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Outline

Outline of Topics

You have fitted a Gaussian process (GP) model and have y(x) (i.e., m(x)
from Module 3). What's next?
Use y(x) instead of y(x) to answer scientific and engineering questions.

@ Science and Engineering Objectives

@® Functional Decomposition

© Sensitivity Analysis / Screening

O Visualization

@ Case Study: Arctic Sea-lce Computer Model
@ Summary

@ Case Study: Wonderland Computer Model
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Science and Engineering Objectives

Some Science and Engineering Questions

Visualization: What do the y(x) input-output relationships look like?
e Sensitivity analysis / screening: What are the important variables?

Optimization: What values of x maximize/minimize y? (Could have
multiple output variables to optimize simultaneously.)

Propagation of variation: If x has a known distribution, what is the
distribution of y(x)?

e ... other questions about y(x)

We are assuming y(x) is too expensive to compute many times to answer
such questions, so ...

e Replace y(x) with y(x).
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Functional Decomposition

Visualization and Sensitivity Analysis / Screening

The Visualization and Sensitivity analysis / screening questions can be
answered by decomposing the function into low-dimensional components
(one or two input variables at a time).

e Visualization: Plot each component.

e Sensitivity Analysis: How big is each component?

e Screening: Which components are big?

For simplicity, let’s start with y(x) (then do much the same with y(x)).
We will follow the notation in Schonlau and Welch (2006).
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Functional Decomposition

Marginal Effects

We start with marginal effects, obtained by integrating out the other
variables:

Overall mean Integrate y(xi,...,Xq) w.r.t. all x;

Main effects  y1(x1) Integrate y(x) w.r.t. all x; except x
etc.

Joint effects  y1o(x1,Xx2) Integrate y(x) w.r.t. all x; except x; and x;
etc.

Higher-order
effects . ..

e.g., some estimated effects for G-Protein (replace y(x) by y(x)) ...
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Functional Decomposition

G-Protein Example: Two of the Main Effects

e.g., estimated main effects (lines) of log(u1) and log(ue) with
approximate 95% confidence limits (dashes)

yMod(logul) : 1.6% yMod(logu6) : 42.6%
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Functional Decomposition

Corrected Effects

Corrected effects are marginal effects adjusted by iteratively subtracting
out lower-order effects.

(no adjustment) o = yo
mean adjusted main effect  p1(x1) = y1(x1) — wo
2-factor interaction effect  p12(x1,x2) = ¥12(x1, x2) — po

— pa(x1) — p2(x2)
etc.
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Functional Decomposition

Function Decomposition

If x is on a rectangular region, the corrected effects are an orthogonal
decomposition of y(x),

y(xi,...,xd) = o
(overall mean effect)
+ () + -+ pa(xd)
(main effects)
+ paa(xa, x2) 4+ o+ pd—1,d(Xa—1, Xg) + -
(2-factor interaction effects)

leading to an ANOVA decomposition. q‘\
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Functional Decomposition

Functional Analysis of Variance (ANOVA)

The total variability of the function,

/"'/(y(Xl,...,Xd)—'uO)z Xm""7dXd7

decomposes into

main effect contributions
+ 2-factor interaction effect contributions
_l’_
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Functional Decomposition

Estimating the Effects and ANOVA Contributions

Replace y(x) by y(x) everywhere

vi\

PIMS

J. Sacks and W.J. Welch (NISS & UBC) Module 5: Visualization



Sensitivity Analysis / Screening

Sensitivity Analysis / Screening

e Important variables are those that contribute practically “significant”
percentages to the total variability of y(x).

e i.e., which corrected estimated main effects or interaction effects have
large ANOVA contributions?

PIMS
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Sensitivity Analysis / Screening

Sensitivity Analysis Example: G-Protein

Recall the G-protein application has a 4-dimensional x € [0, 1]*, with
variables log(x), log(u1), log(ue), and log(u7).

ANOVA | Estimated
Effect Contribution | Corr. Pars
Type Variables (%) | 0 p
Main log(x) 10.6 | 0.93 1.98
log(u1) 161018 2
log(ug) 426|008 2
log(u7) 41.3 | 0.08 2
Interaction  log(x). log(u1) 3.6
log(x). log(us) 0.1
log(x). log(u7) 0.0
log(u1). log(ue) 0.1
log(uy). log(u7) 0.1
log(ug). log(u7) 0.0
Al 1- and 2-variable effects 99.9 j]l:
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Visualization

Visualization

e If x; has an estimated corrected main effect, fi1(x1), with a large
ANOVA contribution, plot the estimated marginal effect, i.e.,

y1(x1) versus x1.
(Similarly xz,...)

e If x; and x» have an estimated interaction effect, fi12(x1,x2), with a
large ANOVA contribution, plot the estimated marginal or joint effect,
ie.,

52/12(x1,x2) versus x; and xo.

(Similarly other pairs of variables)
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Visualization

Visualization Example: G-Protein

e.g., estimated main effects (lines) of log(u1) and log(ue) with
approximate 95% confidence limits (dashes)

yMod(logul) : 1.6% yMod(logu6) : 42.6%

D -
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Visualization

Visualization Example: G-Protein

Similarly, log(u7) and log(x)
yMod(logu7) : 41.3%

yMod(logx) : 10.6%
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Visualization

Main Effects: Comments

u1) has a small estimated effect

og(
Iog(uﬁ) and log(u7) have large, linear estimated effects
(x

log(x
The estimated effect magnitudes are not obvious from the f's. Recall

) appears to have a large, nonlinear effect.

Estimated

ANOVA % | Corr. Pars
Main effect | contribution | p

log(x) 10.6 | 0.93 1.98
log(uy) 16018 2
log(u) 426 | 0.08 2
log(u7) 4131 0.08 2
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Visualization

Estimated Joint Effect of log(u;) and log(x)

yMod(logul, logx) : 1.6+10.6+3.6=15.7% se[yMod(logul, logx)]
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Visualization

Joint Effect of log(u;) and log(x): Comments

Based on the estimated effects, it appears that
e log(up) has a small main effect
e log(x) has a large main effect.
But
e The log(u1) x log(x) interaction effect modifies the effect of log(x).

e In the joint effect plot (main effects plus interaction effect), log(x)
has a much larger effect when log(uy) is small.
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Visualization

Computation of Effects and ANOVA

e We are decomposing the function y(x) and not the data from the
computer model.

e The data are not necessarily from an orthogonal design.

e We are assuming that x is on a rectangular (orthogonal) space.
e (We can deal with some variables on a non-rectangular region.)
e Hence ANOVA of y(x) is mathematically possible.

e The high-dimensional integrals in the estimated effects and ANOVA
are easy to compute if the correlation function has a product form (as
we usually take!).
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Case Study: Arctic Sea-Ice Computer Model

Arctic Sea-lce Computer Model

e Purpose

o Assess sensitivities to parameters such as drag coefficients, snowfall
rate, minimum lead fraction

e Model
e Dynamic formulation based on a momentum balance for a mass of ice
within a grid cell
e Model run: daily time step 1960-1988; 110 km grid covering Arctic
Ocean and nearby bodies of water
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Case Study: Arctic Sea-Ice Computer Model

Arctic Sea-Ice: Code Output

L
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Case Study: Arctic Sea-Ice Computer Model

Arctic Sea-lce Variables

e Inputs (13 parameters)

Drag coefficients: AtmosDrag, OceanicDrag

Ice strength: LoglceStr

Minimum lead fraction: MinLead

Albedos: SnowAlbedo, IceAlbedo, OpenAlbedo
Exchange coefficient, surface sensible heat: SensHeat
Exchange coefficient, surface latent heat: LatentHeat
Snowfall rate: Snowfall

Cloud depletion of solar flux: Shortwave,

Cloud enhancement of longwave flux: Longwave
Oceanic heat flux: OceanicHeat

e Outputs (4 variables)

IceMass, IceArea, IceVelocity, RangeOfArea

PIMS
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Case Study: Arctic Sea-Ice Computer Model

Experimental Design

e Initial 81-run zero-correlation Latin hypercube (69 good runs)

e Augmented by 110 runs using the maximin distance criterion (further
88 good runs)

e 157 good runs of the code

Computer Experiments 2014 23 /51
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Case Study: Arctic Sea-Ice Computer Model

Experimental Design (First 3 Input Variables)
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Case Study: Arctic Sea-Ice Computer Model

Fitting the Gaussian Process (GP) Model

e Recall Gaussian process (GP) model for y(x):

e y(x) at any x has mean p and variance o2

e L is constant here (no trends)
Cor(y(x), y(x')) = R(x,x') = [T7_y exp(—6j]x; — x/|)
e i.e., power-exponential with d = 13 here

e MLE to estimate p, 0‘2, 01,...,013, p1,..., P13
28-dimensional optimization

Repeated for the 4 outputs

10 maximum likelihood tries per output

Takes about 50 mins on a laptop

Many p; <2
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Case Study: Arctic Sea-Ice Computer Model

Fitting the Gaussian Process (GP) Model

Predict via y(x), the posterior mean (conditional on the data)
Uncertainty of prediction from s(x) = y/V(x), i.e., from the posterior
variance

Check accuracy of y(x) and validity of s(x) via

e Cross validated predictions, y_;(x(")) '
e Cross validated standard errors, s_;(x()).

Show diagnostics and results for 2 outputs:

e Ice area (moderately easy to predict)
e Ice velocity (hard to predict)
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Case Study: Arctic Sea-Ice Computer Model

Diagnostics: Ice Area ()
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Case Study: Arctic Sea-Ice Computer Model

Diagnostics: Ice Velocity ()
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Case Study: Arctic Sea-Ice Computer Model

Comments

Ice area

e Accuracy moderately good

e Standard errors are fairly valid
Ice velocity

e Accuracy not so good

e Standard errors are invalid (5 standardized residuals outside £3)
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Case Study: Arctic Sea-Ice Computer Model

lce Area: Important Main Effects

IceArea(SnowAlbedo) : 4.8%

IceArea(Longwave) : 11.5%

IceArea(AtmosDrag) : 2.7%
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Case Study: Arctic Sea-Ice Computer Model

Ice Area Main Effects: Comments

e The error bars are approximate pointwise 95% confidence intervals.
e SensHeat has a strong and moderately nonlinear estimated effect.
e SensHeat also appears in an estimated interaction effect with
LatentHeat
e The interaction effect accounts for another 4% of the variation, so plot
the corresponding joint effect (overall mean + main effects +
interaction effect) ...
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Case Study: Arctic Sea-Ice Computer Model

lce Area: Important Interaction Effect
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Case Study: Arctic Sea-Ice Computer Model

lce Velocity: Important Main Effects

IceVelocity(MinLead) : 7.7% IceVelocity(AtmosDrag) : 27.6% IceVelocity(SensHeat) : 2.9%
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Case Study: Arctic Sea-Ice Computer Model

lce Velocity Main Effects: Comments

AtmosDrag and OceanicDrag have strong, nonlinear estimated effects.

e These 2 inputs also have a modest interaction effects, accounting for
another 4% of the variation

e So plot the corresponding joint effect (overall mean + main effects +
interaction effect) ...
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Case Study: Arctic Sea-Ice Computer Model

lce Velocity: Important Interaction Effect
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Summary

Module Summary

¢ Define the scientific problem in terms of y(x) (if it could be computed
many times cheaply)

e Replace y(x) by y(x).

e ANOVA decomposes the variability in y(x) to identify important main
and interaction effects.

e Important effects can be visualized by plotting.

e Sensitivity analysis, optimization, propagation of variation, ... are
feasible using y(x) for fairly large problems.
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Case Study: Wonderland Computer Model

Wonderland Computer Model

e Lempert et al. (2003), “Shaping the Next One Hundred Years ...,"
RAND, http://www.rand.org/publications/MR/MR1626/

e Visualization / sensitivity analysis example in Schonlau and Welch
(2006)

e Wonderland can model various global economic/environmental
scenarios.

e Here, we model a “limits to growth” policy, where carbon taxes are
set high enough for zero growth in emissions after 2010.

e The objective is to understand the input-output relationship:
sensitivity analysis and visualization.
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Case Study: Wonderland Computer Model

Wonderland Variables

e 41 Input variables relating to
e population growth
e economic activity
e changes in environmental conditions
e other economic and demographic variables

e Output variable, HDI, (bigger is better) is a quasi global human
development index, relating to

e net output per capita
e death rates
e flow of pollutants, etc.
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Case Study: Wonderland Computer Model

Important (We See Later) Input Variables

Variable | Description

e.finit Flatness of initial decline in economic growth

e.grth Base economic growth rate

e.inov Innovation rate

e.cinov | Effect of innovation policies (pollution taxes) on growth

v.spoll Sustainable pollution

v.cfsus | Change in level of sustainable pollution when natural cap-
ital is cut in half

v.drop Rate of drop in natural capital when pollution flows are
above the sustainable level

e Most variables are really two variables: north and south versions

e Sometimes both are important, e.g., e.inov.n and e.inov.s
e Sometimes only one is important, e.g., v.spoll.s
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Case Study: Wonderland Computer Model

Experimental Design: 500-run Latin hypercube in 41-D

First 2 input variables
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Case Study: Wonderland Computer Model

Plot HDI against two of the input variables (later shown to be important)
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Case Study: Wonderland Computer Model

Gaussian Process (GP) Model

e Recall Gaussian process (GP) model for y(x):
e y(x) at any x has mean  and variance o2
e Cor(y(x),y(x)) = R(x.x') = IT{_; exp(~b;lx — x{|?), with d = 41
here
e MLE to estimate pu, (72, 01,...,041, p1,-...,Pa1
e 84-dimensional optimization
e Takes < 1 hour on a laptop
e Many p; < 2
e Predict via (x), the posterior mean (conditional on the data)
e Uncertainty of prediction from s(x) = y/V(x), i.e., from the posterior
variance
e Check accuracy of y(x) and validity of s(x) via cross validated

predictions, §_;(x()), and cross validated standard errors, xﬁq’% ,i‘
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Case Study: Wonderland Computer Model

Gaussian Process Model Diagnostics
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Case Study: Wonderland Computer Model

Cross Validation: Numerical Summary of Accuracy

Recall, the cross validated error is
y(x) — §_;(x)

e Cross-validate root mean squared error (CVRMSE) is 0.026
e Fairly accurate relative to a range of about 0.5 in y

e But maximum error is 0.198: the few extremely low values of y are
not predicted well when removed from the data under cross validation.
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Case Study: Wonderland Computer Model

Cross Validation: Standard errors?

o Cross validated error
Standard error

e But 7/500 are outside (—3,3) and 2/500 are outside (—4,4).

e Standard errors are fairly reliable but sometimes underestimated here.

is mainly in (—2,2).
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Case Study: Wonderland Computer Model

Comment

e Visualization will show that y(x) is extremely nonlinear, possibly
nonstationary, and hence difficult to model.

e Other methods will face the same difficulties.
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Case Study: Wonderland Computer Model

Sensitivity Analysis: Functional ANOVA (of GP Predictor)

e 41 main effects
e 820 2-factor interaction effects!

e Estimated effects accounting for > 1% of the variability in y(x)
(involving 8 input variables)

% of total % of total
Effect variance | Effect variance
e.inov.n 24.3 | v.spoll.s x v.drop.s 2.7
v.spoll.s 13.5 | e.grth.n X e.inov.n 1.9
e.inov.s 12.1 | v.drop.s 1.9
e.cinov.s 5.3 | e.finit.s 15
v.spoll.s x v.cfsus.s 4.6 | e.inov.n X e.inov.s 1.4
v.drop.s X v.cfsus.s 3.7 | v.cfsus.s . 1.2

.
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Case Study: Wonderland Computer Model

Visualization: Two Important Main Effects

e.inov.n and v.spoll.s have large ANOVA % contributions, so plot them ...
HDI(e.inov.n) : 24.3% HDI(v.spoll.s) : 13.5%
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Case Study: Wonderland Computer Model

Main Effects: Comments

e The error bars are approximate pointwise 95% confidence intervals.
e v.spoll.s has a very nonlinear estimated effect.

e But it has several large estimated interaction effects.

e e.g., estimated v.spoll.s X v.cfsus.s interaction effect accounts for
nearly 5% of the variation, so plot the corresponding joint effect
(overall mean + main effects + interaction effect) . ..
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Case Study: Wonderland Computer Model

Estimated Joint Effect of v.spoll.s and v.cfsus.s

HDI(v.spoll.s, v.cfsus.s) : 13.5+1.2+4.6=19.3% se[HDI(v.spoll.s, v.cfsus.s)]
0 o
o = o
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Case Study: Wonderland Computer Model

Joint Effect of v.vspoll.s and v.cfsus.s: Comments

Based on the estimated effects, it appears that

v.spoll.s has a large main effect and v.cfsus.s has a small main effect

e The v.spoll.s x v.cfsus.s interaction effect modifies the effect of
v.vspoll.s.

e In the joint effect plot (main effects plus interaction effect), v.vspoll.s
has a much larger effect when v.cfsus.s is large.

e Small v.vspoll.s and large v.cfsus.s give bad (catastrophic?) estimated
HDI.

e The other large estimated interaction effects should be similarly
examined.
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