Stat 890
Design of computer experiments

e  Last day: Introduced designs for computer experiments

*  Saw that many common designs are motivated by Monte Carlo
integration rather than computer model emulation

*  Also saw that combining criteria seems to be helpful

. Good review paper Pronzato and Muller (2002)

Today: more on design
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Uniform designs

* Another way to view space-filling is to want designs that spread points out uniformly in the
input region, [0,1]¢

* Intuitively, would like the distribution of points to resemble a sample from a d-dimensional
uniform distribution

* Idea: the design that has the minimum discrepancy between the empirical distribution
function and the uniform cumulative distribution function

*  Can use Kolmogorov Smirnov discrepancy

D(X) = supzefo,1) |[Fn(z) — F ()

1/p
Dy(X) = supucion / Fo(z) — F(z)|Pda
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Comments

e Large literature for uniform designs usually aimed at numerical integration - quasi-Monte
Carlo- (see Lemieux, 2009, text)

*  Uniform designs are often very hard to find

* Fang et al. (2000) point out that uniform designs often have columns that are orthogonal or
have small correlation

*  So, can restrict search by combining criteria

* Can also look for uniformity within the class of Latin hypercube designs
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Comments

* Another important argument for space-filling in general comes from the linear model

Y(X)=XB+c¢

*  Suppose that there is only 1 factor and you want to estimate the mean and linear effect

Y(xz) =Po+ Bix +¢€

* Do you know what the optimal design is on [0,1]?
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Comments

*  Box and Draper (1959) pointed out that for polynomial regression with a misspecified
degree, spreading out the design points can help minimize the bias with potentially little cost
in prediction variance

*  Wiens (1991) shows that uniform designs can be robust for certain departures from the
regression model (F-tests)

* This is all to say, that space filling and uniformity are useful general properties
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Model based criteria

*  Suppose computer emulation is the desired goal
*  Why not choose a design specifically designed to do this?

e  What does it mean to emulate well?
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Model based criteria

*  Consider the GP framework
*  The mean square prediction erroris MSPE(Y (z)) = E |(Y (z) — Y(x))Q}

*  Would like this to be small for every point in [0,1]4

*  So, criterion (Sacks, Schiller and Welch, 1992) becomes

MSPE(Y (z))

2
x€[0,1]4 g

IMSPE = dx

*  The optimal design minimized the IMSPE
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Model based criteria

e Problems:

— Integral is hard to evaluate

— Function is hard to optimize

— Need to know the correlation parameters
e Could guess
* Could do a 2-stage procedure aimed at guessing correlation parameters
e Could use a Bayesian approach  BIMSPE = /IMSPE dF(0)
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Model based criteria

e Alternative: Minimize the maximum mean square prediction error

min max MSPE(Y (x))
Xe[0,1]d zeX

*  Again, need to know the correlation parameters to compute the criterion
* Propose an algorithm to find a good design...

*  Suppose you could do sequences of runs (batches), how would you do this
algorithmically?
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Model based criteria

*  There are more criteria than one could reasonably go through
e Other criteria include D-optimality and maximum entropy designs

* Interesting that the maximum entropy design (a measure of unpredictability of a random
variable) criterion calls to maximize det(o” R) for a design (Shewry and Wynn, 1987; Currin
et al., 1991)
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Sample size

* So you want to run a computer experiment... why?

*  For numerical integration, there are often bounds associated with the estimate of the mean
(e.g., Koksma-Hlawka theorem ... see Lemieux, 2009) derives an upper bound on the
absolute integration error

e  For computer model emulation Loeppky, Sacks and Welch (2009) proposed a general rule
for n=10d ... well sort of
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Sample size

e Two main considerations make this rule plausible:

— The sensitivity of the model to inputs
—  Effect sparsity

*  Several authors (Chapman et al., 1994; Jones et al., 1998) have suggested that »=10d has
been a successful choice for the sample size in their experience

e Statistical model is the GP we have been looking at so far with constant mean

R(x,x") =exp(—h(x,X)),
d

hix,X) = 6jlx; — XV,
i=1

Yx)=EY®)y.0)=a+r 0OR ' (y—14)
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Sample size

*  Obviously would MSE(¥(x))
=E(¥(x) — Y(x))?

_ 02(] _ rT(x)R_lr(x) + (1 — ITR_lr(X))Z)

1TR~ 11

* Interpretation?
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Sample size

* Letting & be the weighted distance between two points in a random Latin hypercube design
of size #

R(x, x') =exp(—h(x, X)),
E(h)y=mi(n Var(h) =ma(n

d
h(x,x") = Z 6jlxj — xj’.|Pj,

i=1

*  The find that MSE is impacted by the sum in both terms
— MSE gets big if first term gets big, for example

* Consider the efficiency:
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Sample size
Simulation

*  Suppose you have a realization of a GP in d-dimensions and also a hold-out set for
validation

*  Consider the impact of more active dimensions

* Efficiency index:

MSPE,,
Var(Yno)

HOI =

Department of Statistics and Actuarial Science
SF SIMON FRASER UNIVERSITY
ENGAGING THE WORLD



Sample size
Simulation

Multiplicative Gaussian Process

Active Dimensions
Run Size
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Sample size
Simulation

e J.et’s discuss what we see...
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Sample size
Simulation

Additive Gaussian Process
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Sample size
Simulation

e J.et’s discuss what we see...
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Sample size
Simulation

e Paper by Loeppky et al. (2009) notes that if you have some sparsity (i.e., variables that have
no or little impact), the #=10d rule works pretty well... what do we see?

*  Also, when the model is fairly smooth, the sample size rule of thumb works pretty well...
what do we see?

*  Suppose these conditions are violated. Then what?

*  Suppose that a computer experiment is run in d-dimensions, but a few are not really active.
How should the analysis proceed? Without these dimensions?
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