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This annotated reading list is not intended to be comprehensive. Rather it gives a
few key papers for the main topics of the course. Further articles will be suggested
for project work.

Design and Analysis of Computer Experiments

D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive
black-box functions,” Journal of Global Optimization, vol. 13, pp. 455–492, 1998.
Derek recommends you read the first part of the paper as a tutorial on the intuition
of using a Gaussian process to represent a deterministic function.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, “Design and analysis of
computer experiments (with discussion),” Statistical Science, vol. 4, pp. 409–435,
1989. Treating a function as arising from a stochastic process or Gaussian process
was already known in statistics, geostatistics (kriging), and optimization. But this
paper introduced that formulation for deterministic computer experiments and made
it feasible for applications with many input variables.

C. Currin, T. Mitchell, M. Morris, and D. Ylvisaker, “Bayesian prediction of determin-
istic functions, with applications to the design and analysis of computer experiments,”
Journal of the American Statistical Association, vol. 86, no. 416, pp. 953–963, 1991.
Toby Mitchell, Max Morris and Don Ylvisaker were pioneers in bringing computer
experiments to the attention of statisticians. Mitchell and Morris were based at Oak
Ridge National Laboratory, where simulations were run on the supercomputers of the
day.

T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer
Experiments. New York: Springer, 2003. A broad coverage of the literature on design
and analysis of computer experiments up to the time of publication.

C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning.
Cambridge, MA: The MIT Press, 2006. A comprehensive account of Gaussian pro-
cesses from a computer-science perspective. Its coverage is broader than computer
experiments, including classification for instance.

Design of Computer Experiments

L. Pronzato and W. G. Müller, “Design of computer experiments: Space filling and
beyond,” Statistics and Computing, vol. 22, pp. 681–701, 2012. This paper provides
an overview of many of the space filling methods for design of computer experiments.
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M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods
for selecting values of input variables in the analysis of output from a computer
code,” Technometrics, vol. 21, no. 2, pp. 239–245, 1979. These authors introduced
Latin hypercubes sampling (design) for computer experiments. The original purpose
was different but Latin hypercubes are now widely used for analysis via Gaussian
processes.

J. Sacks, S. B. Schiller, and W. J. Welch, “Designs for computer experiments,” Tech-
nometrics, vol. 31, pp. 41–47, 1989. This paper predates the Sacks, Welch, Mitchell,
and Wynn Statistical Science paper by a few months and had the main ideas of using
a stochastic process for analysis. But its main contribution is now viewed as introduc-
ing model-based design of computer experiments, specifically to minimize integrated
mean squared error of prediction.

M. E. Johnson, L. M. Moore, and D. Ylvisaker, “Minimax and maximin distance
designs,” Journal of Statistical Planning and Inference, vol. 26, no. 2, pp. 131–148,
1990. This paper introduced “space-filling” designs via two distance-based criteria.
Excellent intuition is provided via analogies to everyday problems. The maximin
criterion is widely used in applications, often to choose within the class of Latin
hypercube designs.

B. Tang, “Orthogonal array-based latin hypercubes,” 1993. An orthogonal array is
a fractional factorial with some balance properties. SFU’s Boxin Tang used these
designs from traditional design of physical experiments to improve the space-filling
properties of Latin hypercubes in low-dimensional projections, typically all subsets
of 2 or 3 inputs).

K. T. Fang, D. K. J. Lin, P. Winker, and Y. Zhang, “Uniform design: Theory and
application,” Technometrics, vol. 42, no. 3, pp. 237–248, 2000. The authors briefly
review the vast literature on uniform designs and illustrate use of these designs with
a computer code of a launching system.

J. L. Loeppky, J. Sacks, and W. J. Welch, “Choosing the sample size of a computer
experiment: A practical guide,” Technometrics, vol. 51, pp. 366–376, 2009. The au-
thors argue that the accuracy of a GP emulator is affected by two summaries of the
correlation sensitivity parameters and that n = 10d runs will often be enough for
moderate accuracy or diagnose that accuracy cannot be achieved without a much
larger sample size.

Sensitivity Analysis and Visualization

M. Schonlau and W. J. Welch, “Screening the input variables to a computer model
via analysis of variance and visualization,” in Screening Methods for Experimenta-
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tion in Industry, Drug Discovery and Genetics (A. M. Dean and S. M. Lewis, eds.),
pp. 308–327, New York: Springer-Verlag, 2006. Sensitivity analysis and visualiza-
tion are achieved together via analysis of variance applied to the prediction function.
The methods had been used in papers for more than 10 years by Sacks, Welch, and
coworkers and were part of Matt Schonlau’s thesis. But this review lays out all the
mathematics and how to do the computations.

J. E. Oakley and A. O’Hagan, “Probabilistic sensitivity analysis of complex models: a
Bayesian approach,” Journal of the Royal Statistical Society B, vol. 66, pp. 751–769,
2004. A fully Bayesian treatment of the above with some review of other definitions
of sensitivity by Sobol, Saltelli, etc.

Sequential Design

D. Bingham, P. Ranjan, and W. J. Welch, “Design of computer experiments for
optimization, estimation of function contours, and related objectives,” in Statistics in
Action: A Canadian Outlook (J. F. Lawless, ed.), pp. 109–124, Boca Raton, Florida:
CRC Press, 2014. An overview of sequential design, largely based on the next two
papers, that appeared as a chapter in a book by the Statistical Society of Canada to
celebrate the International Year of Statistics. The chapter is available at
http://www.ssc.ca/webfm_send/1322

D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expen-
sive black-box functions,” Journal of Global Optimization, vol. 13, pp. 455–492, 1998.
The paper defines an expected improvement (EI) criterion to choose the next func-
tion evaluation when searching for a global optimum. The method has been widely
adopted in the optimization literature, engineering design, etc.

P. Ranjan, D. Bingham, and G. Michailidis, “Sequential experiment design for contour
estimation from complex computer codes,” Technometrics, vol. 50, no. 4, pp. 527–
541, 2008. The authors develop another EI criterion, this time for mapping out where
y(x) equals some pre-specified critical value. Many papers by other researchers have
followed this work, to find quantiles, percentiles, etc. of an output distribution.

Calibration and Validation (Assessment)

M. C. Kennedy and A. O’Hagan, “Bayesian calibration of computer models (with dis-
cussion),” Journal of the Royal Statistical Society B, vol. 63, pp. 425–464, 2001. This
seminal paper uses jointly models computer-model and physical data via GP mod-
els for calibration of unknown parameters in the presence of systematic discrepancy
between the two types of data.
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D. Higdon, M. Kennedy, J. C. Cavendish, J. A. Cafeo, and R. D. Ryne, “Combining
field data and computer simulations for calibration and prediction,” SIAM Journal on
Scientific Computing, vol. 26, no. 2, pp. 448–466, 2004. The authors give a readable
account of how to conduct a Bayesian analysis of of the Kennedy-O’Hagan formula-
tion, along with two detailed engineering examples.

D. Higdon, J. Gattiker, B. Williams, and M. Rightley, “Computer model calibra-
tion using high-dimensional output,” Journal of the American Statistical Association,
vol. 103, no. 482, pp. 570–583, 2008. Again the objective is calibration of unknown
parameters in the presence of discrepancy between the computer-model runs and
physical data. The authors tackle multivariate data, which are reduced in dimension-
ality via principal components. The principal component weights are then modelled
by GPs.

M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, C.-H. Lin,
and J. Tu, “A framework for validation of computer models,” Technometrics, vol. 49,
no. 2, pp. 138–154, 2007. These authors point out that, as all computer models are
wrong to some extent, “validation” of a computer code against physical data amounts
to an assessment of the magnitude of the discrepancy.

W. Kleiber, S. Sain, M. J. Heaton, M. Wiltberger, C. S. Reese, and D. Bingham, “Pa-
rameter tuning for a multi-fidelity dynamical model of the magnetosphere,” Annals
of Applied Statistics, vol. 7, no. 3, pp. 1286–1310, 2013. The paper extends calibra-
tion (or tuning) to multivariate output from a space-time field. The authors also
allow several versions of the computer model and use sequential design to improve
calibration.
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