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Stating the Problem

Approximation of Computer Codes

Recall
e d-dimensional input: x = x1,...,xy
e Deterministic output: y(x)

Approximation / prediction / emulation of y(x) is the “engine” of analysis
of computer experiments:

To replace the computer model in future with a fast surrogate
o Sensitivity analysis

e Visualization

e Optimization

e Assessment of reality of the computer model

We will use a Gaussian process (GP) model for all of the aboveg2s q% vi\
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Stating the Problem

What's the Problem?

e Have data {x(), y(x(NM)} for i = 1,..., n from running the code.
e Want to predict y(x) at a new x, a standard statistical question; also
standard function approximation (no error).

e Don't know much about the function y(x), and if we specify a class
(like cubic splines) we need lots of data because of high dimensions.
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Stating the Problem

Our Strategy

e Before collecting data (making computer runs) we have a vague idea
of y's properties and so think of y as random.

o Example: 1-dimensional x on [0,1]; y(0) and y(1) uniform on [0, 1];
y(0) and y(1) should be “similar”.
e Our prior belief or uncertainty about y(x) is measured by a probability
distribution.

e Collect data.

e Now update belief/uncertainty through the conditional distribution of
y(x) given the data. In particular, predict y(x) at a new x as
Ely(x) | data].

e Conceptually: prior uncertainty + data = updated (posterior)
uncertainty (the Bayesian Paradigm)

vl\
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Stating the Problem

Rationale and Technical Needs

e Why is this strategy useful?

Lets the data do the talking
Copes with data scarcity

It works (as we'll see)

Has built in uncertainty measures

e What needs to be clarified?

e Notion of Gaussian process
e Prior distribution of y(x)
e Computation of posterior distribution
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Gaussian Processes

What is a Gaussian Process (GP)?

A (deterministic) function y(x) coded in a computer model is a
“table” {x,y(x)}.

e Graph the function by plotting the points of the table. (Plot y(x) at a
large number, N, of points, x(1), ... x(N) — 3 scatter diagram — and
“connect the dots”.)

e Suppose these values are the outcome of a random draw from some

joint Gaussian distribution of random variables y(x(1), ..., y(x(V)
and plot as above. We will get a realization of a Gaussian process
(GP).

¢ (A new random draw will generate a different function; hence another
name, random function statistical model.)

o Alternatively, think of the distribution of y(x™), ..., y(x(")) as a
prior distribution for the function values y(x(1), ... ,y(x(N gl ;i\
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Gaussian Processes
The Prior

We will abuse notation and think of y(x(1), ..., y(x(M) at any N
points as random.

We will work solely with the multivariate normal (MVN) distribution
for the y(x().

Each y(x()) has mean j (can easily be generalized to p varying
according to a regression function)

The covariance matrix is 0°R where the correlation matrix

R = Cor(y(x)), y(x¥))) (N x N matrix)

is specified and absolutely critical to the GP approach.
Summary: y = (y(x),..., y(x(M))T is MVN(z1, 5°R),
i.e., has density

1 1 Tp—-1
(27r02)N/2(det R)1/2 P <_M(y B M]-) R (y B f:::;;
@@

where 1 is an N x 1 vector of 1's.
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Gaussian Processes

Example Correlation Functions in One or More Dimensions

The squared-exponential (Gaussian) correlation function is a popular
choice.

Let x and x” be two sets of values for the input variables.
For 6 > 0:

e 1 dimension, x = x

Cor(y(x),y(x")) = R(x,x") = exp(—0|x — X”2)
and
R = [exp(—6lx) — xO2)

e 2 dimensions, x = (xy, x2)

R(x,x") = exp(—61|x1 — x{|*) x exp(—
vl\
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Gaussian Processes

Simulating Realizations of y(x)

e Simulating from a MVN is straightforward (see Appendix A)

e In the next slide are 5 realizations of a Gaussian process with 1-d x,
and 1~ 0, 02 ~ 19, and @ ~ 52 in the squared-exponential
correlation function (more in Module 3 about estimation, leading to
these values).

e We have simulated at a fine grid of N = 101 points. Note that x is

1-dimensional here; the 101-dimensional MVN distribution arises
because y is considered at 101 points.

vl\
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Gaussian Processes

5 Realizations of a Gaussian Process in One Dimension
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Gaussian Processes

“The Point”

e The range of possible GP realizations covers enough possibilities that
they may be representative of a smooth code output.

o We treat the function y(x) as if it is a realization of a random
function.

e Before running the code, the set of possible realizations is large.

o After getting data from running the code, the set of realizations must
be narrowed to be consistent with the data.

PIMS
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1-d Example

Damped Sin Wave

The “damped-sin” function
y(x) = 10sin(4mrx%%)e~ 15 (0<x<1)

will be used to illustrate the key ideas in approximating a deterministic
computer model.

e It is is highly nonlinear and hence complex.
e But it is simple:
e |t is measured without random variability (it represents a deterministic
computer model).
e x is only 1-d.
e We will see that the same methodolology extends to high-dimensional
X.

PIMS
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True Function and 11 Runs of the “Code”

10

1-d Example

True function

® Data point

o T

0.8

0.0

J. Sacks and W.J. Welch (NISS & UBC)

Computer Experiments 2014 14 / 31

Module 2: GP Models



1-d Example

A Bad Realization (Inconsistent With Our Data)

° ® Data point
—— RF Realization

0.0 0.2 0.4 0.6 0.8
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1-d Example

A Good Realization (Consistent With Our Data)

10

® Data point
—— RF Realization

Wi
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1-d Example
What are Good Realizations?

o {y(xM),...,y(x(")} at any N “new” points (at which we want to
predict) has a prior distribution determined through the MVN
distribution.

o Get data {y(x(M),...,y(x(")} by running the code at n << N
points (design points).

o Now have a posterior distribution of y(x(1)), ..., y(x()) (or any
subset thereof) given the data. It is a conditional MVN distribution

)y )y ),y ()

e Good realizations are draws from this posterior distribution (again see
Appendix A for details).

v‘\
w N

e Next slide has five such realizations for the damped sin exle,i,yA
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1-d Example

5 Realizations of the GP Conditional on the Data
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® Data point
—— RF Realization
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Gaussian Process Model: Technical Formulation

Computing the Posterior Distribution

e In practice, we do not have to generate random realizations to predict
the function.

e For simplicity, consider predicting y at any single new point, x
e Given the parameters (i, 02, 0,...) of the GP, the posterior
distribution of y(x) conditional on the data is

y() H{y (D), ...,y (x)} ~ N(m(x), v(x)).

where

e m(x) = p+r(x)TR™(y — 1) is the conditional mean, which provides
an approximation (prediction) of y(x)

o v(x) = 0%(1 — r(x) TR 1r(x)) is the conditional variance, which
provides the variance of the prediction error.

e R=R(x("),xU) (nx n matrix)

e r(x) = R(x),x) (nx 1 vector)

e 1isan nx 1 vector of 1's.

vl\
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Gaussian Process Model: Technical Formulation

Damped Sin: Conditional Mean Approximation
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Gaussian Process Model: Technical Formulation

Damped Sin: Approximation and Confidence Limits

o
-
® Data point
\\ —— Conditional mean (approximator)
y \ - - 95% limits from mean +/- 1.96 sd
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Gaussian Process Model: Technical Formulation

What Has / Has Not Been Clarified

Covered:

e Prior uncertainty about y: prior distribution or GP

Given data from running the code, update uncertainty via Bayes

Predict at new inputs: posterior mean

Uncertainty of prediction: posterior variance

Why Gaussian distribution for prior?
e Easy to compute
Still to do
e Intuition for using a covariance/correlation function as a prior

e How to estimate the parameters of the GP, including those of the
correlation function

PIMS
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Gaussian Process Model: Technical Formulation

Correlation and the Properties of Functions

For any two points, x and X/, in the input space,
Cor(y(x), y(x")) = R(x,x’) defines the properties of a class of functions.
For a continuous function, R(x,x’) should be
e 1 when x =x
o (replicates are perfectly correlated)

e Large when x ~ x’
e (two points near to each other in the x space have highly correlated
(similar) function values)
e Small when x is far from x’

e (two points far from each other in the x space have uncorrelated
(unrelated) function values).

o) 1 ‘
o L
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Gaussian Process Model: Technical Formulation

Power-Exponential Correlation Function

e A popular and flexible class of correlation functions is the power
exponential.
d .

* R(x,X) = [Tj—y exp(=0;x; — xj|”).
e ; > 0 controls the sensitivity of the GP w.r.t. x;.

o Larger 6, gives smaller correlation, i.e., y(x) and y(x’) are less related

in the x; direction and the function is more complex.

e §; =0 removes x; (dimension reduction)

e pj € [1,2] affects the smoothness of the GP w.r.t. x;.

e p;j = 2 (squared-exponential correlation) gives smooth realizations
(with infinitely many derivatives).

e p; = 1 gives much rougher realizations (good for continuous but
non-differentiable functions).
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Power-Exponential Correlation Function

Gaussian Process Model: Technical Formulation
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Gaussian Process Model: Technical Formulation

Parameters of the Prior

e U, 02, 0;, and p; are parameters that must be specified to determine
the prior.

e They are often called hyperparameters.

¢ In Module 3 we show how they can be estimated from the data and
then used to form the posterior (hence the values for p, o2, and 6
used for the damped-sin example).

o) 1 ‘
o L
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Summary

Module Summary

e Approximate by treating the code input-output function as if it is a
realization of a Gaussian process (GP).

e Approximate/predict y(x) by the mean of the conditional distribution
given the data and the correlation-function (hyper) parameters.

e Flexible and data adaptive.
e An uncertainty measure comes from the conditional variance.

e How to estimate the (hyper) parameters will be discussed in
Module 3.

o) 1 ‘
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Appendix A: Simulating Realizations of a GP

Want to generate
y(new) = [y(X(l)), e 7y(X(N))]T’

i.e., at N new points, from a MVN distribution with N x 1 mean vector,
, and N x N covariance matrix, o°R.

e Obtain the Cholesky decomposition, R = LL"
e Generate N iid N(0,1) random variables, V
e Realization y(™%) = 1 4+ oLV.
Note Cor(y) = LCor(V)LT =LILT =R.
e Plot the points {x(), y(x())} and connect the dots.

vl\
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Summary

Simulating Realizations Continued

Unconditional and conditional realizations can be generated with
appropriate ¢ and R on the previous slide.
e Unconditional realization of y(»e¥)
e p =0 (say)
* R=Ryxn
e Ryxn = R(x, xY), an N x N matrix

e Conditional realization of y("®¥) given y = [y(x(l)), e ,y(x(”))]T
(data from n code runs)
o p=p+ R WR(y — 1©)
o 1 is the unconditional mean vector
e Ryxn= R(x(i?,x(j?), an n x n matrix
e Roxn = R(x",x1), an n x N matrix

e R=Ryxn — R NRnx"Ran

o) 1 ‘
o L

J. Sacks and W.J. Welch (NISS & UBC) Module 2: GP Models Computer Experiments 2014 29 /31



Summary

Appendix B: Dealing With Random Error

Suppose we observe
y(x) 4+ random measurement noise.

Simply model the data as a realization of prior for y + €, where € is
independent Gaussian error with mean zero and variance o2,
In formulas replace

o2 with 02 =0+ 02
2 2
) o o
R with ——R+ 5"l
O Total O Total
2
) o
r(x) with ——r(x),
O Total

where 1« is an n X n identity matrix. o
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Summary

Realizations of a GP in One Dimension
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