News & Events

Subscribe to email list

Please select the email list(s) to which you wish to subscribe.

You are here

Causal Inference Approaches for Dealing with Time-dependent Confounding in Longitudinal Studies, with Applications to Multiple Sclerosis Research

Thursday, December 11, 2014 -
16:00 to 17:00
Ehsan Karim, PhD Student
Seminar
ESB 4133* (PIMS Library Area on 4th Floor)

Marginal structural Cox models (MSCMs) have gained popularity in analyzing longitudinal data in the presence of  'time-dependent confounding'. This talk is motivated by issues arising in connection with dealing with time-dependent confounding while assessing the effects of beta-interferon drug exposure on disease progression in relapsing-remitting multiple sclerosis (MS) patients in the real-world clinical practice setting. In the context of this chronic, yet fluctuating disease, MSCMs were used to adjust for the time-varying confounders, such as MS relapses, as well as baseline characteristics, through the use of inverse probability weighting (IPW). Using a large cohort of relapsing-remitting MS patients in British Columbia, Canada (1995-2008), no strong association between beta-interferon exposure and the hazard of disability progression was found. We also investigated whether it is possible to improve the MSCM weight estimation techniques by using the statistical learning methods, such as bagging, boosting and support vector machines. Statistical learning methods require fewer assumptions and have been found to estimate propensity scores with better covariate balance. As propensity scores and IPWs in MSCM are functionally  related, we also studied the usefulness of statistical learning methods via a series of simulation studies. Additionally, two alternative approaches, prescription time-distribution matching (PTDM) and the sequential Cox approach, proposed in the literature to deal with immortal time bias and time-dependent confounding respectively, were compared via a series of simulations. The PTDM approach was found to be not as effective as the Cox model (with treatment considered as a time-dependent exposure) in minimizing immortal time bias. The sequential Cox approach was, however, found to be an effective method to minimize immortal time bias, but not as effective as a MSCM, in the presence of time-dependent confounding. These methods were used to re-analyze the MS dataset to show their applicability. The findings from the simulation studies were also used to guide the data analyses.