other choices - Matérn

1≤pj≤2



matern class

alignl { stack {

size 12{"Matern Class: "R \( x,w \) " has its "j rSup { ital "th"} "
factor one of"} {} # 
{} # 
size 12{"Matern-1: " left (1+θ rSub {j} lline x rSub {j} - w rSub {j}
rline right )"exp" left ( - θ rSub {j} lline x rSub {j} - w rSub {j} 
rline right )} {} # 
size 12{"Matern-2: " left (1+θ rSub {j} lline x rSub {j} - w rSub {j}
rline + { {1} over {3} } θ rSub {j} rSup {2} lline x rSub {j} - w
rSub {j} rline rSup {2} right )"exp" left ( - θ rSub {j} lline x rSub
{j} - w rSub {j} rline right )} {} # 
size 12{"Matern-0: Same as PowExp with "p rSub {j} =1} {} # 
size 12{"Matern-" infinity ": Same as Gauss"} {} 
} } {}

R(x,w) has its jth factor one of
Matérn-1:  (1+θj∣xj−wj∣) exp(−θj∣xj−wj∣)

Matérn-2:  (1+θj∣xj−wj∣+
1
3 θj

2∣xj−wj∣
2 )exp(−θj∣xj−wj∣)

Matérn-0:  Same as PowExp with pj=1 

Matérn-∞: Same as Gauss

Matérn Class



Case 3: µ=Con, R=PowExp v Others

Test Function: Borehole (d=8)
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Case 3: µ,R comparisons; Borehole Function   

10,000 points, selected as a random Latin hypercube design (LHD) on the input
space. Given the setup of Section 2, we want to assess the consequences of making
a choice from the menu of three regression models and four correlation functions.

3.2 Borehole code

The first setting we will look at is the borehole code (Morris et al., 1993)
mentioned in Section 1 and described in the supplemental material. It has served
as a test-bed in many contexts (e.g., Joseph et al., 2008). We consider three
different designs for the experiment: a 27-run orthogonal array (OA), the same
design used by Joseph et al. (2008); a 27-run mLHD; and a 40-run mLHD.

The top row of Figure 1 shows the results for the 12 possible modeling com-
binations with the 27-run OA design. The SL choice for µ is the term x1. For a
given modeling strategy, 25 random permutations of the columns of the 27-run
OA lead to 25 repeat experiments (Section 3.1) and hence a reference set of 25
values of ermse,ho shown as a dot plot.

The results are striking. Relative to a constant regression model, the FL re-
gression model has empirical distributions of ermse,ho which are uniformly and
substantially inferior, for all correlation functions. The SL regression also per-
forms very poorly sometimes, but not always. To investigate the SL regression
further, Figure 2 plots ermse,ho for individual repeat experiments, comparing the
GaSP(Const, Gauss) and GaSP(SL, Gauss) models. Consistent with the anecdo-
tal comparisons in Section 1, the plot shows that the SL regression model can
give a smaller ermse,ho—this tends to happen when both methods perform fairly
well—but the SL regression sometimes has very poor accuracy (almost 0.5 on the
normalized RMSE scale). The top row of Figure 1 also shows that the choice of
correlation function is far less important than the choice of regression model.
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Argument for Slow Codes

● Code, design, runs have already been made
● Use GaSP for prediction
● Select 20% of the runs at random for a holdout set
●

● Repeat 25 times each with a new randomly selected holdout
set

Compute ermse,ho with the remaining 80% using GaSP



ANALYSIS METHODS FOR COMPUTER EXPERIMENTS 11

Table 1
Nilson-Kuusk model: Normalized holdout RMSE of prediction, ermse,ho, for four regression

models and four correlation functions. The experimental data are from a 100-run LHD, and
the hold-out set is from a 150-run LHD.

ermse,ho

Regression Correlation function
model Gauss PowerExp Matérn-2 Matérn

Constant 0.116 0.099 0.106 0.102
Select linear 0.115 0.099 0.106 0.105
Full linear 0.110 0.099 0.104 0.104
Quartic 0.118 0.103 0.107 0.106
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Gauss PowerExp Matern Matern−2

Constant

Gauss PowerExp Matern Matern−2

Select linear

Gauss PowerExp Matern Matern−2
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Gauss PowerExp Matern Matern−2

Quartic

Case 3: Nilson-Kuusk (1989) 5-d reflectance plant canopy; n=250, so 25 
holdout sets of 50 points each. Quartic: refers to quartic in x5, linear in others 
(used by Bastos&O'Hagan (2009)

the best performers. Similar results pertain when the 150-run LHD is used for
training and the 100-run set for testing (Table 4 in the supplementary material).

The dot plots in Figure 4 for the third study are even more striking in exhibiting
the inferiority of R=Gauss and the lack of advantages for any of the non-constant
regression functions. The large variability in performance among designs and
holdout sets is similar to that seen for the fast-code replicate experiments of
Section 3. The perturbations of the experiment, from random sampling here,
appear to provide a useful reference set for studying the behavior of model choices.

The large differences in prediction accuracy among the correlation functions,
not seen in Section 3, deserves some attention. An overly smooth correlation
function—the Gaussian—does not perform as well as the Matérn and power-
exponential functions here. The latter two have the flexibility to allow needed
rougher realizations. With the 150-run design and the constant regression model,
for instance, the maximum of the log likelihood increases by about 50 when the
power exponential is used instead of the Gaussian, with four of the pj in (2.1)
taking values less than 2.

The estimated main effect (Schonlau and Welch, 2006) of x5 in Figure 5 from
the GaSP(Const, PowerExp) model shows that x5 has a complex effect. It is also
a strong effect, accounting for about 90% of the total variance of the predicted
output over the 5-dimensional input space. Bastos and O’Hagan (2009) correctly
diagnosed the complexity of this trend. Modeling it via a quartic polynomial in
x5 has little impact on prediction accuracy, however. The correlation structure
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 Nilson-Kuusk:  Estimated main effect of x5.

of the GaSP is able to capture the trend implicitly just as well.

4.2 Volcano model

A computer model studied by Bayarri et al. (2009) models the process of pyro-
clastic flow (a fast-moving current of hot gas and rock) from a volcanic eruption.
The inputs varied are: initial volume, x1, and direction, x2, of the eruption. The
output, y, is the maximum (over time) height of the flow at a location. A 32-
run data set provided by Elaine Spiller (different from that reported by Bayarri
et al. (2009) but a similar application) is available in the supplementary material.
Plotting the data shows the output has a strong trend in x1, and putting a linear
term in the GaSP surrogate, as modeled by Bayarri et al. (2009), is natural. But
is it necessary?

The nature of the data suggests a transformation of y could be useful. The
one used by Bayarri et al. (2009)) is log(y + 1). Diagnostic plots (Jones et al.,
1998) from using µ=Const and R=Gauss shows that the log transform is reason-
able, but a square-root transformation is better still. We report analyses for both
transformations.

The regression functions considered are Const, SL (β0 + β1x1), full linear, and
quadratic (β0 + β1x1 + β2x2 + β3x

2
1), because the trend in x1 appears stronger

than linear when looking at main effects from the surrogate obtained using
√
y

and GaSP(Const, PowerExp).
Analogous to the approach in Section 4.1, repeat experiments are generated

by random sampling of 25 runs from the 32 available to comprise the design
for model fitting. The remaining 7 runs form the holdout set. This is repeated
25 times, giving 25 ermse,ho values in the dot plots of Figure 6. The conclusions
are much like those in Section 4.1: there is no need to go beyond µ=Const, and
PowerExp is preferred to Gauss. The failure of Gauss in the two “slow” examples
considered thus far is surprising in light of commonly held beliefs that Gauss is
adequate.

4.3 Sea-ice model

The Arctic sea-ice model studied in Chapman, Welch, Bowman, Sacks, and
Walsh (1994) and in Loeppky et al. (2009) has 13 inputs, 4 outputs and 157
available runs. The previous studies found modest prediction accuracy of GaSP
(Const, PowerExp) surrogates for two of the outputs (ice mass and ice area)
and poor accuracy for the other two (ice velocity and ice range). The question
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Decision – Case 3: μ, R

1. μ = Con: clear and convincing

2. No difference between R = PowExp or Matérn-opt

3. Do not rely solely on R = Gauss



Case 4: GaSP(Con,PowExp) v CGP

CGP (Ba & Joseph, 2012):  R= Gauss1 + q(x)Gauss2q(x');

Gauss1 has correlation parameters (θ1) bounded above to capture smooth 
global trend;

Gauss2 has correlation parameters (θ2) bounded below to capture short 
range volatility;

q(x) allows non-stationary behavior for second term.

Test Functions:

(1) Borehole; (2) sin (1/(x1x2)) on [0.3,1.0] 2; 

(3) Nilson-Kuusk;  (4) Volcano (d=2) code
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Case 4: GaSP(Con,PowExp)(triangles) v. CGP(circles); y=sin(1/(x1x2)) on [0.3,1.0]2.

thin-plate splines gave similar accuracy.

6. COMMENTS

6.1 Extrapolation

GaSP based methods are interpolations so our findings are clearly limited to
prediction in the space of the experiment. The design of the computer experiment
should cover the region of interest, rendering extrapolation meaningless. If a new
region of interest is found, e.g., during optimization, the initial computer runs
can be augmented. Extrapolation is only necessary in the situation of a new
region and a code that can no longer be run. But then the question is how to
extrapolate. Initial inclusion of linear or other regression terms may be more
useful than just a constant but it may also be useless, or even dangerous, unless
the “right” extrapolation terms are identified. We suspect it would be wiser to
examine main effects resulting from the application of GaSP and use them to
guide extrapolation.

A “slow” code example used by Ba and Joseph (2012) as evidence for improved
accuracy of CGP vis-a-vis a GaSP(Const, Gauss) method does so via a small
(N = 16) set of holdout data, a significant portion of the set lying on or well
beyond the boundary of the experimental space. The mix of interpolation and
extrapolation as well as the singularity of the holdout set and its small size lighten
the weight of the evidence.

6.2 Performance criteria

We have focused entirely on questions of predictive accuracy and used RMSE
as a measure. The supplementary material defines and provides results for a nor-
malized version of maximum absolute error, emax,ho. Other computations we have
done use the median of the absolute value of prediction errors, with normaliza-
tion relative to the trivial predictor from the median of the training output data.
These results are qualitatively the same as for ermse,ho: regression terms do not
matter, and PowerExp is a reliable choice for R. For slow codes, analysis like in
Section 4 but using emax,ho has some limited value in identifying regions where
predictions are difficult, the limitations stemming from a likely lack of coverage
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Case 4 : Volcano (Bayarri et al, 2010) d=2, n=32 leading to 25 
designs each of 27 runs with 5 holdout points.

Bayes-GEM-SA performs as well as the GaSP methods for G-Protein, not so
well for Borehole with n=27 but adequately for n=40. Turning to the slow codes
in Section 4 a different message emerges. Figure 9 for the Nilson-Kuusk model
is based on 25 repeat designs constructed as for Figure 4 with a base design
of 150 runs plus 50 randomly chosen from 100. The distributions of ermse,ho for
Bayes-GEM-SA and Gauss are similar, with PowerExp showing a clear advan-
tage. Moreover, few of the Bayes ermse,ho values meet the 0.10 threshold, while all
the GaSP(Const, PowerExp) ermse,ho values do. Bayes-GEM-SA uses the Gaus-
sian correlation function, which performed relatively poorly in Section 4; the
disadvantage carries over to the Bayesian method here.

The results in Figure 10 for the volcano code are for the 25 repeat experiments
described in Section 4. Here again PowerExp dominates Bayes and for the same
reasons as for the Nilson-Kuusk model. For the

√
y transformation, all but a few

GaSP(Const, PowerExp) ermse,ho values meet the 0.10 threshold, in contrast to
Bayes where all but a few do not. (Note also that error according to the ermse,ho

criterion is much smaller on the
√
y scale, supporting its choice.)

These results are striking and suggest that Bayes methods relying on R=Gauss
need extension. The “hybrid” Bayes-MLE approach employed by Bayarri et al.
(2009) estimates the correlation parameters in PowerExp by MLE, fixes them,
and takes objective priors for µ and σ2. The mean of the predictive distribution
for a holdout output value gives the same prediction as GaSP(Const, PowerExp).
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Decision – Case 4: CGP?

1. Evidence is unclear when R=CGP is preferred to R= PowExp.

2. Plausible that non-stationary R is useful but what R, when and
where is unclear.  

3. Diagnostics indicating R=PowExp is inadequate point to follow-up
strategies, but which ones?



Case stayed 



Flavors of Bayes

Empirical Bayes (MLE):  maxµ,σ,θ,p  L(y|µ,σ,θ,p)

Bayes GEM-SA:    p=2; π(µ)=1, π(σ2)=1/σ2, π(θj)=exp(-.01θj)

Other Bayes:        p=2; different priors for π(θj) 

Hybrid Bayes:      Get  θ,p via MLE, “plug-in”, Bayes for µ,σ
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Fig 8. G-protein: Normalized holdout RMSE of prediction, ermse,ho, for GaSP(Const, Gauss),
GaSP(Const, PowerExp), Bayes-GEM-SA, and CGP.
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Case 5: Volcano (Bayarri et al, 2010) d=2, n=32 leading to 25 
designs each of 27 runs with 5 holdout points.

Bayes-GEM-SA performs as well as the GaSP methods for G-Protein, not so
well for Borehole with n=27 but adequately for n=40. Turning to the slow codes
in Section 4 a different message emerges. Figure 9 for the Nilson-Kuusk model
is based on 25 repeat designs constructed as for Figure 4 with a base design
of 150 runs plus 50 randomly chosen from 100. The distributions of ermse,ho for
Bayes-GEM-SA and Gauss are similar, with PowerExp showing a clear advan-
tage. Moreover, few of the Bayes ermse,ho values meet the 0.10 threshold, while all
the GaSP(Const, PowerExp) ermse,ho values do. Bayes-GEM-SA uses the Gaus-
sian correlation function, which performed relatively poorly in Section 4; the
disadvantage carries over to the Bayesian method here.

The results in Figure 10 for the volcano code are for the 25 repeat experiments
described in Section 4. Here again PowerExp dominates Bayes and for the same
reasons as for the Nilson-Kuusk model. For the

√
y transformation, all but a few

GaSP(Const, PowerExp) ermse,ho values meet the 0.10 threshold, in contrast to
Bayes where all but a few do not. (Note also that error according to the ermse,ho

criterion is much smaller on the
√
y scale, supporting its choice.)

These results are striking and suggest that Bayes methods relying on R=Gauss
need extension. The “hybrid” Bayes-MLE approach employed by Bayarri et al.
(2009) estimates the correlation parameters in PowerExp by MLE, fixes them,
and takes objective priors for µ and σ2. The mean of the predictive distribution
for a holdout output value gives the same prediction as GaSP(Const, PowerExp).
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Decision – Case 5: Bayes v MLE

1. Bayes with R=Gauss not better, sometimes worse than MLE with R =
PowExp

2. Extend Bayes to allow p < 2



Bertrand Russell, upon being asked what he would reply if, after 
dying, he were brought into the presence of God and asked why he 
had not been a believer :

Conclusion



"Not enough evidence God! Not enough evidence!"
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