News & Events

Subscribe to email list

Please select the email list(s) to which you wish to subscribe.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA

Enter the characters shown in the image.

User menu

You are here

Stochastic Processes, Statistical Inference and Efficient Algorithms for Phylogenetic Inference

Tuesday, July 5, 2016 - 11:00
Vincent Zhai, PhD Student, UBC Statistics
Statistics Seminar
Room 4192, Earth Sciences Building (2207 Main Mall)

Phylogenetic inference aims to reconstruct the evolutionary history of populations or species. With the rapid expansion of genetic data available, statistical methods play an increasingly important role in phylogenetic inference. In this talk, we present new evolutionary models, statistical inference methods and efficient algorithms for reconstructing phylogenetic trees at the level of populations using single nucleotide polymorphism data and at the level of species using multiple sequence alignment data.

 

At the level of populations, we introduce a new inference method to estimate evolutionary distances for any two populations to their most recent common ancestral population using single-nucleotide polymorphism allele frequencies. Our method is based on a new evolutionary model for both drift and fixation. To scale this method to large numbers of populations, we introduce the asymmetric neighbor-joining algorithm, an efficient method for reconstructing rooted bifurcating trees. 

At the level of species, we introduce a continuous time stochastic process, the geometric Poisson indel process, that allows indel rates to vary across sites. We design an efficient algorithm for computing the probability of a given multiple sequence alignment based on our new indel model. We describe a method to construct phylogeny estimates from a fixed alignment using neighbor-joining.