News & Events

Subscribe to email list

Please select the email list(s) to which you wish to subscribe.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA

Enter the characters shown in the image.

User menu

You are here

Statistical Inference for Cataloging the Visible Universe

Tuesday, January 22, 2019 - 11:00 to 12:00
Jeffrey Regier, Postdocoral Researcher, Department of Electrical Engineering and Computer Science, University of California, Berkeley
Statistics Seminar
Room 4192, Earth Sciences Building (2207 Main Mall)

A key task in astronomy is to locate astronomical objects in images and to characterize them according to physical parameters such as brightness, color, and morphology. This task, known as cataloging, is challenging for several reasons: many astronomical objects are much dimmer than the sky background, labeled data is generally unavailable, overlapping astronomical objects must be resolved collectively, and the datasets are enormous -- terabytes now, petabytes soon. Existing approaches to cataloging are largely based on algorithmic software pipelines that lack an explicit inferential basis. In this talk, I present a new approach to cataloging based on inference in a fully specified probabilistic model. I consider two inference procedures: one based on variational inference (VI) and another based on MCMC. A distributed implementation of VI, written in Julia and run on a supercomputer, achieves petascale performance -- a first for any high-productivity programming language. The run is the largest-scale application of Bayesian inference reported to date. In an extension, using new ideas from variational autoencoders and deep learning, I avoid many of the traditional disadvantages of VI relative to MCMC, and improve model fit.