Abstract | Methods are proposed for generating random (p+1) x (p+1) Toeplitz correlation matrices that are consistent with a causal AR(p) Gaussian time series model. The main idea is to first specify distributions for the partial autocorrelations that are algebraically independent and take values in (-1, 1), and then map to the Toeplitz matrix. Similarly, starting with pseudopartial autocorrelations, methods are proposed for generating (q+1) x (q+1) Toeplitz correlation matrices that are consistent with an invertible MA(q) Gaussian time series model. The density can be uniform or non-uniform over the space of autocorrelations up to lag p or q, or over the space of autoregressive or moving average coefficients, by making appropriate choices for the densities of the (pseudo)-partial autocorrelations. Important intermediate steps are the derivations of the Jacobians of the mappings between the (pseudo)-partial autocorrelations, autocorrelations and autoregressive/moving average coefficients. The random generating methods are useful for models with a structured Toeplitz matrix as a parameter. (C) 2010 Elsevier Inc. All rights reserved. |