@Data
public class DeltaMethod
extends java.lang.Object
Modifier and Type | Class and Description |
---|---|
static interface |
DeltaMethod.Transformation |
Constructor and Description |
---|
DeltaMethod(Matrix data,
AutoDiff.Differentiable transformation) |
Modifier and Type | Method and Description |
---|---|
double |
asymptoticVariance() |
double |
confidenceIntervalRadius()
Build a 95% confidence interval around the value given by estimate()
|
double |
confidenceIntervalRadius(double coverage)
Construct the radius of an interval I such that asymptotically in n,
P(Z \in I) = coverage
The interval is around the value given by estimate(), i.e.
|
static Matrix |
covar(Matrix data)
n = number of observations
p = number of parameters
Input: nxp matrix
Output: pxp covar matrix
|
org.apache.commons.math3.analysis.differentiation.DerivativeStructure |
derivativeStructure() |
boolean |
equals(java.lang.Object obj) |
double |
estimate() |
Matrix |
getData() |
AutoDiff.Differentiable |
getTransformation() |
int |
hashCode() |
Matrix |
means() |
int |
n() |
int |
p() |
java.lang.String |
toString() |
public DeltaMethod(Matrix data, AutoDiff.Differentiable transformation)
public double confidenceIntervalRadius()
public double confidenceIntervalRadius(double coverage)
public double estimate()
public double asymptoticVariance()
public int n()
public int p()
public static Matrix covar(Matrix data)
public Matrix means()
public org.apache.commons.math3.analysis.differentiation.DerivativeStructure derivativeStructure()
@Pure public int hashCode()
hashCode
in class java.lang.Object
@Pure public boolean equals(java.lang.Object obj)
equals
in class java.lang.Object
@Pure public java.lang.String toString()
toString
in class java.lang.Object
@Pure public Matrix getData()
@Pure public AutoDiff.Differentiable getTransformation()