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Estimating the Parameters of the GP Model

Parameters of the Gaussian Process (GP) Model

Recall from Module 2 that the Gaussian process prior for y(x) = y(x, ..
X4) has hyper-parameters:

)

® mean, [,

e variance, o2

e correlation parameters, e.g., #1,...,04 and p1,..., pg for the
power-exponential correlation function,

d
R(x,x) = [T exp(~0;1x — x]I").
j=1

e Their values will be chosen to be consistent with the computer-model
runs.
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Estimating the Parameters of the GP Model

Maximum Likelihood

¢ Recall also that y(x) is assumed to be Gaussian.

e Hence, y = [y(xM),...,y(x(")]T, the data from the computer
model, are a sample from a multivariate-normal distribution.

e The likelihood, L(y|p,02,01,...,04,p1,...,pPd), is

1
(2r2)/2 det'/?(R)

exp(— 55y — 1) TRy — ).

e Maximum likelihood estimation (MLE) chooses the hyper-parameters
to maximize this.

e Or use Bayes' rule to get a posterior distribution for the
hyper-parameters and for predictions of y(x) (see Appendix A)
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Estimating the Parameters of the GP Model

Maximum Likelihood: Computation

For fixed correlation parameters,

A lTR_ly
F=1TR11
and )
02 = - A1) RNy — p1)

The likelihood function (with i and o2 substituted) has to be numerically
maximized w.r.t. the correlation parameters.
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Case Study: G-Protein Computer Experiment

G-Protein Computer Model

Biosystems model for so-termed ligand activation of G-protein in yeast.
d = 4 input variables

e x is concentration of ligand

e uj,...,ug is a vector of 8 kinetic parameters (only vy, ug, and uy are
varied)

Output variable

e y is the normalized concentration of part of the complex
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Case Study: G-Protein Computer Experiment

G-Protein System Dynamics: Differential Equations

@ 71 = —uimx + Ui — U3 + Us

@ 72 = UITIX — UM — UgM2

© 13 = — U3 + ug(Grot — 13 — 14)(Gtot — 713)
O 14 = UeT213 — U774

0 v = (Giot — m3)/ Grot

where
® 7)1,...,M4 are concentrations of 4 chemical species and 7; = %, etc.
e Gior = (fixed) total concentration of G-protein complex after 30
seconds
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Case Study: G-Protein Computer Experiment

Inputs and Code Runs

Input variables
e d = 4 variables
e Work with log(x), log(u1), log(ue), log(u7).
e i.e.,, what we called the x vector before is log(x), log(u1), log(us), and
log(u7) here
e All input variable ranges are normalized to [0, 1] on the log scale
Number of runs

e n=33
(this choice and the design for the 33 runs is described in Module 4)
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Case Study: G-Protein Computer Experiment

Computer Model Data

yMod
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Case Study: G-Protein Computer Experiment

Gaussian Process (GP) Model

y(x) is a realization of a Gaussian process with:

® mean
e variance o°
e correlations given by

Cor(y(x), y(x)) = R(x,x') = [J e P —4I".
j=1

The parameters in red need to be estimated.
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Case Study: G-Protein Computer Experiment

Maximum Likelihood Estimates

i =0.36
02 = 0.51
Variable 60 p
log(x) 0.929 1.98
2
2

* log(uy) 0.179

log(ug) 0.082

log(u7) 0.083 2
It is difficult to interpret the magnitudes of the estimates. (we will
revisit this example in Module 5 and do a sensitivity analysis).
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Measuring Prediction Accuracy

“Plug-In" Prediction and Standard Error

Replace all hyper-parameters by their MLEs in the conditional mean and
variance formulas:

prediction of y(x) = y = m(x) = o+ r’ (x)R™ (y — fil).
and
estimated variance of prediction = V(x) = ;E(l —rT(x)R tr(x)).

(R and r(x) are also estimates.)

The plug-in estimated variance ignores uncertainty in estimating the
hyper-parameters. It can be adapted to include uncertainty from
estimating pu:

e C1TRLp(x)2
o(x) = o2 <1—rT(x)R—1r(x)+ L IITRR_li( ) )

This plug-in formula is often used to give a standard error, i.e.,

s(x) = v/ V(x).
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Measuring Prediction Accuracy

Measures of Accuracy

e We could rely on the standard error, \/¥(x).

e If we have m test data observations, the root mean squared error
(RMSE) of prediction is

1 .
RMSE = |— Y -

test pts

But rarely available.
e Cross validation (CV)
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GP Diagnostics

Cross Validation (CV)

Let x() denote x for run i in the data (i = 1,...,n). For run i:
e The cross validated prediction of y(x(/) )
9-i(x"),

i.e., y(x) = m(x) computed from the n — 1 runs excluding run /.
e The cross validated standard error of §_;(x()) is

s,,-(x(")),

i.e., s(x) = /V(x) computed from the n — 1 runs excluding run i.
e The cross-validated residual for run i is

(()) (())

e The standardized cross-validated residual for run i is
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GP Diagnostics

Diagnostic Plots

e Plot the cross-validated residuals to assess the overall magnitude of

error.
e Plot the standardized cross-validated residuals to assess the validity of
the standard error for individual predictions.
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GP Diagnostics

G-Protein Diagnostic Plots
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GP Diagnostics

Cross Validation: Numerical Summaries

Magnitude of error

e The cross-validated root mean squared error is

CVRMSE = \/ D (y(xD) = p_i(x(0))2 = .020.

e Maximum cross-validated residual is .044
e Fairly accurate relative to a range of about 0.7 in y

Standard errors?

N w fori=1,.
I(X )
e Standard errors look reliable.

, n are roughly in (=2, 2)
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GP Diagnostics

Fast and Slow CV

e When run i is removed, the hyper-parameters should be re-estimated.

e For computational reasons the correlation parameters are often not
updated (it is cheap to update the estimates of y and ¢2), producing
a “fast” CV.

e For “slow” CV, do say 10-fold cross-validation, re-estimating all
hyper-parameters.

e The agreement between “fast” CVRMSE and “slow” CVRMSE is
often good.

e The agreement between “fast” CVRMSE and the RMSE from test
points has been good in examples.
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Summary

Module Summary

e The GP model has to be “tuned” to data so that its properties match
those of the computer model.

e Tuning (fitting) the GP by maximum likelihood is computationally
feasible for up to about n = 1000 runs and d = 50 input variables.

e GP model gives an approximation and a measure of accuracy.

e The measure of accuracy (standard error) can be checked for validity
by cross validation.
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Appendix

Appendix A: Bayesian Treatment of the Hyper-parameters

e Posterior distribution of the hyper-parameters (“hyper” below), y, o2,

01,...,04, etc., of the GP

e From Bayes rule, given the data y
p(hyper |y) oc m(hyper)L(y | hyper),

o 7(hyper) is the prior for hyper
o L(y|hyper) is the multivariate normal likelihood.

. Predictive distribution for y(x) at a “new” x
. = [ p(y(x) |y, hyper)p(hyper|y) dhyper
° Usually, the |ntegrat|on is not carried out explicitly.
e Rather, properties such as the posterior predictive mean and variance
of p(y(xo)|y) are obtained by MCMC sampling of the posterior
distribution for the hyper-parameters, p(hyper|y).
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