GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function

Subscribe to email list

Please select the email list(s) to which you wish to subscribe.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA

Enter the characters shown in the image.

User menu

You are here

GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function

TitleGeneMANIA: a real-time multiple association network integration algorithm for predicting gene function
Publication TypeJournal Article
Year of Publication2008
AuthorsMostafavi, S, Ray, D, Warde-Farley, D, Grouios, C, Morris, Q
JournalGENOME BIOLOGY
Volume9
PaginationS4
Type of ArticleArticle
ISSN1474-760X
AbstractBackground: Most successful computational approaches for protein function prediction integrate multiple genomics and proteomics data sources to make inferences about the function of unknown proteins. The most accurate of these algorithms have long running times, making them unsuitable for real-time protein function prediction in large genomes. As a result, the predictions of these algorithms are stored in static databases that can easily become outdated. We propose a new algorithm, GeneMANIA, that is as accurate as the leading methods, while capable of predicting protein function in real-time. Results: We use a fast heuristic algorithm, derived from ridge regression, to integrate multiple functional association networks and predict gene function from a single process-specific network using label propagation. Our algorithm is efficient enough to be deployed on a modern webserver and is as accurate as, or more so than, the leading methods on the MouseFunc I benchmark and a new yeast function prediction benchmark; it is robust to redundant and irrelevant data and requires, on average, less than ten seconds of computation time on tasks from these benchmarks. Conclusion: GeneMANIA is fast enough to predict gene function on-the-fly while achieving state-of-the-art accuracy. A prototype version of a GeneMANIA-based webserver is available at http://morrislab.med.utoronto.ca/prototype.
DOI10.1186/gb-2008-9-s1-s4