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Analysis Methods for Computer
Experiments: How to Assess and What
Counts?
Hao Chen, Jason L. Loeppky, Jerome Sacks and William J. Welch

Abstract. Statistical methods based on a regression model plus a zero-mean
Gaussian process (GP) have been widely used for predicting the output of a
deterministic computer code. There are many suggestions in the literature for
how to choose the regression component and how to model the correlation
structure of the GP. This article argues that comprehensive, evidence-based
assessment strategies are needed when comparing such modeling options.
Otherwise, one is easily misled. Applying the strategies to several computer
codes shows that a regression model more complex than a constant mean ei-
ther has little impact on prediction accuracy or is an impediment. The choice
of correlation function has modest effect, but there is little to separate two
common choices, the power exponential and the Matérn, if the latter is op-
timized with respect to its smoothness. The applications presented here also
provide no evidence that a composite of GPs provides practical improve-
ment in prediction accuracy. A limited comparison of Bayesian and empirical
Bayes methods is similarly inconclusive. In contrast, we find that the effect of
experimental design is surprisingly large, even for designs of the same type
with the same theoretical properties.

Key words and phrases: Correlation function, Gaussian process, kriging,
prediction accuracy, regression.

1. INTRODUCTION

Over the past quarter century a literature begin-
ning with Sacks, Schiller and Welch (1989), Sacks
et al. (1989, in this journal), Currin et al. (1991), and
O’Hagan (1992) has grown to explore the design and
analysis of computer experiments. Such an experiment
is a designed set of runs of a mathematical model im-
plemented as a computer code. Running the code with
vector-valued input x gives the output value, y(x), as-
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sumed real-valued and deterministic: Running the code
again with the same value for x does not change y(x).
A design D is a set of n runs at n configurations of x,
and an objective of primary interest is to use the data
(inputs and outputs) to predict, via a statistical model,
the output of the code at untried input values.

The basic approach to the statistical model typically
adopted starts by thinking of the output function, y(x),
as being in a class of functions with prior distribu-
tion a Gaussian process (GP). The process has mean
μ, which may be a regression function in x, and a co-
variance function, σ 2R, from a specified parametric
family. Prediction is then made through the posterior
mean given the data from the computer experiment,
with some variations depending on whether a maxi-
mum likelihood (empirical Bayes) or fuller Bayesian
implementation is used. While we partially address
those variations in this article, our main thrusts are the
practical questions faced by the user: What regression
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function and correlation function should be used? Does
it matter?

We will call a GP model with specified regression
and correlation functions a Gaussian stochastic process
(GaSP) model. For example, GaSP(Const, PowerExp)
will denote a constant (intercept only) regression and
the power-exponential correlation function. The vari-
ous regression models and correlation functions under
consideration in this article will be defined in Section 2.

The rationale for the GaSP approach stems from
the common situation that the dimension, d , of the
space of inputs is not small, the function is fairly com-
plex to model, and n is not large (code runs are ex-
pensive), hindering the effectiveness of standard meth-
ods (e.g., polynomials, splines, MARS) for producing
predictions. The GaSP approach allows for a flexible
choice of approximating models that adapts to the data
and, more tellingly, has proved effective in coping with
complex codes with moderately high d and scarce data.
There is a vast literature treating an analysis in this con-
text.

This article studies the impact on prediction accu-
racy of the particular model specifications commonly
used, particularly μ,R,n,D. The goals are twofold.
First, we propose a more evidence-based approach to
distinguish what may be important from the unimpor-
tant and what may need further exploration. Second,
our application of this approach to various examples
leads to some specific recommendations.

Assessing statistical strategies for the analysis of a
computer experiment often mimics what is done for
physical experiments: a method is proposed, applied
in examples—usually few in number—and compared
to other methods. Where possible, formal, mathemat-
ical comparisons are made; otherwise, criteria for as-
sessing performance are empirical. An initial empiri-
cal study for a physical experiment is forced to rely on
the specific data of that experiment and, while different
analysis methods may be applied, all are bound by the
single data set. There are limited opportunities to vary
sample size or design.

Computer experiments provide richer opportunities.
Fast-to-run codes enable a laboratory to investigate the
relative merits of an analysis method. A whole spec-
trum of “replicate” experiments can be conducted for a
single code, going beyond a thimbleful of “anecdotal”
reports.

The danger of being misled by anecdotes can be
seen in the following example. The borehole function
[Morris, Mitchell and Ylvisaker, 1993, also given in

the supplementary material (Chen et al., 2016)] is fre-
quently used to illustrate methodology for computer
experiments. A 27-run orthogonal array (OA) in the
8 input factors was proposed as a design, following
Joseph, Hung and Sudjianto (2008). The 27 runs were
analyzed via GaSP with a specific R (the Gaussian
correlation function described in Section 2) and with
two choices for μ: a simple constant (intercept) ver-
sus a method to select linear terms (SL), also described
in Section 2. The details of these alternative models
are not important for now, just that we are comparing
two modeling methods. A set of 10,000 test points se-
lected at random in the 8-dimensional input space was
then predicted. The resulting values of the root mean
squared error (RMSE) measure defined in (2.5) of Sec-
tion 2 were 0.141 and 0.080 for the constant and SL
regression models, respectively.

With the SL approach reducing the RMSE by about
43% relative to a model with a constant mean, does
this example provide powerful evidence for using re-
gression terms in the GaSP model? Not quite. We repli-
cated the experiment with the same choices of μ,R,n

and the same test-data, but the training data came from
a theoretically equivalent 27-run OA design. (There
are many equivalent OAs, e.g., by permuting the la-
bels between columns of a fixed OA.) The RMSE val-
ues in the second analysis were 0.073 and 0.465 for
the constant and SL models respectively; SL produced
about 6 times the error relative to a constant mean—the
evidence against using regression terms is even more
powerful!

A broader approach is needed. The one we take is
laid out starting in Section 2, where we specify the al-
ternatives considered for the statistical model’s regres-
sion component and correlation function, and define
the assessment measures to be used. We focus on the
fundamental criterion of prediction accuracy (uncer-
tainty assessment is discussed briefly in Section 6.1).
In Section 3 we outline the basic idea of generating
repeated data sets for any given example. The method
is (exhaustively) implemented for several fast codes,
including the aforementioned borehole function, along
with some choices of n and D. In Section 4 the method
is adapted to slower codes where data from only one
experiment are available. Ideally, the universe of com-
puter experiments is represented by a set of test prob-
lems and assessment criteria, as in numerical optimiza-
tion (Dixon and Szegö, 1978); the codes and data sets
investigated in this article and its supplementary ma-
terial (Chen et al., 2016) are but an initial set. In Sec-
tion 5 other modeling strategies are compared. Finally,
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in Sections 6 and 7 we make some summarizing com-
ments, conclusions and recommendations.

The article’s main findings are that regression terms
are unnecessary or even sometimes an impediment, the
choice of R matters for less smooth functions, and that
the variability of performance of a method for the same
problem over equivalent designs is alarmingly high.
Such variation can mask the differences in analysis
methods, rendering them unimportant and reinforcing
the message that light evidence leads to flimsy conclu-
sions.

2. STATISTICAL MODELS, EXPERIMENTAL
DESIGN, AND ASSESSMENT

A computer code output is denoted by y(x) where
the input vector, x = (x1, . . . , xd), is in the d-dimen-
sional unit cube. As long as the input space is rect-
angular, transforming to the unit cube is straightfor-
ward and does not lose generality. Suppose n runs of
the code are made according to a design D of in-
put vectors x(1), . . . ,x(n) in [0,1]d , resulting in data
y = (y(x(1)), . . . , y(x(n)))T . The goal is to predict y(x)

at untried x.
The GaSP approach uses a regression model and GP

prior on the class of possible y(x). Specifically, y(x) is
a priori considered to be a realization of

Y(x) = μ(x) + Z(x),(2.1)

where μ(x) is the regression component, the mean of
the process, and Z(x) has mean 0, variance σ 2, and
correlation function R.

2.1 Choices for the Correlation Function

Let x and x′ denote two values of the input vector.
The correlation between Z(x) and Z(x′) is denoted by
R(x,x′). Following common practice, R(x,x′) is taken
to be a product of 1-d correlation functions in the dis-
tances hj = |xj −x′

j |, that is, R(x,x′) = ∏d
j=1 Rj(hj ).

We mainly consider four choices for Rj :

• Power exponential (abbreviated PowerExp):

Rj(hj ) = exp
(−θjh

pj

j

)
,(2.2)

with θj ≥ 0 and 1 ≤ pj ≤ 2 controlling the sensitiv-
ity and smoothness, respectively, of predictions of y

with respect to xj .
• Squared exponential or Gaussian (abbreviated

Gauss): the special case of PowerExp in (2.2) with
all pj = 2.

• Matérn:

Rj(hj ) = 1

�(νj )2(νj−1)
(θjhj )

νj Kνj
(θjhj ),(2.3)

where � is the Gamma function, and Kνj
is the mod-

ified Bessel function of order νj . Again, θj ≥ 0 is a
sensitivity parameter. The Matérn class was recom-
mended by Stein (1999), Section 2.7, for its control
via νj > 0 of the differentiability of the correlation
function with respect to xj , and hence that of the
prediction function. With νj = 1 + 1

2 or νj = 2 + 1
2 ,

there are 1 or 2 derivatives, respectively. We call
these subfamilies Matérn-1 and Matérn-2. Similarly,
we use Matérn-0 and Matérn-∞ to refer to the cases
νj = 0 + 1

2 and νj → ∞. They give the exponen-
tial family [pj = 1 in (2.2)], with no derivatives, and
Gauss, which is infinitely differentiable. Matérn-
0,1,2 are closely related to linear, quadratic, and
cubic splines. We believe that little would be gained
by incorporating smoother kernels (but less smooth
than the analytic Matérn-∞) in the study.

Consideration of the entire Matérn class for νj > 0
is computationally cumbersome for the large num-
bers of experiments we will evaluate. Hence, what
we call Matérn has νj optimized over the Matérn-
0, Matérn-1, Matérn-2, and Matérn-∞ special cases,
separately for each coordinate.

• Matérn-2: Some authors (e.g., Picheny et al., 2013)
fix νj in the Matérn correlation function to give
some differentiability. The Matérn-2 subfamily sets
νj = 2 + 1

2 for all j , giving 2 derivatives.

More recently, other types of covariance functions
have been recommended to cope with “apparently non-
stationary” functions (e.g., Ba and Joseph, 2012). In
Section 5.2 we will discuss the implications and char-
acteristics of these options.

Given a choice for Rj and hence R, we define the
n × n matrix R with element i, j given by R(x(i),x(j))

and the n × 1 vector r(x) = (R(x,x(1)), . . . ,R(x,

x(n)))T for any x where we want to predict.

2.2 Choices for the Regression Component

We explore three main choices for μ:

• Constant (abbreviated Const): μ(x) = β0.
• Full linear (FL): μ(x) = β0 +β1x1 +· · ·+βdxd , that

is, a full linear model in all input variables.
• Select linear (SL): μ(x) is linear in the xj like FL

but only includes selected terms.
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The proposed algorithm for SL is as follows. For a
given correlation family construct a default predictor
with Const for μ. Decompose the predictive function
(Schonlau and Welch, 2006) and identify all main ef-
fects that contribute more than 100/d percent to the
total variation. These become the selected coordinates.
Typically, large main effects have clear linear compo-
nents. If a large effect lacks a linear component, little
is lost by including a linear term. Inclusion of possible
nonlinear trends can be pursued at considerable com-
putational cost; we do not routinely do so, but in Sec-
tion 4.1 we do include a regression model with nonlin-
ear terms in xj .

All candidate regression models considered can be
written in the form

μ(x) = β0 + β1f1(x) + · · · + βkfk(x),

where the functions fj (x) are known. The maximum
likelihood estimate (MLE) of β = (β0, . . . , βk)

T is the
generalized least-squares estimate β̂ = (FT R−1F)−1 ·
FT R−1y, where the n × (k + 1) matrix F has (1,

f1(x(i)), . . . , fk(x(i))) in row i. This is also the Bayes
posterior mean with a diffuse prior for β .

Early work (Sacks, Schiller and Welch, 1989) sug-
gested that there is little to be gained (and maybe even
something to lose) by using other than a constant term
for μ. In addition, Lim et al. (2002) showed that poly-
nomials can be exactly predicted with a minimal num-
ber of points using the Gauss correlation function, pro-
vided one lets the θj → 0. These points underline the
fact that a GP prior can capture the complexity in the
output of the code, suggesting that deploying regres-
sion terms is superfluous. The evidence we report later
supports this impression.

2.3 Prediction

Predictions are made as follows. For given data and
values of the parameters in R, the mean of the posterior
predictive distribution of y(x) is

ŷ(x) = μ̂(x) + rT (x)R−1(y − Fβ̂),(2.4)

where μ̂(x) = β̂0 + β̂1f1(x) + · · · + β̂kfk(x).
In practice, the other parameters, σ 2 and those in the

correlation function R of equations (2.2) or (2.3), must
be estimated too. Empirical Bayes replaces all of β ,
σ 2, and the correlation parameters in R by their MLEs
(Welch et al., 1992). Various other Bayes-based proce-
dures are available, including one fully Bayesian strat-
egy described in Section 5.1. Our focus, however, is
not on the particular Bayes-based methods employed
but rather on assumptions about the form of the under-
lying GaSP model.

2.4 Design

For fast codes we typically use as a base design
D an approximate maximin Latin hypercube design
(mLHD, Morris and Mitchell, 1995), with improved
low-dimensional space-filling properties (Welch et al.,
1996). A few other choices, such as orthogonal arrays,
are also investigated in Section 3.5, with a more com-
prehensive comparison of different classes of design
the subject of another ongoing study. In any event, we
show that even for a fixed class of design and fixed
n there is substantial variation in prediction accuracy
over equivalent designs. Conclusions based on a single
design choice can be misleading.

The effect of n on prediction accuracy was explored
by Sacks, Schiller and Welch (1989) and more recently
by Loeppky, Sacks and Welch (2009); its role in the
comparison of competing alternatives for μ and R will
also be addressed in Section 3.5.

2.5 Measures of Prediction Error

In order to compare various forms of the predictor
in (2.4) built from the n code runs, y = (y(x(1)), . . . ,

y(x(n)))T , we need to set some standards. The gold
standard is to assess the magnitude of prediction er-
ror via holdout (test) data, that is, in predicting N fur-
ther runs, y(x(1)

ho ), . . . , y(x(N)
ho ). The prediction errors

are ŷ(x(i)
ho ) − y(x(i)

ho ) for i = 1, . . . ,N .
The performance measure we use is a normalized

RMSE of prediction over the holdout data, denoted
by ermse,ho. The normalization is the RMSE using the
(trivial) predictor ȳ, the mean of the data from the runs
in the experimental design, the “training” set. Thus,

ermse,ho =
√

(1/N)
∑N

i=1(ŷ(x(i)
ho ) − y(x(i)

ho ))2

√
(1/N)

∑N
i=1(ȳ − y(x(i)

ho ))2
.(2.5)

The normalization in the denominator puts ermse,ho
roughly on [0,1] whatever the scale of y, with 1 in-
dicating no better performance than ȳ. The criterion is
related to R2 in regression, but ermse,ho measures per-
formance for a new test set and smaller values are de-
sirable.

Similarly, worst-case performance can be defined as
the normalized maximum absolute error. Results for
this metric are reported in the supplementary material
(Chen et al., 2016); the conclusions are the same. Other
definitions (such as median absolute error) and other
normalizations (such as those of Loeppky, Sacks and
Welch, 2009) can be used, but without substantive ef-
fect on comparisons.
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FIG. 1. Equivalent designs for d = 2 and n = 11: (a) a base mLHD design; (b) the base design with labels permuted between columns; and
(c) the base design with values in the x1 column reflected around x1 = 0.5.

What are tolerable levels of error? Clearly, these are
application-specific so that tighter thresholds would
be demanded, say, for optimization than for sensitiv-
ity analysis. For general purposes we take the rule
of thumb that ermse,ho < 0.10 is useful. For normal-
ized maximum error it is plausible that the threshold
could be much larger, say 0.25 or 0.30. These specu-
lations are consequences of the experiences we docu-
ment later, and are surely not the last word. The value
of having thresholds is to provide benchmarks that en-
able assessing when differences among different meth-
ods or strategies are practically insignificant versus sta-
tistically significant.

3. FAST CODES

3.1 Generating a Reference Set for Comparisons

For fast codes under our control, large holdout sets
can be obtained. Hence, in this section performance
is measured through the use of a holdout (test) set of
10,000 points, selected as a random Latin hypercube
design (LHD) on the input space.

With a fast code many designs and hence training
data sets can easily be generated. We generate many
equivalent designs by exploiting symmetries. For a
simple illustration, Figure 1(a) shows a base mLHD
for d = 2 and n = 11. Permuting the labels between
columns of the design, that is, interchanging the x1 and
x2 values as in Figure 1(b), does not change the inter-
point distances or properties based on them such as the
minimum distance used to construct mLHD designs.
Similarly, reflecting the values within, say, the x1 col-
umn around x1 = 0.5 as in Figure 1(c), does not change
the properties. In this sense the designs are equivalent.

In general, for any base design with good proper-
ties, there are d!2d equivalent designs and hence equiv-
alent sets of training data available from permuting
all column labels and reflecting within columns for a
subset of inputs. For the borehole code mentioned in
Section 1 and investigated more fully in Section 3.2,
we have found that permuting between columns gives
more variation in prediction accuracy than reflecting
within columns. Thus, in this article for nearly all ex-
amples we only permute between columns: for d = 4
all 24 possible permutations, and for d ≥ 5 a random
selection of 25 different permutations. The example of
Section 5.2 with d = 2 is the one exception. Because
y(x1, x2) is symmetric in x1 and x2, permuting be-
tween columns does not change the training data and
we reflect within x1 and/or x2 instead.

The designs, generated data sets, and replicate analy-
ses then serve as the reference set for a particular prob-
lem and provide the grounds on which variability of
performance can be assessed. Given the setup of Sec-
tion 2, we want to assess the consequences of making
a choice from the menu of three regression models and
four correlation functions.

3.2 Borehole Code

The first setting we will look at is the borehole code
(Morris, Mitchell and Ylvisaker, 1993) mentioned in
Section 1 and described in the supplementary material
(Chen et al., 2016). It has served as a test bed in many
contexts (e.g., Joseph, Hung and Sudjianto, 2008). We
consider three different designs for the experiment: a
27-run, 3-level orthogonal array (OA), the same design
used by Joseph, Hung and Sudjianto (2008); a 27-run
mLHD; and a 40-run mLHD.
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FIG. 2. Borehole function: Normalized holdout RMSE of prediction, ermse,ho, for GaSP with all combinations of three regression models
and four correlation functions. There are three base designs: a 27-run OA (top row); a 27-run mLHD (middle row); and a 40-run mLHD
(bottom row). For each base design, 25 random permutations between columns give the 25 values of ermse,ho in a dot plot.

There are 12 possible modeling combinations from
the four correlation functions and three regression
models outlined in Sections 2.1 and 2.2. The SL choice
for μ here is always the term x1. Its main effect ac-
counts for approximately 80% of the variation in pre-
dictions over the 8-dimensional input domain, and all
analyses with a Const regression model choose x1 and
no other terms across all designs and all repeat experi-
ments.

The top row of Figure 2 shows results with the 27-
run OA design. For a given modeling strategy, 25 ran-
dom permutations between columns of the 27-run OA
lead to 25 repeat experiments (Section 3.1) and hence
a reference set of 25 values of ermse,ho shown as a
dot plot. The results are striking. Relative to a con-
stant regression model, the FL regression model has
empirical distributions of ermse,ho which are uniformly
and substantially inferior, for all correlation functions.
The SL regression also performs very poorly some-
times, but not always. To investigate the SL regres-
sion further, Figure 3 plots ermse,ho for individual repeat

experiments, comparing the GaSP(Const, Gauss) and
GaSP(SL, Gauss) models. Consistent with the anec-
dotal comparisons in Section 1, the plot shows that

FIG. 3. Borehole code: Normalized holdout RMSE of prediction,
ermse,ho, for an SL regression model versus a constant regression
model. The 25 points are from repeat experiments generated by 25
random permutations between columns of a 27-run OA.
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the SL regression model can give a smaller ermse,ho—
this tends to happen when both methods perform fairly
well—but the SL regression sometimes has very poor
accuracy (almost 0.5 on the normalized RMSE scale).
The top row of Figure 2 also shows that the choice
of correlation function is far less important than the
choice of regression model.

The results for the 27-run mLHD in the middle row
of Figure 2 show that design can have a large effect on
accuracy: every analysis model performs better for the
27-run mLHD than for the 27-run OA. (Note the ver-
tical scale is different for each row of the figure.) The
SL regression now performs about the same as the con-
stant regression instead of occasionally much worse.
There is no substantial difference in accuracy between
the correlation functions. Indeed, the impact on accu-
racy of using the space-filling mLHD design instead of
an OA is much more important than differences due to
choice of the correlation function. The scaling in the
middle row of plots somewhat mutes the considerable
variation in accuracy still present over the 25 equiva-
lent mLHD designs.

Increasing the number of runs to a 40-run mLHD
(bottom row of Figure 2) makes a further substantial
improvement in prediction accuracy. All 12 modeling
strategies give ermse,ho values of about 0.02–0.06 over
the 25 repeat experiments. Although there is little sys-
tematic difference among strategies, the variation over
equivalent designs is still striking in a relative sense.

The strikingly poor results from the SL regression
model (sometimes) and the FL model (all 25 repeats)
in the top row of Figure 2 may be explained as fol-
lows. The design is a 27-run OA with only 3 levels. In
a simpler context, Welch et al. (1996) illustrated non-
identifiability of the important terms in a GaSP model
when the design is not space-filling. The SL regression
and, even more so, the FL regression complicate an
already flexible GP model. The difficulty in identify-
ing the important terms is underscored by the fact that
for all 25 repeat experiments from the base 27-run OA,
a least squares fit of a simple linear regression model in
x1 (with no other terms) gives ermse,ho values close to
0.45. In other words, performance of GaSP(SL, Gauss)
is sometimes similar to fitting just the important x1
linear trend. The performance of GaSP(FL, Gauss) is
highly variable and sometimes even worse than simple
linear regression.

Welch et al. (1996) argued that model identifiabil-
ity is, not surprisingly, connected with confounding in
the design. The confounding in the base 27-run OA
is complex. While it is preserved in an overall sense

by permutations between columns, how the confound-
ing structure aligns with the important inputs among
x1, . . . , x8 will change across the 25 repeat experi-
ments. Hence, the impact of confounding on noniden-
tifiability will vary.

In contrast, accuracy for the space-filling design in
the middle row of Figure 2 is much better, even with
only 27 runs. The SL regression model performs as ac-
curately as the Const model (but no better); only the
even more complex FL regression runs into difficulties.
Again, this parallels the simpler Welch et al. (1996) ex-
ample, where model identification was less problem-
atic with a space-filling design and largely eliminated
by increasing the sample size (the bottom row of Fig-
ure 2).

3.3 G-Protein Code

A second application, the G-protein code used by
Loeppky, Sacks and Welch (2009) and described in the
supplementary material (Chen et al., 2016), consists of
a system of ODE’s with 4-dimensional input.

Figure 4 shows ermse,ho for the three regression mod-
els (here SL selects x2, x3 as inputs with large effects)
and four correlation functions. The results in the top
row are for a 40-run mLHD. With d = 4, all 24 possi-
ble permutations between columns of a single base de-
sign lead to 24 data sets and hence 24 ermse,ho values.
The dot plots in the top row have similar distributions
across the 12 modeling strategies. As these empirical
distributions have most ermse,ho values above 0.1, we
try increasing the sample size with an 80-run mLHD.
This has a substantial effect on accuracy, with all mod-
eling methods giving ermse,ho values of about 0.06 or
less.

Thus, for the G-protein application, none of the three
choices for μ or the four choices for R matter. The
variation among equivalent designs is alarmingly large
in a relative sense, dwarfing any impact of modeling
strategy.

3.4 PTW Code

Results for a third fast-to-run code, PTW (Preston,
Tonks and Wallace, 2003), are in the supplementary
material (Chen et al., 2016). It has 11 inputs. We took
a mLHD with n = 110 as the base design for the ref-
erence set. Prior information from engineers suggested
incorporating linear x1 and x2 terms; SL also included
x3. No essential differences among μ or R emerged,
but again there is a wide variation over equivalent de-
signs.
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FIG. 4. G-protein code: Normalized holdout RMSE of prediction, ermse,ho, for all combinations of three regression models and four
correlation functions. There are two base designs: a 40-run mLHD (top row); and an 80-run mLHD (bottom row). For each base design, all
24 permutations between columns give the 24 values of ermse,ho in each dot plot.

3.5 Effect of Design

The results above document a significant, seldom
recognized role of design: different, even equivalent,
designs can have a greater effect on performance than
the choice of μ,R. Moreover, without prior informa-
tion, there is no way to assure that the choice of de-
sign will be one of the good ones in the equivalence
class. Whether sequential experimentation, if feasible,
can produce a more advantageous solution needs ex-
ploring.

The contrast between the results for borehole 27-run
OA and the 27-run mLHD is a reminder of the impor-
tance of using designs that are space-filling, a quality
widely appreciated. It is no secret that the choice of
sample size, n, has a strong effect on performance as
evidenced in the results for the 40-point mLHD con-
trasted with those for the 27-point mLHD. A more
penetrating study of the effect of n was conducted by
Loeppky, Sacks and Welch (2009). That FL does as
well as Const and SL for the Borehole 40-point mLHD
but performs badly for either of the two 27-point de-

signs, and that none of the regression choices matter
for the G-protein 40-point design or for the PTW 110-
point design, suggests that “everything” works if n is
large enough.

In summary, the choice of n and the choice of D

given n can have huge effects. But have we enough
evidence that choice of μ matters only in limited con-
texts (such as small n or poor design) and that choice
of R does not matter? So far we have dealt with only
a handful of simple, fast codes; it is time to consider
more complex codes.

4. SLOW CODES

For complex costly-to-run codes, generating sub-
stantial holdout data or output from multiple designs
is infeasible. Similarly, for codes where we only have
reported data, new output data are unavailable. Forced
to depend on what data are at hand leads us to rely on
cross-validation methods for generating multiple de-
signs and holdout sets, through which we can assess the
effect of variability not solely in the designs but also,
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and inseparably, in the holdout target data. We know
from Section 3 that variability due to designs is con-
siderable, and it is no surprise that variability in hold-
out sets would lead to variability in predictive perfor-
mance. The utility then of the created multiple designs
and holdout sets is to compare the behavior of differ-
ent modeling choices under varying conditions rather
than relying on a single quantity attached to the origi-
nal, unique data set.

Our approach is simply to delete a subset from the
full data set, use the remaining data to produce a pre-
dictor, and calculate the (normalized) RMSE from pre-
dicting the output in the deleted (holdout) subset. Re-
peating this for a number (25 is what we use) of subsets
gives some measure of variability and accuracy. In ef-
fect, we create 25 designs and corresponding holdout
sets from a single data set and compare consequences
arising from different choices for predictors.

The details described in the applications below dif-
fer somewhat depending on the particular application.
In the example of Section 4.1—a reflectance model
for a plant canopy—there are, in fact, limited holdout
data but no data from multiple designs. In the volcano-
eruption example of Section 4.2 and the sea-ice model
of Section 4.3 holdout data are unavailable.

4.1 Nilson–Kuusk Model

An ecological code modeling reflectance for a plant
canopy developed by Nilson and Kuusk (1989) was
used by Bastos and O’Hagan (2009) to illustrate di-
agnostics for GaSP models. With 5-dimensional input,
two computer experiments were performed: the first
using a 150-run random LHD and the second with an
independently chosen LHD of 100 points.

We carry out three studies based on the same data.
The first treats the 100-point LHD as the experiment
and the 150-point set as a holdout sample. The second
study reverses the roles of the two LHDs. A third study,
extending one done by Bastos and O’Hagan (2009),
takes the 150-run LHD, augments it with a random
sample of 50 points from the 100-point LHD, takes the
resulting 200-point subset as the experimental design
for training the statistical model, and uses the remain-
ing N = 50 points from the 100-run LHD to form the
holdout set in the calculation of ermse,ho. By repeating
the sampling of the 50 points 25 times, we get 25 repli-
cate experiments, each with the same base 150 runs
but differing with respect to the additional 50 training
points and the holdout set.

In addition to the linear regression choices we have
studied so far, we also incorporate a regression model

TABLE 1
Nilson–Kuusk model: Normalized holdout RMSE of prediction,

ermse,ho, for four regression models and four correlation
functions. The experimental data are from a 100-run LHD, and the

holdout set is from a 150-run LHD

ermse,ho

Correlation function

Regression model Gauss PowerExp Matérn-2 Matérn

Constant 0.116 0.099 0.106 0.102
Select linear 0.115 0.099 0.106 0.105
Full linear 0.110 0.099 0.104 0.104
Quartic 0.118 0.103 0.107 0.106

identified by Bastos and O’Hagan (2009): an intercept,
linear terms in the inputs x1, . . . , x4, and a quartic poly-
nomial in x5. We label this model “Quartic.” All anal-
yses are carried out with the output y on a log scale,
based on standard diagnostics for GaSP models (Jones,
Schonlau and Welch, 1998).

Table 1 summarizes the results of the study with
the 100-point LHD as training data and the 150-point
set as a holdout sample. It shows the choice for μ

is immaterial: the constant mean is as good as any.
For the correlation function, Gauss is inferior to the
other choices, there is some evidence that Matérn is
preferred to Matérn-2, and there is little difference
between PowerExp and Matérn, the best performers.
Similar results pertain when the 150-run LHD is used
for training and the 100-run set for testing [Table 4 in
the supplementary material (Chen et al., 2016)].

The dot plots in Figure 5 for the third study are even
more striking in exhibiting the inferiority of R = Gauss
and the lack of advantages for any of the nonconstant
regression functions. The large variability in perfor-
mance among designs and holdout sets is similar to
that seen for the fast-code replicate experiments of Sec-
tion 3. The perturbations of the experiment, from ran-
dom sampling here, appear to provide a useful refer-
ence set for studying the behavior of model choices.

The large differences in prediction accuracy among
the correlation functions, not seen in Section 3, de-
serve some attention. An overly smooth correlation
function—the Gaussian—does not perform as well as
the Matérn and power-exponential functions here. The
latter two have the flexibility to allow needed rougher
realizations. With the 150-run design and the constant
regression model, for instance, the maximum of the log
likelihood increases by about 50 when the power expo-
nential is used instead of the Gaussian, with four of the
pj in (2.2) taking values less than 2.
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FIG. 5. Nilson–Kuusk code: Normalized holdout RMSE of prediction, ermse,ho, for four regression models and four correlation functions.
Twenty-five designs are created from a 150-run LHD base plus 50 random points from a 100-run LHD. The remaining 50 points in the
100-run LHD form the holdout set for each repeat.

The estimated main effect (Schonlau and Welch,
2006) of x5 in Figure 6 from the GaSP(Const,
PowerExp) model shows that x5 has a complex effect.
It is also a strong effect, accounting for about 90% of
the total variance of the predicted output over the 5-
dimensional input space. Bastos and O’Hagan (2009)
correctly diagnosed the complexity of this trend. Mod-
eling it via a quartic polynomial in x5 has little impact
on prediction accuracy, however. The correlation struc-
ture of the GaSP is able to capture the trend implicitly
just as well.

4.2 Volcano Model

A computer model studied by Bayarri et al. (2009)
models the process of pyroclastic flow (a fast-moving
current of hot gas and rock) from a volcanic eruption.

FIG. 6. Nilson–Kuusk code: Estimated main effect of x5.

The inputs varied are as follows: initial volume, x1,
and direction, x2, of the eruption. The output, y, is the
maximum (over time) height of the flow at a location.
A 32-run data set provided by Elaine Spiller [different
from that reported by Bayarri et al. (2009) but a similar
application] is available in the supplementary material
(Chen et al., 2016). Plotting the data shows the output
has a strong trend in x1, and putting a linear term in the
GaSP surrogate, as modeled by Bayarri et al. (2009), is
natural. But is it necessary?

The nature of the data suggests a transformation of y

could be useful. The one used by Bayarri et al. (2009)
is log(y + 1). Diagnostic plots (Jones, Schonlau and
Welch, 1998) from using μ = Const and R = Gauss
show that the log transform is reasonable, but a square-
root transformation is better still. We report analyses
for both transformations.

The regression functions considered are Const, SL
(β0 + β1x1), full linear, and quadratic (β0 + β1x1 +
β2x2 + β3x

2
1 ), because the estimated effect of x1 has a

strong trend growing faster than linearly when looking
at main effects from the surrogate obtained using

√
y

and GaSP(Const, PowerExp).
Analogous to the approach in Section 4.1, repeat

experiments are generated by random sampling of 25
runs from the 32 available to comprise the design for
model fitting. The remaining 7 runs form the holdout
set. This is repeated 25 times, giving 25 ermse,ho val-
ues in the dot plots of Figure 7. The conclusions are
much like those in Section 4.1: there is usually no need
to go beyond μ = Const and PowerExp is preferred
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FIG. 7. Volcano model: Normalized holdout RMSE, ermse,ho, for four regression models and four correlation functions. The output variable
is either

√
y or log(y + 1).

to Gauss. The failure of Gauss in the two “slow” ex-
amples considered thus far is surprising in light of the
widespread use of the Gauss correlation function.

4.3 Sea-Ice Model

The Arctic sea-ice model studied in Chapman et al.
(1994) and in Loeppky, Sacks and Welch (2009) has
13 inputs, 4 outputs, and 157 available runs. The pre-
vious studies found modest prediction accuracy of
GaSP(Const, PowerExp) surrogates for two of the out-
puts (ice mass and ice area) and poor accuracy for the
other two (ice velocity and ice range). The question
arises whether use of linear regression terms can in-
crease accuracy to acceptable levels. Using a sampling
process like that in Section 4.2 leads to the results in the
supplementary material (Chen et al., 2016), where the
answer is no: there is no help from μ = SL or FL, nor
from changing R. Indeed, FL makes accuracy much
worse sometimes.

5. OTHER MODELING STRATEGIES

Clearly, we have not studied all possible paths to
GaSP modeling that one might take in a computer ex-

periment. In this section we address several others,
some in more detail, and point to issues that could be
addressed in the fashion described above.

5.1 Full Bayes

A number of full Bayes approaches have been em-
ployed in the literature. They go beyond the statis-
tical formulation using a GP as a prior on the class
of functions and assign prior distributions to all pa-
rameters, particularly those of the correlation function.
For illustration, we examine the GEM-SA implemen-
tation of Kennedy (2004), which we call Bayes-GEM-
SA. One key aspect is its reliance on R = Gauss. It
also uses the following independent prior distributions:
β0 ∝ 1, σ 2 ∝ 1/σ 2, and θj exponential with rate 0.01
(Kennedy, 2004). When comparing its predictive accu-
racy with GaSP, μ = Const is used for all models.

For the borehole application, 25 repeat experiments
are constructed for three designs, as in Section 3. The
dot plots of ermse,ho in Figure 8 compare Bayes-GEM-
SA with the Gauss and PowerExp methods in Section 3
based on MLEs of all parameters. (The method CGP
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FIG. 8. Borehole function: Normalized holdout RMSE of prediction, ermse,ho, for GaSP(Const, Gauss), GaSP(Const, PowerExp),
Bayes-GEM-SA, and CGP. There are three base designs: a 27-run OA (left), a 27-run mLHD (middle), and a 40-run mLHD (right). For
each base design, 25 random permutations between columns give the 25 values of ermse,ho in a dot plot.

and its dot plot are discussed in Section 5.2.) Bayes-
GEM-SA is less accurate than either GaSP(Const,
Gauss) or GaSP(Const, PowerExp).

Figure 9 similarly depicts results for the G-protein
code. With the 40-run mLHD, the Bayesian and likeli-
hood methods all perform about the same, giving only
fair prediction accuracy. Increasing n to 80 improves
accuracy considerably for all methods (the scales of
the two plots are very different), far outweighing any
systematic differences between their accuracies.

Bayes-GEM-SA performs as well as the GaSP meth-
ods for G-protein, not so well for Borehole with n = 27

but adequately for n = 40. Turning to the slow codes
in Section 4, a different message emerges. Figure 10
for the Nilson–Kuusk model is based on 25 repeat de-
signs constructed as for Figure 5 with a base design
of 150 runs plus 50 randomly chosen from 100. The
distributions of ermse,ho for Bayes-GEM-SA and Gauss
are similar, with PowerExp showing a clear advantage.
Moreover, few of the Bayes ermse,ho values meet the
0.10 threshold, while all the GaSP(Const, PowerExp)
ermse,ho values do. Bayes-GEM-SA uses the Gaus-
sian correlation function, which performed relatively

FIG. 9. G-protein: Normalized holdout RMSE of prediction, ermse,ho, for GaSP(Const, Gauss), GaSP(Const, PowerExp), Bayes-GEM-SA,
and CGP. There are two base designs: a 40-run mLHD (left); and an 80-run mLHD (right). For each base design, all 24 permutations
between columns give the 24 values of ermse,ho in a dot plot.
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FIG. 10. Nilson–Kuusk model: Normalized holdout RMSE
of prediction, ermse,ho, for GaSP(Const, Gauss), GaSP(Const,
PowerExp), Bayes-GEM-SA, and CGP.

poorly in Section 4; the disadvantage carries over to
the Bayesian method here.

The results in Figure 11 for the volcano code are for
the 25 repeat experiments described in Section 4. Here
again PowerExp dominates Bayes and for the same
reasons as for the Nilson–Kuusk model. For the

√
y

transformation, all but a few GaSP(Const, PowerExp)
ermse,ho values meet the 0.10 threshold, in contrast to
Bayes where all but a few do not.

These results are striking and suggest that Bayes
methods relying on R = Gauss need extension. The
“hybrid” Bayes-MLE approach employed by Bayarri
et al. (2009) estimates the correlation parameters in
PowerExp by their MLEs, fixes them, and takes ob-
jective priors for μ and σ 2. The mean of the predictive
distribution for a holdout output value gives the same
prediction as GaSP(Const, PowerExp). Whether other

“hybrid” forms can be brought to bear effectively needs
exploration.

5.2 Nonstationarity

The use of stationary GPs as priors in the face
of “nonstationary appearing” functions has attracted
a measure of concern despite the fact that all func-
tions with L2-derivative can be approximated using
PowerExp with enough data. Of course, there never are
enough data. A relevant question is whether other pri-
ors, even stationary ones different from those in Sec-
tion 2, are better reflective of conditions and lead to
more accurate predictors.

West et al. (1995) employed a GP prior for y(x)

with two additive components: a smooth one for global
trend and a rough one to model more local behavior.
Recently, a similar “composite” GP (CGP) approach
was advanced by Ba and Joseph (2012). These authors
used two GPs, both with Gauss correlation. The first
has correlation parameters θj in (2.2) constrained to be
small for gradually varying longer-range trend, while
the second has larger values of θj for shorter-range be-
havior. The second, local GP also has a variance that
depends on x, primarily as a way to cope with apparent
nonstationary behavior. Does this composite approach
offer an effective improvement to the simpler choices
of Section 2?

We can apply CGP via its R library to the exam-
ples studied in Sections 3 and 4, much as was just
done for Bayes-GEM-SA. The comparisons in Figure 8
for the borehole function show that GaSP and CGP
have similar accuracy for the two 27-run designs. GaSP
has smaller error than CGP for the 40-run mLHD,

FIG. 11. Volcano model: Normalized holdout RMSE of prediction, ermse,ho, for GaSP(Const, Gauss), GaSP(Const, PowerExp),
Bayes-GEM-SA, and CGP.
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FIG. 12. 2-d function: Holdout predictions versus true values of y from fitting (a) GaSP(Const, PowerExp) and (b) CGP.

though both methods achieve acceptable accuracy. The
results in Figure 9 for G-protein show little practi-
cal difference between any of the methods, including
CGP. For these two fast-code examples, there is negli-
gible difference between CGP and the GaSP methods.
For the models of Section 4, however, conclusions are
somewhat different. GaSP(Const, PowerExp) is clearly
much more accurate than CGP for the Nilson–Kuusk
model (Figure 10) and roughly equivalent for the vol-
cano code (Figure 11).

Ba and Joseph (2012) gave several examples assess-
ing the performance of CGP. For reasons noted in Sec-
tions 6.2 and 6.4 we only look at two.

10-d example. The test function is

y(x) = −
10∑

j=1

sin(xj )
(
sin

(
jx2

j /π
))20

(0 < xj < π).

With n = 100, Ba and Joseph (2012) obtained unnor-
malized RMSE values of about 0.72–0.74 for CGP and
about 0.72–0.88 for a GaSP(Const, Gauss) model over
50 repeat experiments.

This example demonstrates a virtue of using a nor-
malized performance measure. To compute the nor-
malizing factor for RMSE in (2.5), we followed the
process of Ba and Joseph (2012). Training data from
an LHD with n = 100 gives ȳ, the trivial predictor.
The normalization in the denominator of (2.5) is com-
puted from N = 5000 random test points. Repeating
this process 50 times gives normalization factors of
0.71–0.74, about the same as the raw RMSE values
from CGP. Thus, CGP’s RMSE prediction accuracy
is no better than that of the trivial ȳ predictor, and
the default method is worse. Effective prediction here

is unattainable by CGP or GaSP and perhaps by no
other approach with n = 100 because the function is
so multi-modal; comparisons of CGP with other meth-
ods are meaningless in this example.

2-d example. For the function

y(x1, x2) = sin
(
1/(x1x2)

)
(0.3 ≤ xj ≤ 1),(5.1)

Ba and Joseph (2012) used a single design with n = 24
runs to compare CGP and GaSP(Const, Gauss). Their
results suggest that accuracy is poor for both meth-
ods, which we confirmed. For this example, follow-
ing Ba and Joseph (2012), a holdout set of 5000 ran-
dom points on [0.3,1]2 was used. For one mLHD with
n = 24, we obtained ermse,ho values of 0.23 and 0.24 for
CGP and GaSP(Const, PowerExp), respectively. More-
over, the diagnostic plot in Figure 12 shows how badly
CGP (and GaSP) perform. Both methods grossly over-
predict for some points in the holdout set, with GaSP
worse in this respect. Both methods also have large er-
rors from under-prediction, with CGP worse.

Does this result generalize? With only two input
variables and a function that is symmetric in x1 and
x2, repeat experiments cannot be generated by permut-
ing the column labels of the design. Reflecting within
the x1 and x2 columns is considered below, but first we
created multiple experiments by increasing n.

We were also curious about how large n has to
be before acceptable accuracy is attained. Compar-
isons between CGP and GaSP(Const, PowerExp) were
made for n = 24,25, . . . ,48; for each value of n an
mLHD was generated. The ermse,ho results plotted in
Figure 13(a) show that accuracy is not improved sub-
stantially for either method as n increases. Indeed,
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FIG. 13. 2-d function: Normalized holdout RMSE of prediction, ermse,ho, versus n for CGP (◦), GaSP(Const, PowerExp) (
), and
GaSP(Const, PowerExp) with nugget (+).

GaSP(Const, PowerExp) gives variable accuracy, with
larger values of n sometimes leading to worse accuracy
than for n = 24. (The results in Figure 13 for a model
with a nugget term are described in Section 5.3.)

To try to improve the accuracy, even larger sam-
ple sizes were tried. Figure 13(b) shows ermse,ho for
n = 50,60, . . . ,200. Both methods continue to give
poor accuracy until n reaches 70, after which there is
a slow, unsteady improvement. Curiously, GaSP now
dominates.

Permuting between columns of a design does not
generate distinct repeat experiments here, but reflect-
ing either or both coordinates about the centers of their
ranges maintains the distance properties of the design,
that is, x1 on [0.3,1] is replaced by x′

1 = 1.3 − x1, and
similarly x2. Results for the repeat experiments from
reflecting within x1, x2, or both x1 and x2 are available
in the supplementary material (Chen et al., 2016). They
are similar to those in Figure 13.

Thus, CGP dominates here for n ≤ 60: it is inaccu-
rate but less inaccurate than GaSP. For larger n, how-
ever, GaSP performs better, reaching the 0.10 thresh-
old for ermse,ho before CGP does. This example demon-
strates the potential pitfalls of comparing two methods
with a single experiment. A more comprehensive anal-
ysis not only gives more confidence in the findings but
may also be essential to provide a balanced overview
of advantages and disadvantages.

These last two toy functions together with the results
in Figures 8–11 show no evidence for the effectiveness
of a composite GaSP approach. These findings are in
accord with the earlier study by West et al. (1995).

5.3 Adding a Nugget Term

A nugget augments the GaSP model in (2.1) with
an uncorrelated ε term, usually assumed to have a nor-
mal distribution with mean zero and constant variance
σ 2

ε , independent of the correlated process Z(x). This
changes the computation of R and rT (x) in the condi-
tional prediction (2.4), which no longer interpolates the
training data. For data from physical experimentation
or observation, augmenting a GaSP model in this way
is natural to reflect random errors (e.g., Gao, Sacks and
Welch, 1996; McMillan et al., 1999; Styer et al., 1995).

A nugget term has also been widely used for statisti-
cal modeling of deterministic computer codes without
random error. The reasons offered are that numerical
stability is improved, so overcoming computational ob-
stacles, and also that a nugget can produce better pre-
dictive performance or better confidence or credibil-
ity intervals. The evidence—in the literature and pre-
sented here—suggests, however, that for deterministic
functions the potential advantages of a nugget term are
modest. More systematic methods are available to deal
with numerical instability if it arises (Ranjan, Haynes
and Karsten, 2011), adding a nugget does not convert a
poor predictor into an acceptable one, and other factors
may be more important for good statistical properties
of intervals (Section 6.1). On the other hand, we also do
not find that adding a nugget (and estimating it along
with the other parameters) is harmful, though it may
produce smoothers rather than interpolators. We now
elaborate on these points.

A small nugget, that is, a small value of σ 2
ε , is often

included to improve the numerical properties of R. For
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the space-filling initial designs in this article, however,
Ranjan, Haynes and Karsten (2011) showed that ill-
conditioning in a no-nugget GaSP model will only oc-
cur for low-dimensional x, high correlation, and large
n. These conditions are not commonly met in initial de-
signs for applications. For instance, none of the com-
putations for this article failed due to ill-conditioning,
and those computations involved many repetitions of
experiments for the various functions and GaSP mod-
els. The worst conditioning occurred for the 2-d exam-
ple in Section 5.2 with n = 200, but even here the con-
dition numbers of about 106 did not preclude reliable
calculations. When a design is not space-filling, ma-
trix ill-conditioning may indeed occur. For instance, a
sequential design for, say, optimization or contour esti-
mation (Bingham, Ranjan and Welch, 2014) could lead
to runs close together in the x space, causing numeri-
cal problems. If ill-conditioning does occur, however,
the mathematical solution proposed by Ranjan, Haynes
and Karsten (2011) is an alternative to adding a nugget.

A nugget term is also sometimes suggested to im-
prove predictive performance. Andrianakis and Chal-
lenor (2012) showed mathematically, however, that
with a nugget the RMSE of prediction can be as large
as that of a least squares fit of just the regression com-
ponent in (2.1). Our empirical findings, choosing the
size of σ 2

ε via its MLE, are similarly unsupportive of a
nugget. For example, the 2-d function in (5.1) is hard
to predict with a GaSP(Const, PowerExp) model (Fig-
ure 13), but the results with a fitted nugget term shown
by a “+” symbol in Figure 13 are no different in prac-
tice from those of the no-nugget model.

Similarly, repeating the calculations leading to Fig-
ure 2 for the borehole function, but fitting a nugget term
in all models, shows essentially no difference [the re-
sults with a nugget are available in Figure 1 of the sup-
plementary material (Chen et al., 2016)]. The MLE of
σ 2

ε is either zero or very small relative to the variance of
the correlated process: typically σ̂ 2

ε /σ̂ 2 < 10−6. These
findings are consistent with those of Ranjan, Haynes
and Karsten (2011), who found for the borehole func-
tion and other applications that constraining the model
fit to have at least a modest value of σ 2

ε deteriorated
predictive performance.

Another example, the Friedman function,

y(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2

(5.2)
+ 10x4 + 5x5,

with n = 25 runs, was used by Gramacy and Lee
(2012) to illustrate potential advantages of including

a nugget term. Their context—performance criteria,
analysis method, and design—differs in all respects
from ours. Our results in the top row of Figure 14
show that the GaSP(Const, Gauss) and GaSP(Const,
PowerExp) models with n = 25 have highly variable
accuracy, with ermse,ho values no better and often much
worse than 20%. The effect of the nugget is inconse-
quential. Increasing the sample size to n = 50 makes a
dramatic improvement in prediction accuracy, but the
effect of a nugget remains negligible.

The Gramacy and Lee (2012) results are not incon-
sistent with ours in that they did not report prediction
accuracy for this example. Rather, their results relate
to the role of the nugget in sometimes obtaining better
uncertainty measures when a poor choice of correlation
function is inadvertently made, a topic we return to in
Section 6.1.

6. COMMENTS

6.1 Uncertainty of Prediction

As noted in Section 1, our attention is directed at pre-
diction accuracy, the most compelling characteristic in
practical settings. For example, where the objective is
calibration and validation, the details of uncertainty, as
distinct from accuracy, in the emulator of the computer
model are absorbed (and usually swamped) by model
uncertainties and measurement errors (Bayarri et al.,
2007). But for specific predictions it is clearly impor-
tant to have valid uncertainty statements.

Currently, a full assessment of the validity of em-
ulator uncertainty quantification is unavailable. It has
long been recognized that the standard error of predic-
tion can be optimistic when MLEs of the parameters
θj , pj , νj in the correlation functions of Section 2.1
are “plugged-in” because the uncertainty in the param-
eter values is not taken into account (Abt, 1999). Cor-
rections proposed by Abt remain to be done for the set-
tings in which they are applicable.

Bayes credible intervals with full Bayes methods
carry explicit and valid uncertainty statements; hybrid
methods using priors on some of the correlation pa-
rameters (as distinct from MLEs) may also have reli-
able credible intervals. But for properties such as actual
coverage probability (ACP), the proportion of points in
a test set with true response values covered by intervals
of nominal (say) 95% confidence or credibility, the be-
havior is far from clear. Chen (2013) compared several
Bayes methods with respect to coverage. The results
showed variability with respect to equivalent designs
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FIG. 14. Friedman function: Normalized holdout RMSE of prediction, ermse,ho, for GaSP(Const, Gauss) and GaSP(Const, PowerExp)
models with no nugget term versus the same models with a nugget. There are two base designs: a 25-run mLHD (top row); and a 50-run
mLHD (bottom row). For each base design, 25 random permutations between columns give the 25 values of ermse,ho in a dot plot.

like that found above for accuracy, a troubling charac-
teristic pointing to considerable uncertainty about the
uncertainty.

In Figure 15 we see some of the issues. It gives ACP
results for the borehole and Nilson–Kuusk functions.
The left-hand plot for borehole displays the anticipated
under-coverage using plug-in estimates for the correla-
tion parameters. (Confidence intervals here use n − 1
rather than n in the estimate of σ in the standard er-
ror and tn−1 instead of the standard normal.) PowerExp
is slightly better than Gauss, and Bayes-GEM-SA has
ACP values close to the nominal 95%. Surprisingly, the
plot for the Nilson–Kuusk code on the right of Fig-
ure 15 paints a different picture. Plug-in with Gauss
and Bayes-GEM-SA both show under-coverage, while
plug-in PowerExp has near-ideal properties here. We
speculate that the use of the Gauss correlation function
by Bayes-GEM-SA is again suboptimal for the Nilson–
Kuusk application, just as it was for prediction accu-
racy.

The supplementary material (Chen et al., 2016) com-
pares models with and without a nugget in terms of

coverage properties for the Friedman function in (5.2).
The results show that the problem of substantial under-
coverage seen in many of the replicate experiments
is not solved by inclusion of a nugget term. A mod-
est improvement in the distribution of ACP values is
seen, particularly for n = 50, an improvement consis-
tent with the advantage seen in Table 1 of Gramacy and
Lee (2012) from fitting a nugget term.

A more complete study is surely needed to clarify
appropriate criteria for uncertainty assessment and how
modeling choices may affect matters.

6.2 Extrapolation

GaSP based methods are interpolations so our find-
ings are clearly limited to prediction in the space of
the experiment. The design of the computer experiment
should cover the region of interest, rendering extrapo-
lation meaningless. If a new region of interest is found,
for example, during optimization, the initial computer
runs can be augmented; extrapolation can be used to
delimit regions that have to be explored further. Of
course, extrapolation is necessary in the situation of a
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FIG. 15. Borehole and Nilson–Kuusk functions: ACP of nominal 95% confidence or credibility intervals for GaSP(Const, Gauss),
GaSP(Const, PowerExp), and Bayes-GEM-SA. For the borehole function, 25 random permutations between columns of a 40-run mLHD
give the 25 values of ACP in a dot plot. For the Nilson–Kuusk function, 25 designs are created from a 150-run LHD base plus 50 random
points from a 100-run LHD. The remaining 50 points in the 100-run LHD form the holdout set for each repeat.

new region and a code that can no longer be run. But
then the question is how to extrapolate. Initial inclusion
of linear or other regression terms may be more use-
ful than just a constant, but it may also be useless, or
even dangerous, unless the “right” extrapolation terms
are identified. We suspect it would be wiser to exam-
ine main effects resulting from the application of GaSP
and use them to guide extrapolation.

6.3 Performance Criteria

We have focused almost entirely on questions of pre-
dictive accuracy and used RMSE as a measure. The
supplementary material (Chen et al., 2016) defines and
provides results for a normalized version of maximum
absolute error, emax,ho. Other computations we have
done use the median of the absolute value of prediction
errors, with normalization relative to the trivial predic-
tor from the median of the training output data. These
results are qualitatively the same as for ermse,ho: regres-
sion terms do not matter, and PowerExp is a reliable
choice for R. For slow codes, analysis like in Section 4
but using emax,ho has some limited value in identifying
regions where predictions are difficult, the limitations
stemming from a likely lack of coverage of subregions,
especially at borders of the unit cube, where the output
function may behave badly.

A common performance measure for slow codes
uses leave-one-out cross-validation error to produce
analogues of ermse,ho and emax,ho, obviating the need
for a holdout set. For fast codes, repeat experiments

and the ready availability of a holdout set render cross-
validation unnecessary, however. For slow codes with
only one set of data available, the single assessment
from leave-one-out cross-validation does not reflect the
variability caused, for example, by the design. In any
case, qualitatively similar conclusions pertain regard-
ing regression terms and correlation functions.

6.4 More Examples

The examples we selected are codes that have been
used in earlier studies. We have not incorporated
1-d examples; while instructive for pedagogical rea-
sons, they have little presence in practice. Other ap-
plications we could have included (e.g., Gough and
Welch, 1994) duplicate the specific conclusions we
draw below. There are also “fabricated” test functions
in the numerical integration and interpolation litera-
ture (Barthelmann, Novak and Ritter, 2000) and some
specifically for computer experiments (Surjanovic and
Bingham, 2015). They exhibit characteristics some-
times similar to those in Section 5—large variability
in a corner of the space, a condition that inhibits and
even prevents construction of effective surrogates—
and sometimes no different than the examples in Sec-
tion 3. Codes that are deterministic but with numeri-
cal errors could also be part of a diverse catalogue of
test problems. Ideally performance metrics from var-
ious approaches would be provided to facilitate com-
parisons; the suite of examples that we employed is a
starting point.
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6.5 Designs

The variability in performance over equivalent de-
signs is a striking phenomenon in the analyses of Sec-
tion 3 and raises questions about how to cope with what
seems to be unavoidable bad luck. Are there sequential
strategies that can reduce the variability? Are there ad-
vantageous design types, more robust to arbitrary sym-
metries. For example, does it matter whether a random
LHD, mLHD, or an orthogonal LHD is used? The lat-
ter question is currently being explored by the authors.
That design has a strong role is both unsurprising and
surprising. It is not surprising that care must be taken
in planning an experiment; it is surprising and perplex-
ing that equivalent designs can lead to such large dif-
ferences in performance that are not mediated by good
analytic procedures.

6.6 Larger Sample Sizes

As noted in Section 1, our attention is on experi-
ments where n is small or modest at most. With ad-
vances in computing power it becomes more feasible
to mount experiments with larger values of n while, at
the same time, more complex codes become feasible
but only with limited n. Our focus continues to be on
the latter and the utility of GaSP models in that context.

As n gets larger, Figure 2 illustrates that the differ-
ences in accuracy among choices of R and μ begin
to vanish. Indeed, it is not even clear that using GaSP
models for large n is useful; standard function fitting
methods such as splines may well be competitive and
easier to compute. In addition, when n is large non-
stationary behavior can become apparent and encour-
ages variations in the GaSP methodology such as de-
composing the input space (as in Gramacy and Lee,
2008) or by using a complex μ together with a com-
putationally more tractable R (as in Kaufman et al.,
2011). Comparison of alternatives when n is large is
yet to be considered.

6.7 Are Regression Terms Ever Useful?

Introducing regression terms is unnecessary in the
examples we have presented; a heuristic rationale
was given in Section 2.2. The supplementary material
(Chen et al., 2016) reports a simulation study with real-
ized functions generated as follows: (1) there are very
large linear trends for all xj ; and (2) the superimposed
sample path from a 0-mean GP is highly nonlinear, that
is, a GP with at least one θj � 0 in (2.2). Even under
such extreme conditions, the advantage of explicitly
fitting the regression terms is limited to a relative (ra-
tio of ermse,ho) advantage, with only small differences

in ermse,ho; the presence of a large trend causes a large
normalizing factor. Moreover, such functions are not
the sort usually encountered in computer experiments.
If they do show up, standard diagnostics will reveal
their presence and allow effective follow-up analysis
(see Section 7.2).

7. CONCLUSIONS AND RECOMMENDATIONS

This article addresses two types of questions. First,
how should the analysis methodologies advanced in the
study of computer experiments be assessed? Second,
what recommendations for modeling strategies follow
from applying the assessment strategy to the particular
codes we have studied?

7.1 Assessing Methods

We have stressed the importance of going beyond
“anecdotes” in making claims for proposed methods.
While this point is neither novel nor startling, it is one
that is commonly ignored, often because the process
of studying consequences under multiple conditions is
more laborious. The borehole example (Figure 2), for
instance, employs 75 experiments arising from 25 re-
peats of each of 3 base experiments.

When only one training set of data is available (as
can be the case with slow codes), the procedures in
Section 4, admittedly ad hoc, nevertheless expand the
range of conditions. This brings more generalizability
to claims about the comparative performances of com-
peting procedures. The same strategy of creating mul-
tiple training/holdout sets is potentially useful in com-
paring competing methods in physical experiments as
well.

The studies in the previous sections lead to the fol-
lowing conclusions:

• There is no evidence that GaSP(Const, PowerExp)
is ever dominated by use of regression terms, or
other choices of R. Moreover, we have found that
the inclusion of regression terms makes the likeli-
hood surface multi-modal, necessitating an increase
in computational effort for maximum likelihood
or Bayesian methods. This appears to be due to
confounding between regression terms and the GP
paths.

• Choosing R = Gauss, though common, can be un-
wise. The Matérn function optimized over a few
levels of smoothness is a reasonable alternative to
PowerExp.

• Design matters but cannot be controlled completely.
Variability of performance from equivalent designs
can be uncomfortably large.
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There is not enough evidence to settle the following
questions:

• Are full Bayes methods ever more accurate than
GaSP(Const, PowerExp)? Bayes methods relying on
R = Gauss were seen to be sometimes inferior, and
extensions to accommodate less smooth R such as
PowerExp, perhaps via hybrid Bayes-MLE methods,
are needed.

• Are composite GaSP methods ever better than
GaSP(Const, PowerExp) in practical settings where
the output exhibits nonstationary behavior?

7.2 Recommendations

Faced with a particular code and a set of runs, what
should a scientist do to produce a good predictor?
Our recommendation is to make use of GaSP(Const,
PowerExp), use the diagnostics of Jones, Schonlau
and Welch (1998) or Bastos and O’Hagan (2009),
and assess whether the GaSP predictor is adequate.
If found inadequate, then the scientist should expect
no help from introducing regression terms and, un-
til further evidence is found, neither from Bayes nor
CGP approaches. Of course, trying such methods is
not prohibited, but we believe that inadequacy of the
GaSP(Const, PowerExp) model is usually a sign that
more substantial action must be taken.

We conjecture that the best way to proceed in the
face of inadequacy is to devise a second (or multiple)
stage process, perhaps by added runs, or perhaps by
carving the space into more manageable subregions
as well as adding runs. How best to do this has been
partially addressed, for example, by Gramacy and Lee
(2008) and Loeppky, Moore and Williams (2010); ef-
fective methods constrained by limited runs are not ap-
parent and in need of study.
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SUPPLEMENTARY MATERIAL

Supplement to “Analysis Methods for Computer
Experiments: How to Assess and What Counts?”
(DOI: 10.1214/15-STS531SUPP; .zip). This report
(whatcounts-supp.pdf) contains further description of

the test functions and data from running them, further
results for root mean squared error, findings for max-
imum absolute error, further results on uncertainty of
prediction, and details of the simulation investigating
regression terms. Inputs to the Arctic sea-ice code—
ice-x.txt. Outputs from the code—ice-y.txt.
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