Research

Subscribe to email list

Please select the email list(s) to which you wish to subscribe.

You are here

Publications by Department Members

2015

Wang L, Bouchard-Côté A, Doucet A. Bayesian phylogenetic inference using the combinatorial sequential Monte Carlo method. Journal of the American Statistical Association. 2015;110:1362–1374.
Wang L, Chen J, Pu X. Resampling calibrated adjusted empirical likelihood. Canadian Journal of Statistics. 2015;43:42–59.
Wong SWK, LUM CONROY, WU LANG, Zidek JV. Quantifying uncertainty in lumber grading and strength prediction: a Bayesian approach. Technometrics. Taylor and Francis; 2015;58:236-243.
Xu C, Chen J. A Thresholding Algorithm for Order Selection in Finite Mixture Models. Communications in Statistics-Simulation and Computation. Taylor & Francis; 2015;44:433–453.
Zhang T, Shirani A, Zhao Y, Karim ME, Gustafson P, Petkau J, et al. Beta-interferon exposure and onset of secondary progressive multiple sclerosis. European Journal of Neurology. Wiley Online Library; 2015;22:990–1000.
Zhang T, Shirani A, Zhao Y, Karim ME, Gustafson P, Petkau J, et al. Beta-interferon exposure and onset of secondary progressive multiple sclerosis. European Journal of Neurology [Internet]. 2015;22:990–1000. http://onlinelibrary.wiley.com/doi/10.1111/ene.12698/abstract
Zhao Y, Kondo Y, Traboulsee A, Li DKB, Riddehough A, Petkau AJ. Personalized activity index, a new safety monitoring tool for multiple sclerosis clinical trials. Multiple Sclerosis Journal – Experimental, Translational and Clinical [Internet]. 2015;1:1-15. http://mso.sagepub.com/content/1/2055217315577829
Zhao T, Wang Z, Cumberworth A, Gsponer J, de Freitas N, Bouchard-Côté A. Bayesian analysis of continuous time Markov chains with application to phylogenetic modelling. Bayesian Analysis. 2015;(In Press).
Zhao T, Cumberworth A, Wang Z, Gsponer J, de Freitas N, Bouchard-Côté A. Bayesian analysis of continuous time Markov chains with application to phylogenetic modelling. Bayesian Analysis. 2015;11:1203–1237.
Zidek JV, others . Discussion of ``Optimal design in geostatistics under preferential sampling '' Ferreira and Gamerman. Bayesian Analysis. International Society for Bayesian Analysis; 2015;10:749–752.
Zlosnik JE, Zhou G, Brant R, Henry DA, Hird TJ, Mahenthiralingam E, et al. Burkholderia species infections in patients with cystic fibrosis in British Columbia, Canada. 30 years' experience. Ann Am Thorac Soc. 2015;12:70–78.

2014

Ascherio A, Munger K, White R, Köchert K, Simon KClaire, Freedman M, et al.. Vitamin D As Predictor Of Multiple Sclerosis Activity And Progression In Patients With CIS Treated Early With Interferon beta-1b (P5. 016). Neurology. AAN Enterprises; 2014;82:P5–016.
Ascherio A, Munger KL, White R, Köchert K, Simon KClaire, Polman CH, et al.. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA neurology. American Medical Association; 2014;71:306–314.
Ayad M, Coia V, Kihel O. The Number of Relatively Prime Subsets of a Finite Union of Sets of Consecutive Integers. Journal of Integer Sequences. 2014;17:3.
Barr RG, Fairbrother N, Pauwels J, Green J, Chen M, Brant R. Maternal frustration, emotional and behavioural responses to prolonged infant crying. Infant Behav Dev. 2014;37:652–664.
Battle A, Mostafavi S, Zhu X, Potash JB, Weissman MM, McCormick C, et al. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. GENOME RESEARCH. 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA: COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT; 2014;24:14-24.
Bonner SJ, Newlands NK, Heckman NE. Modeling regional impacts of climate teleconnections using functional data analysis. ENVIRONMENTAL AND ECOLOGICAL STATISTICS. VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS: SPRINGER; 2014;21:1-26.
Bouchard-Côté A. Sequential Monte Carlo (SMC) for Bayesian phylogenetics. In: Chen M-H, Kuo L, Lewis PO (eds.). Bayesian phylogenetics: methods, algorithms, and applications. 2014. pp. 163–186.
Brechmann EC, Joe H. Parsimonious parameterization of correlation matrices using truncated vines and factor analysis. Computational Statistics & Data Analysis. Elsevier Science BV; 2014;77:233-251.
Cai S, Zidek JV, Newlands NK, Neilsen D. Statistical modeling and forecasting of fruit crop phenology under climate change. Environmetrics. Wiley Online Library; 2014;25:621–629.
Campbell H, Dean CB. The consequences of proportional hazards based model selection. Statistics in medicine. Wiley Online Library; 2014;33:1042–1056.
Coia V, Huang MLing. A Sieve model for extreme values. Journal of Statistical Computation and Simulation. 2014;84:1692–1710.
Cubranic D, Dunham B, Kim D. On-line homework in probability and statistics: WeBWorK incorporating R. In 9th International Conference on Teaching Statistics. 2014.
de Souza CPE, Heckman NE. Switching nonparametric regression models. JOURNAL OF NONPARAMETRIC STATISTICS. 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND: TAYLOR & FRANCIS LTD; 2014;26:617-637.
Evans C, Zhu F, Kingwell E, Shirani A, Kop ML, Petkau J, et al. Association between beta-interferon exposure and hospital events in multiple sclerosis. Pharmacoepidemiology and drug safety. Wiley Online Library; 2014;23:1213–1222.
Evans C, Zhu F, Kingwell E, Shirani A, van der Kop ML, Petkau J, et al. Association between beta-interferon exposure and hospital events in multiple sclerosis. Pharmacoepidemiology and Drug Safety. 111 RIVER ST, HOBOKEN 07030-5774, NJ USA: WILEY-BLACKWELL; 2014;23:1213-1222.
Falasinnu T, Gilbert M, Salway THottes, Gustafson P, Ogilvie G, Shoveller J. Predictors identifying those at increased risk for STDs: a theory-guided review of empirical literature and clinical guidelines. International journal of STD & AIDS. SAGE Publications; 2014;:0956462414555930.
Falasinnu T, Gustafson P, Hottes TSalway, Gilbert M, Ogilvie G, Shoveller J. A critical appraisal of risk models for predicting sexually transmitted infections. Sexually transmitted diseases. LWW; 2014;41:321–330.
Falasinnu T, Gilbert M, Gustafson P, Shoveller J. Deriving and validating a risk estimation tool for screening asymptomatic chlamydia and gonorrhea. Sexually transmitted diseases. LWW; 2014;41:706–712.
Guan L, Collet JP, Yuskiv N, Skippen P, Brant R, Kissoon N. The effect of massage therapy on autonomic activity in critically ill children. Evid Based Complement Alternat Med. 2014;2014:656750.
Gustafson P, McCandless L. Commentary: Priors, Parameters, and Probability: A Bayesian Perspective on Sensitivity Analysis. Epidemiology. LWW; 2014;25:910–912.
Gustafson P. Bayesian Statistical Methodology for Observational Health Sciences Data. Statistics in Action: A Canadian Outlook. CRC Press; 2014;:163.
Gustafson P, Greenland S. Misclassification. In Handbook of Epidemiology. Springer; 2014. pp. 639–658.
Guzman J, Gomez-Ramirez O, Jurencak R, Shiff NJ, Berard RA, Duffy CM, et al. What matters most for patients, parents, and clinicians in the course of juvenile idiopathic arthritis? A qualitative study. J. Rheumatol. 2014;41:2260–2269.
Hajiaghayi M, Kirkpatrick B, Wang L, Bouchard-Côté A. Efficient continuous-time Markov chain estimation. In International Conference on Machine Learning (ICML). 2014. pp. 638–646.
Hollander Z, Lazárová M, Lam KKY, Ignaszewski A, Oudit GY, Dyck JRB, et al.. Proteomic biomarkers of recovered heart function. European journal of heart failure. Wiley Online Library; 2014;16:551–559.
Hua L, Joe H. Strength of tail dependence based on conditional tail expectation. Journal of Multivariate Analysis. Elsevier Inc; 2014;123:143-159.
Hua L, Joe H, Li H. Relations between hidden regular variation and the tail order of copulas. Journal of Applied Probability. Applied Probability Trust; 2014;51:37-57.
Joe H. Dependence Modeling with Copulas [Internet]. Boca Raton, FL: Chapman & Hall/CRC; 2014. http://www.crcpress.com/product/isbn/9781466583221
Jun S-H, Bouchard-Côté A. Memory (and time) efficient sequential Monte Carlo. In International Conference on Machine Learning (ICML). 2014. pp. 514–522.
Karim ME, Gustafson P, Petkau J, Zhao Y, Shirani A, Kingwell E, et al. Marginal structural Cox models for estimating the association between beta-interferon exposure and disease progression in a multiple sclerosis cohort. American Journal of Epidemiology. JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA: OXFORD UNIV PRESS INC; 2014;180:160-171.
Karim MEhsanul, Gustafson P, Petkau J, Zhao Y, Shirani A, Kingwell E, et al. Marginal Structural Cox Models for Estimating the Association Between β-Interferon Exposure and Disease Progression in a Multiple Sclerosis Cohort. American journal of epidemiology. Oxford University Press; 2014;180:160–171.
Koulis T, Muthukumarana S, Briercliffe C. A Bayesian stochastic model for batting performance evaluation in one-day cricket. Journal of Quantitative Analysis in Sports [Internet]. 2014;10:1–13. http://www.degruyter.com/view/j/jqas.2014.10.issue-1/jqas-2013-0057/jqas-2013-0057.xml
Le N, Leung A, Brooks-Wilson A, Cook L, Swenerton K, Demers P, et al. Occupational exposure and ovarian cancer risk. Cancer causes Control. Cancer causes Control. 2014;7:829-841.
Levinson DF, Mostafavi S, Milaneschi Y, Rivera M, Ripke S, Wray NR, et al. Genetic Studies of Major Depressive Disorder: Why Are There No Genome-wide Association Study Findings and What Can We Do About It?. BIOLOGICAL PSYCHIATRY. 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA: ELSEVIER SCIENCE INC; 2014;76:510-512.
Li S, Chen J, Guo J, Jing B-Y, Tsang S-Y, Xue H. Likelihood Ratio Test for Multi-Sample Mixture Model and its Application to Genetic Imprinting. Journal of the American Statistical Association. Taylor & Francis; 2014;:00–00.

Pages