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Why do we need it?

• Suppose we wish to minimize the outputs of a deterministic 
computer simulator.

݂ ݔ = sin ݔߨ2 + ݔ − 1 ସ

for ݔ ∈ (0.5, 2.5)

Case I: Evaluation of ݂ ݔ is inexpensive

Method 1: use gradient based approach 

Method 2: use stochastic algorithm (genetic algorithm, simulated annealing, 
particle swarm optimization, etc)

.



Why do we need it?

• Case II: Evaluation of ݂ ݔ is expensive
– budget is fixed (say) ܰ = 20

Naïve approach:
• Use a 20-point maximinLHD

• Fit a GP model መ݂(ݔ)
• Estimate the minimum using መ݂(ݔ)

Is this a good method?
• No – why? We are wasting resources in uninteresting region
.



Possible alternative?

Sequential Designs
or

Adaptive Designs



Sequential Designs

• Particularly useful when the objective is to estimate a 
pre-specified process feature

– Global minimum, maximum, local optima
– Change points 
– Contours, percentiles, confidence intervals
– Probability of failure in reliability
– Overall surface



What is a sequential design?

Design scheme
1) Choose ݊଴(< ܰ) points. Set ݊ = ݊଴.

2) Fit a statistical surrogate model using      
,((௜ݔ)ݕ,௜ݔ)} ݅ = 1, … ,݊}.

1) Choose a new trial ݔ௡௘௪.

2) Update the data: ݔ௡ାଵ = ௡௘௪ݔ ௡ାଵݕ, = .(௡ାଵݔ)݂

3) Go to Step 2 if ݊ < ܰ.

.



Illustration
• Started with ݊଴ = 7 points & added 13 new points



Details of Design Scheme – 1

1) Choose ݊଴(< ܰ) points. Set ݊ = ݊଴.
2) Fit a statistical surrogate model using 

{ ௜ݔ ݕ, ௜ݔ , ݅ = 1, . . . ,݊}.
3) Choose a new trial ݔ௡௘௪.
4) Update the data: ݔ௡ାଵ = ௡ାଵݕ,௡௘௪ݔ = .(௡ାଵݔ)݂
5) Go to Step 2 if ݊ < ܰ.

Important issues:
• How do we choose ݊଴ points?

– Objective: understanding of overall surface
– Popular choices: Space-filling designs 

• Distance based (maximin, uniform, etc.)
• Space-filling LHDs
• I-optimal, D-optimal designs 

.



Details of Design Scheme – 1

1) Choose ݊଴(< ܰ) points. Set ݊ = ݊଴.
2) Fit a statistical surrogate model using 

{ ௜ݔ , ݕ ௜ݔ , ݅ = 1, . . . , ݊}.
3) Choose a new trial ݔ௡௘௪ .
4) Update the data: ݔ௡ାଵ = ௡௘௪ݔ , ௡ାଵݕ = .(௡ାଵݔ)݂
5) Go to Step 2 if ݊ < ܰ.

Important issues:
• What is the right choice of ݊଴?

– My experience – depends on the complexity of ݂.
– Even for ݀ = 1, sometimes ݊଴ = 5 is enough, whereas, in some cases 15

points are not sufficient for ݊଴.
– A few suggestion: ݊଴ = 10݀ or ݊଴ ≈ ܰ/3 or ݊଴ ≈ ܰ/4.
– ݊଴ should NOT be too small or too big

.



Details of Design Scheme – 1
• What is the right choice of ݊଴?
• Case 1: ݊଴ = 3,ܰ = 20

k=1 k=2 after k=17
 You get stuck in local optima. So, ݊଴ too small is not a good idea.



Details of Design Scheme – 1
• What is the right choice of ݊଴?
• Case 2: ݊଴ = 18,ܰ = 20

k=1 k=2 after k=2
 You still need to improve. So, ݊଴ too large is also a waste of resources.



Details of Design Scheme – 2
1) Choose ݊଴(< ܰ) points. Set ݊ = ݊଴.
2) Fit a statistical surrogate model using                                                            

{ ݕ,௜ݔ ௜ݔ , ݅ = 1, . . . ,݊}.
3) Choose a new trial ݔ௡௘௪.
4) Update the data: ݔ௡ାଵ = ,௡௘௪ݔ ௡ାଵݕ = .(௡ାଵݔ)݂
5) Go to Step 2 if ݊ < ܰ.

• Important issues:
– Choice of surrogate model 

• Deterministic stationary process: ݕ ݔ = ߤ + (ݔ)ܼ
• Noisy stationary process:		ݕ ݔ = ߤ + ܼ ݔ + ߝ
• Non-stationary  process : TGP / BART / etc.

• The sequential design scheme is not restricted to only GP model



Details of Design Scheme – 3 
1) Choose ݊଴(< ܰ) points. Set ݊ = ݊଴.
2) Fit a statistical surrogate model using                                                            

{ ௜ݔ ݕ, ௜ݔ , ݅ = 1, . . . ,݊}.
3) Choose a new trial ݔ௡௘௪.
4) Update the data: ݔ௡ାଵ = ௡ାଵݕ,௡௘௪ݔ = .(௡ାଵݔ)݂
5) Go to Step 2 if ݊ < ܰ.

• Important questions:
– How do we choose the new trial locations?

– Do we have to choose only one trial at-a-time?
• Complete sequential vs batch sequential 



How do we choose a new trial?

1) Randomly – easy, but perhaps not very efficient

2) Based on a specific criterion
• Popular choice – Expected Improvement (EI)
 Easy to develop
 Depends on the overall objective (overall surface fit, process 

optimization, estimating contours, percentiles, probability of 
failure, etc.)

 See Bingham, Ranjan and Welch (2014) for a review.

• Is this the only criterion? 
– There are plenty more that can be used, but, the EI-class is huge.



Expected Improvement
• (ݔ)ܫܧ is defined over the entire input space ݔ ∈ 	 0,1 ௗ

• The choice of (݊ + 1)-th follow-up trial location is 
௡ାଵݔ = argmax

௫∈ ଴,ଵ ೏
(ݔ)ܫܧ

• Ideally, (ݔ)ܫܧ is the expectation of (ݔ)ܫ over the predictive distribution
ܫ}ܧ ݔ } = ∫ ܫ ݔ ݕ݀(ݔ|ݕ)݂

– i.e., ܫܧ ݔ = ܫ}ܧ ݔ }
– In GP model, ݕ ݔ ∼ ܰ ොݕ ݔ , ଶݏ ݔ . 

• Improvement = negative loss (as in risk = expected loss)
ܫ ݔ = ℎ ,ݔ (ݕ)ො(௡);߰௡ݕ; 	

߰௡(ݕ) represents the feature of interest (e.g., min, max, contour, etc.)



Expected Improvement

• In most cases, an ܫܧ – criterion is
– Easy to construct (Is it a good news?)
– It is a function of both 

• ߰௡(ݕ) : the feature of interest
• the prediction uncertainty introduced via ∫∗݂(ݔ|ݕ)݀ݕ



Expected Improvement

• In most cases, an ܫܧ – criterion is
– Easy to construct (Is it a good news?)
– It is a function of both 

• ߰௡(ݕ) : the feature of interest
• the prediction uncertainty introduced via ∫∗݂(ݔ|ݕ)݀ݕ

• Example: interested in global minimum (Jones, Schonlau and Welch 1998)
– Deterministic stationary process
– GP model

ܫ ݔ = max ௠௜௡ݕ
௡ 	− ݕ ݔ , 0

ܧ ܫ ݔ = ݏ ݔ ߶ ݑ + ௠௜௡ݕ
௡ − ොݕ ݔ Φ ݑ , where ݑ = ௠௜௡ݕ

௡ − ොݕ ݔ (ݔ)ݏ/



EI – Illustration (Jones et al.)
• Started with ݊଴ = 7 points & added 13 new points

• ܧ ܫ ݔ = ݏ ݔ ߶ ݑ (supports global search – exploration)

						+ ௠௜௡ݕ
௡ − ොݕ ݔ Φ ݑ (encourages local search – exploitation)

– Facilitates a balance between global and local search



EI - construction
• Easy to construct – a few examples for process minimization:

• Schonlau, Welch and Jones (1998) – for deterministic stationary process
ܫ ݔ = max ௠௜௡ݕ)

௡ ݕ	−	 ݔ )௚, 0 for ݃ = 1,2, …

• Sobester, Leary and Keane (2005) – for deterministic stationary process
ܧ ܫ ݔ = ݓ ∗ ݏ ݔ ߶ ݑ + 1− ݓ ∗ ௠௜௡ݕ

௡ − ොݕ ݔ Φ ݑ

• Ranjan (2013) – for noisy stationary process (GP-based model)
ܫ ݔ = max ௠௜௡ݍ)	

௡ 	−ܳ ݔ )௚, 0 for ݃ = 1,2, …
Where ܳ(ݔ) 	= –	(ݔ)ݕ	 	1.96 ∗ ௠௜௡ݍ and ,(ݔ)ݏ

௡ = min	{ ෠ܳ(ݔ௜), ݅ = 1, … ,݊}

• Chipman, Ranjan and Wang (2012) – for deterministic non-stationary process (BART)
ܫ ݔ = max ௠௜௡ݕ)

௡ ݕ	−	 ݔ )௚, 0 for ݃ = 1,2, …
(the expectation was taken over posterior realizations)

.



EI – Illustration (noisy)
• Ranjan (2013) – for noisy stationary process (GP-based model, ݃ = 1)



EI – Illustration (non-stationary)
• Chipman, Ranjan and Wang (2012) – for deterministic non-stationary process  using 

BART (݊଴ = 10,ܰ = 25)

We used  ܫ ݔ = max ௠௜௡ݕ)	
௡ ,	௚((ݔ)ݕ	−	 0 for ݃ = 1

Perhaps, ݃ ≥ 2 would be better

• .



EI - construction
• Easy to construct – a few more examples for pre-specified features

• Ranjan, Bingham and Michailidis (2008) – for contour estimation
ܫ ݔ = ߳ଶ − min ݕ ݔ − ܽ ଶ,	߳ଶ , where	߳(ݔ) = 1.96 ∗ (ݔ)ݏ

• Roy and Notz (2013) – for percentile estimation

ܫ ݔ = ϵ௚ − min ݕ ݔ − ௣ߥ̂
௚,	߳௚ , where	݃ = 1,2, … , and	ܽ = .௣ߥ̂

• Bichon et al. (2008) – for estimating probability of failure
ܫ ݔ = ߳	 − min ݕ ݔ − ܽ , ߳

• Bingham, Ranjan and welch (2013) – for multiple contours estimation
ܫ ݔ = ߳ଶ − min ݕ ݔ − ܽଵ ଶ, ݕ ݔ − ܽଶ ଶ, … , ݕ ݔ − ܽ௠ ଶ , ߳ଶ

.



EI – contour 
• Ranjan, Bingham and Michailidis (2008) – for contour estimation

ܫ ݔ = ߳ଶ − min ݕ ݔ − ܽ ଶ,	߳ଶ , where	߳(ݔ) = 1.96 ∗ (ݔ)ݏ

Expected improvement

{(ݔ)ܫ}ܧ 	= න ߳ଶ − ݕ − ܽ ଶ ݂ ݕ ݔ ݕ݀
௔ାఢ

௔ିఢ

Fortunately, we have closed form expression
ܧ ܫ ݔ = ߳ଶ − ොݕ ݔ − ܽ ଶ − ଶݏ ݔ Φ ଶݑ −Φ ଵݑ

ଶݏ+ ݔ ߶ଶݑ ଶݑ − ߶ଵݑ ଵݑ
+2 ොݕ ݔ − ܽ ݏ ݔ (߶ ଶݑ − ߶ ଵݑ )

As before, the expectation over the prediction distribution facilitate a balance 
between global vs. local search.
.



EI – contour – illustration
• Ranjan, Bingham and Michailidis (2008) – for contour estimation

(݊଴ 	= 	20 and ܰ = 40)



EI - construction

• There are numerous variations/extensions of Jones – EI
– Ginsbourger, Helbert and Carraro (2008) – Weighted EI for optimization
– Benassi, Bect and Vazquez (2011) – Student EI 
– Kleijnen, van Beers and Nieuwenhuyse (2012) – Bootstrap EI
– HenkenJohann and Kunert (2007) – optimization for multivariate response
– Huang et al. (2006) – optimization for multi-fidelity process

• IMSE, maximum MSE, average MSE criteria can also be viewed as EI for 
appropriately defined Improvement function.



EI - construction

• Lam and Notz (2008) proposed EI for overall good fit

ܫ ݔ = ݕ ݔ − ݕ ௡ ݔ ଶ

where ݕ ௡ ݔ = ∗௜ݕ 	such	that, ݅∗ = }	݊݅݉݃ݎܽ ݔ| − |௜ݔ , ݅ = 1, … ,݊}

ܧ ܫ ݔ = ොݕ ݔ − ݕ ௡ ݔ ଶ + ݎܽݒ ොݕ ݔ

– Compared the performance with IMSE, max MSE, etc.

• Summary: 
– Construction of EI is not difficult 
– all you need is a loss function.



Details of Design Scheme – 3 
1) Choose ݊଴(< ܰ) points. Set ݊ = ݊଴.
2) Fit a statistical surrogate model using                                                            

{ ௜ݔ ݕ, ௜ݔ , ݅ = 1, . . . ,݊}.
3) Choose a new trial ݔ௡௘௪.
4) Update the data: ݔ௡ାଵ = ௡ାଵݕ,௡௘௪ݔ = .(௡ାଵݔ)݂
5) Go to Step 2 if ݊ < ܰ.

• Important questions:
– How do we choose the new trial locations?

– Do we have to choose only one trial at-a-time?
• Complete sequential vs batch sequential 



Complete vs. Batch sequential

Batch Sequential - ݉ follow-up trials at-a-time

– Why would someone want that?

– How is it possible?
• Do we need to develop new EI criteria? Or modify the old ones?
• Does the methodology depend on the feature of interest?



Batch sequential – EI 
• Schonlau, Welch and Jones (1998) proposed Generalized Expected improvement 

ெௌܫ
௚ ,௡ାଵݔ … , ௡ା௠ݔ = max ௠௜௡ݕ

௡ − ,௡ାଵݕ … , ௠௜௡ݕ
௡ − ,௡ା௠ݕ 0

௚

• All EI criteria can be modified to choose a batch of ݉ trials in ߯ = 0,1 ௗ	
– (Integrated Expected Improvement)

ܺ௡௘௪ = argmin
௑೎	∈	ఞ೘

න ܧ (௡)ܫ ݔ ܺ(௡), (ܻ௡),ܺ௖ , ෠ܻ௖ ݂ ∗ݔ ∗ݔ݀
	

௫∗∈ఞ

Where ܺ௖ is the set of ݉ candidate trials in ߯ௗ and ෠ܻ௖ is the prediction based on ݊ −point fit.  

– Q: Why minimize it? Why not maximize it like EI?

– Q: Can we avoid ࢓ ∗ ࢊ – dimensional optimization?



Details of Design Scheme – 5 
1) Choose ݊଴(< ܰ) points. Set ݊ = ݊଴.
2) Fit a statistical surrogate model using                                                            

{ ௜ݔ ݕ, ௜ݔ , ݅ = 1, . . . ,݊}.
3) Choose a new trial ݔ௡௘௪.
4) Update the data: ݔ௡ାଵ = ௡ାଵݕ,௡௘௪ݔ = .(௡ାଵݔ)݂
5) Go to Step 2 if ݊ < ܰ.

• Important questions:
– Do we proceed all the way up to ܰ or stop before ܰ?

• How should we build stopping criteria?
.



Potential project – 1 
• Computational advantage in refitting (already have a good guess of ߠ) ??

• Ill-conditioning may arise if follow-up points start to pile-up 
(particularly in GP model without error term)

• What can we do?



Potential project – 2 
• EI optimization is often tricky (spiky, zeros) 

• Any efficient way to optimize this ?  Good news: EI- evaluation is cheap. 

• Is it really important to find the global optimum of EI?



Potential project – 3, 4, … 
• Needs attention:  EI criteria for 

– multiple contours
– change points
– local optima

• Can we develop a concept of optimal formulation for EI ?

• Integrated  EI for batch sequential designs. 

• EI criteria under noisy processes and/or non-GP processes



Real Application – 1 



Tidal power simulator – 1

• Objective: maximize the power function for installing turbine



Tidal power simulator – 1

• Objective: maximize the power function for installing turbine

– Simulator with 200݉ resolution

– runs available only on 13 × 41 grid points

– Q: How do we choose ݊଴ points?
• MaximinLHS?



Tidal power simulator – 1
• Sequential design approach (݊଴ = 	20,ܰ	 = 	50)



Tidal power simulator – 1
• Sequential design approach (݊଴ = 	30,ܰ	 = 	50)



Tidal power simulator – 1
• Sequential design approach 

(݊଴ = 20,ܰ	 = 	50) (݊଴ = 30,ܰ	 = 	50)



Real Application – 2 



Tidal power simulator – 2

• Objective: maximize the power surface for installing several turbines

• 10/20	݉ resolution simulator



Tidal power simulator – 2

• Sequential design approach (݊଴ = 	30,ܰ	 =	35)



Tidal power simulator – 2

• Sequential design approach (݊଴ = 	30,ܰ	 = 50)



Tidal power simulator – 2

• Sequential design approach (݊଴ = 	30,ܰ	 = 50)

• Any ideas for getting better results?



Real Application – 3 



Tidal power modeling - issues

• One 1MW OpenHydro turbine was installed by Fundy Ocean 
Research Center for Energy (FORCE) in the Minas Passage 
during Nov 2009 – Dec 2010

– Unfortunately, no access to the data

• FORCE and OpenHydro intend to                                                 
deploy a 4MW tidal array by 2015

• $10-million turbine was destroyed due to strong current



Turbine construction

• Successful development of turbines to generate electricity from 
tidal currents requires more knowledge of the inflow conditions. 

• The key parameters (turbulence intensity and turbulence spectra) 
are estimated by collecting real data using acoustic Doppler current 
profiler (ADCP) and acoustic Doppler velocimeter (ADV) devices. 

• .



Calibration problem

• We have real ADCP data for 13 sites in Digby Neck region 
• We also have simulator (DNgrid) data for these sites and more

 Time-series response (velocity)
 At each location the data was recorded for 1 month 

actual time lag 1sec - 2min (working with 10min avg lag)



Calibration problem

• Objective: find bottom friction (key parameter of DNGrid) that gives the best match



Calibration problem

• Statistical problem

• Field (ADCP) data: velocity time-series at 13 locations

௧ܹ,଴
(௟), ݈ = 1, 2, … , 13, ݐ = 1,2, … ,ܶ

• Model (DNGrid) data: velocity time-series at 13 locations for a given bottom friction (ܾ)

௧ܹ
௟ ܾ , ݈ = 1, 2, … , 13, ݐ = 1,2, … ,ܶ

– Every model run gives the velocity time series for all 13 locations.

• Objective: To calibrate the computer model (find optimal ܾ) to match reality



Calibration problem

• Minimization problem

Find ܾ that minimizes the following sum of squares

ܵܵ ܾ = ෍෍ ௧ܹ
௟ ܾ 	− ௧ܹ,଴

௟ ଶ
்

௧ୀଵ

ଵଷ

௟ୀଵ

• Used harmonic analysis to decompose the time series
• Used specific weights for choosing key constituents of harmonic analysis
• Used EI-based sequential design to optimize this SS



Calibration problem
• Minimization problem

• Still working on validation, and sensitivity of harmonic constituents.



Real Application – 4 



Volcano simulator – TITAN2D
• Based on a study of Colima Volcano in Mexico (Elaine Spiller;   Bayarri et al. 2009) 

• Response:  ݕ = ݖ , where ݖ is the maximum flow height at a particular critical 
location

• Predictors: 
– ܺଵ - pyroclastic flow volume
– ܺଶ - basal fraction angle

(random photo from internet)   

• Scientific objective: estimate the “catastrophic region”, i.e., contour at ࢟ ࢞ ≥ ૚.
.



Volcano simulator
• Contour estimation with ݊଴ = 15,ܰ = 32 (at ࢟ ࢞ = ૚)



Real Application – 5 



Oil reservoir simulator
• Matlab Reservoir Simulator (MRST) (Lie et al., 2011; SINTEF Applied Mathematics, 2012).

• Response: the Net Present Value (NPV) of  the produced oil
• Predictors: locations (ݔଵ,ݔଶ)  of two injection and two production wells & several economical 

parameters

• Assume  three well locations are already chosen
– Two injection wells (x) 
– one production well (o)

• Objective: maximize NPV for finding an optimal location for drilling a production oil well



Oil reservoir simulator

• Global optimization with ݊଴ = 20,ܰ = 30



Oil reservoir simulator

• Global optimization with ݊଴ = 30,ܰ = 50



The end


